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A modified 𝑞-homotopy analysis method (m𝑞-HAM) was proposed for solving 𝑛th-order nonlinear differential equations. This
method improves the convergence of the series solution in the 𝑛HAMwhich was proposed in (see Hassan and El-Tawil 2011, 2012).
The proposed method provides an approximate solution by rewriting the 𝑛th-order nonlinear differential equation in the form of 𝑛
first-order differential equations.The solution of these 𝑛 differential equations is obtained as a power series solution.This scheme is
tested on two nonlinear exactly solvable differential equations.The results demonstrate the reliability and efficiency of the algorithm
developed.

1. Introduction

Homotopy analysis method (HAM) initially proposed by
Liao in his Ph.D. thesis [1] is a powerful method to solve
nonlinear problems. In recent years, this method has been
successfully employed to solve many types of nonlinear
problems in science and engineering [2–17]. HAM contains
a certain auxiliary parameter ℎ, which provides us with a
simple way to adjust and control the convergence region and
rate of convergence of the series solution.Moreover, bymeans
of the so-called ℎ-curve, a valid region of ℎ can be studied to
gain a convergent series solution. More recently, a powerful
modification of HAM was proposed [18–20]. Hassan and El-
Tawil [21, 22] presented a new technique of using homotopy
analysis method for solving nonlinear initial value problems
(𝑛HAM). El-Tawil and Huseen [23, 24] established a method,
namely, 𝑞-homotopy analysis method, (𝑞-HAM) which is
a more general method of HAM, The 𝑞-HAM contains an
auxiliary parameter 𝑛 as well as ℎ such that the case of 𝑛 =
1 (𝑞-HAM; 𝑛 = 1) and the standard homotopy analysis
method (HAM) can be reached. In this paper, we present the
modification of 𝑞-homotopy analysis method (m𝑞-HAM) for
solving nonlinear problems by transforming the 𝑛th-order
nonlinear differential equation to a system of 𝑛 first-order

equations. we note that the 𝑛HAM is a special case of m𝑞-
HAM (m𝑞-HAM; 𝑛 = 1).

2. Analysis of the 𝑞-Homotopy Analysis
Method (𝑞-HAM)

Consider the following nonlinear partial differential equa-
tion:

𝑁[𝑢 (𝑥, 𝑡)] = 0, (1)

where 𝑁 is a nonlinear operator, (𝑥, 𝑡) denotes indepen-
dent variables, and 𝑢(𝑥, 𝑡) is an unknown function. Let us
construct the so-called zero-order deformation equation as
follows:

(1 − 𝑛𝑞) 𝐿 [0 (𝑥, 𝑡; 𝑞) − 𝑢
0
(𝑥, 𝑡)] = 𝑞ℎ𝐻 (𝑥, 𝑡)𝑁 [0 (𝑥, 𝑡; 𝑞)] ,

(2)

where 𝑛 ≥ 1, 𝑞 ∈ [0, 1/𝑛] denotes the so-called embedded
parameter, 𝐿 is an auxiliary linear operator with the property
𝐿[𝑓] = 0 when 𝑓 = 0, ℎ ̸= 0 is an auxiliary parameter, and
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𝐻(𝑥, 𝑡) denotes a non-zero auxiliary function. It is obvious
that when 𝑞 = 0 and 𝑞 = 1/𝑛, (2) becomes

0 (𝑥, 𝑡; 0) = 𝑢
0
(𝑥, 𝑡) , 0 (𝑥, 𝑡;

1

𝑛
) = 𝑢 (𝑥, 𝑡) , (3)

respectively. Thus, as 𝑞 increases from 0 to 1/𝑛, the solution
0(𝑥, 𝑡; 𝑞) varies from the initial guess 𝑢

0
(𝑥, 𝑡) to the solution

𝑢(𝑥, 𝑡). We may choose 𝑢
0
(𝑥, 𝑡), 𝐿, ℎ, and𝐻(𝑥, 𝑡) and assume

that all of them can be properly chosen so that the solution
0(𝑥, 𝑡; 𝑞) of (2) exists for 𝑞 ∈ [0, 1/𝑛].

Now, by expanding 0(𝑥, 𝑡; 𝑞) in Taylor series, we have

0 (𝑥, 𝑡; 𝑞) = 𝑢
0
(𝑥, 𝑡) +

+∞

∑

𝑚=1

𝑢
𝑚
(𝑥, 𝑡) 𝑞

𝑚
, (4)

where

𝑢
𝑚 (𝑥, 𝑡) =

1

𝑚!

𝜕
𝑚
0(𝑥, 𝑡; 𝑞)

𝜕𝑞𝑚

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑞=0

. (5)

Next, we assume that ℎ,𝐻(𝑥, 𝑡), 𝑢
0
(𝑥, 𝑡), and 𝐿 are properly

chosen such that the series (4) converges at 𝑞 = 1/𝑛 and that

𝑢 (𝑥, 𝑡) = 0 (𝑥, 𝑡;
1

𝑛
) = 𝑢
0
(𝑥, 𝑡) +

+∞

∑

𝑚=1

𝑢
𝑚
(𝑥, 𝑡) (

1

𝑛
)

𝑚

. (6)

Let

𝑢
𝑟
(𝑥, 𝑡) = {𝑢

0
(𝑥, 𝑡) , 𝑢

1
(𝑥, 𝑡) , 𝑢

2
(𝑥, 𝑡) , . . . , 𝑢

𝑟
(𝑥, 𝑡)} . (7)

Differentiating equation (2) for𝑚 times with respect to 𝑞 and
then setting 𝑞 = 0 and dividing the resulting equation by
𝑚!, we have the so-called𝑚th order deformation equation as
follows:

𝐿 [𝑢
𝑚
(𝑥, 𝑡) − 𝑘

𝑚
𝑢
𝑚−1
(𝑥, 𝑡)] = ℎ𝐻 (𝑥, 𝑡) 𝑅

𝑚
(
󳨀󳨀󳨀⇀
𝑢
𝑚−1
(𝑥, 𝑡)) ,

(8)

where

𝑅
𝑚
(
󳨀󳨀󳨀⇀
𝑢
𝑚−1 (𝑥, 𝑡))

=
1

(𝑚 − 1)!

𝜕
𝑚−1
(𝑁 [0 (𝑥, 𝑡; 𝑞)] − 𝑓 (𝑥, 𝑡))

𝜕𝑞𝑚−1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑞=0

,

𝑘
𝑚
= {
0 𝑚 ≤ 1,

𝑛 otherwise.

(9)

It should be emphasized that 𝑢
𝑚
(𝑥, 𝑡) for 𝑚 ≥ 1 is governed

by the linear equation (8) with linear boundary conditions
that come from the original problem. Due to the existence of
the factor (1/𝑛)𝑚, more chances for convergence may occur
or even much faster convergence can be obtained better than
the standard HAM. It should be noted that the case of 𝑛 = 1
in (2), standard HAM, can be reached.

The 𝑞-homotopy analysis method (𝑞-HAM) can be refor-
matted as follows.

We rewrite the nonlinear partial differential equation (1)
in the following form:

𝐿𝑢 (𝑥, 𝑡) + 𝐴𝑢 (𝑥, 𝑡) + 𝐵𝑢 (𝑥, 𝑡) = 0,

𝑢 (𝑥, 0) = 𝑓0 (𝑥) ,

𝜕𝑢(𝑥, 𝑡)

𝜕𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑡=0

= 𝑓
1
(𝑥) ,

...

𝜕
𝑧−1
𝑢(𝑥, 𝑡)

𝜕𝑧−1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑡=0

= 𝑓
𝑧−1 (𝑥) ,

(10)

where 𝐿 = 𝜕𝑧/𝜕𝑡𝑧, 𝑧 = 1, 2, . . . is the highest partial derivative
with respect to 𝑡, 𝐴 is a linear term, and 𝐵 is a nonlinear term.
The so-called zero-order deformation equation (2) becomes

(1 − 𝑛𝑞) 𝐿 [0 (𝑥, 𝑡; 𝑞) − 𝑢
0 (𝑥, 𝑡)]

= 𝑞ℎ𝐻 (𝑥, 𝑡) (𝐿𝑢 (𝑥, 𝑡) + 𝐴𝑢 (𝑥, 𝑡) + 𝐵𝑢 (𝑥, 𝑡)) ,

(11)

we have the following𝑚th order deformation equation:

𝐿 [𝑢
𝑚
(𝑥, 𝑡) − 𝑘

𝑚
𝑢
𝑚−1
(𝑥, 𝑡)]

= ℎ𝐻 (𝑥, 𝑡) (𝐿𝑢
𝑚−1
(𝑥, 𝑡) + 𝐴𝑢

𝑚−1
(𝑥, 𝑡)+𝐵 (

󳨀󳨀󳨀⇀
𝑢
𝑚−1
(𝑥, 𝑡))) .

(12)
Hence,
𝑢
𝑚 (𝑥, 𝑡) = 𝑘𝑚𝑢𝑚−1 (𝑥, 𝑡)

+ ℎ𝐿
−1
[𝐻 (𝑥, 𝑡) (𝐿𝑢𝑚−1 (𝑥, 𝑡) + 𝐴𝑢𝑚−1 (𝑥, 𝑡)

+𝐵 (
󳨀󳨀󳨀⇀
𝑢
𝑚−1
(𝑥, 𝑡)))] .

(13)

Now, the inverse operator 𝐿−1 is an integral operator which is
given by

𝐿
−1
(⋅) = ∫∫ ⋅ ⋅ ⋅ ∫ (⋅) 𝑑𝑡 𝑑𝑡 ⋅ ⋅ ⋅ 𝑑𝑡⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑧 times
+ 𝑐
1
𝑡
𝑧−1
+ 𝑐
2
𝑡
𝑧−2
+ ⋅ ⋅ ⋅ + 𝑐

𝑧
,

(14)

where 𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑧
are integral constants.

To solve (10) by means of 𝑞-HAM, we choose the
following initial approximation:

𝑢
0 (𝑥, 𝑡) = 𝑓0 (𝑥) + 𝑓1 (𝑥) 𝑡

+ 𝑓
2 (𝑥)

𝑡
2

2!
+ ⋅ ⋅ ⋅ + 𝑓

𝑧−1 (𝑥)
𝑡
𝑧−1

(𝑧 − 1)!
.

(15)

Let𝐻(𝑥, 𝑡) = 1, by means of (14) and (15); then (13) becomes

𝑢
𝑚
(𝑥, 𝑡)

= 𝑘
𝑚
𝑢
𝑚−1
(𝑥, 𝑡)

+ ℎ∫

𝑡

0

∫

𝑡

0

⋅ ⋅ ⋅ ∫

𝑡

0

(
𝜕
𝑧
𝑢
𝑚−1
(𝑥, 𝜏)

𝜕𝜏𝑧
+ 𝐴𝑢
𝑚−1
(𝑥, 𝜏)

+ 𝐵 (
󳨀󳨀󳨀⇀
𝑢
𝑚−1
(𝑥, 𝜏))) 𝑑𝜏 𝑑𝜏 ⋅ ⋅ ⋅ 𝑑𝜏⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑧 times
.

(16)
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Now from ∫𝑡
0
∫
𝑡

0
⋅ ⋅ ⋅ ∫
𝑡

0
(𝜕
𝑧
𝑢
𝑚−1
(𝑥, 𝜏)/𝜕𝜏

𝑧
)𝑑𝜏 𝑑𝜏 ⋅ ⋅ ⋅ 𝑑𝜏⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑧 times
, we ob-

serve that there are repeated computations in each step which
caused more consuming time. To cancel this, we use the
following modification to (16):

𝑢
𝑚
(𝑥, 𝑡)

= 𝑘
𝑚
𝑢
𝑚−1 (𝑥, 𝑡)

+ ℎ∫

𝑡

0

∫

𝑡

0

⋅ ⋅ ⋅ ∫

𝑡

0

𝜕
𝑧
𝑢
𝑚−1 (𝑥, 𝜏)

𝜕𝜏𝑧
𝑑𝜏 𝑑𝜏 ⋅ ⋅ ⋅ 𝑑𝜏⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑧 times

+ ℎ∫

𝑡

0

∫

𝑡

0

⋅ ⋅ ⋅ ∫

𝑡

0

(𝐴𝑢
𝑚−1 (𝑥, 𝜏)

+ 𝐵 (
󳨀󳨀󳨀⇀
𝑢
𝑚−1
(𝑥, 𝜏))) 𝑑𝜏 𝑑𝜏 ⋅ ⋅ ⋅ 𝑑𝜏⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑧 times

= 𝑘
𝑚
𝑢
𝑚−1
(𝑥, 𝑡) + ℎ𝑢

𝑚−1
(𝑥, 𝑡)

− ℎ (𝑢
𝑚−1
(𝑥, 0) + 𝑡

𝜕𝑢
𝑚−1
(𝑥, 0)

𝜕𝑡

+ ⋅ ⋅ ⋅ +
𝑡
𝑧−1

(𝑧 − 1)!

𝜕
𝑧−1
𝑢
𝑚−1 (𝑥, 0)

𝜕𝑡𝑧−1
)

+ ℎ∫

𝑡

0

∫

𝑡

0

⋅ ⋅ ⋅ ∫

𝑡

0

(𝐴𝑢
𝑚−1
(𝑥, 𝜏)

+𝐵 (
󳨀󳨀󳨀⇀
𝑢
𝑚−1
(𝑥, 𝜏))) 𝑑𝜏 𝑑𝜏 ⋅ ⋅ ⋅ 𝑑𝜏⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑧 times
.

(17)

Now, for𝑚 = 1, 𝑘
𝑚
= 0, and

𝑢
0 (𝑥, 0) + 𝑡

𝜕𝑢
0 (𝑥, 0)

𝜕𝑡
+
𝑡
2

2!

𝜕
2
𝑢
0 (𝑥, 0)

𝜕𝑡2

+ ⋅ ⋅ ⋅ +
𝑡
𝑧−1

(𝑧 − 1)!

𝜕
𝑧−1
𝑢
0
(𝑥, 0)

𝜕𝑡𝑧−1

= 𝑓
0
(𝑥) + 𝑓

1
(𝑥) 𝑡 + 𝑓

2
(𝑥)
𝑡
2

2!

+ ⋅ ⋅ ⋅ + 𝑓
𝑧−1
(𝑥)

𝑡
𝑧−1

(𝑧 − 1)!

= 𝑢
0
(𝑥, 𝑡) .

(18)

Substituting this equality into (17), we obtain

𝑢
1 (𝑥, 𝑡)

= ℎ∫

𝑡

0

∫

𝑡

0

⋅ ⋅ ⋅ ∫

𝑡

0

(𝐴𝑢
0 (𝑥, 𝜏) + 𝐵 (𝑢0 (𝑥, 𝜏))) 𝑑𝜏 𝑑𝜏 ⋅ ⋅ ⋅ 𝑑𝜏⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑧 times
.

(19)

For𝑚 > 1, 𝑘
𝑚
= 𝑛, and

𝑢
𝑚
(𝑥, 0) = 0,

𝜕𝑢
𝑚
(𝑥, 0)

𝜕𝑡
= 0,

𝜕
2
𝑢
𝑚
(𝑥, 0)

𝜕𝑡2
= 0, . . . ,

𝜕
𝑧−1
𝑢
𝑚
(𝑥, 0)

𝜕𝑡𝑧−1
= 0.

(20)

Substituting this equality into (17), we obtain

𝑢
𝑚
(𝑥, 𝑡)

= (𝑛 + ℎ) 𝑢
𝑚−1
(𝑥, 𝑡)

+ ℎ∫

𝑡

0

∫

𝑡

0

⋅ ⋅ ⋅ ∫

𝑡

0

(𝐴𝑢
𝑚−1
(𝑥, 𝜏)

+𝐵 (
󳨀󳨀󳨀⇀
𝑢
𝑚−1 (𝑥, 𝜏))) 𝑑𝜏 𝑑𝜏 ⋅ ⋅ ⋅ 𝑑𝜏⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑧 times
.

(21)

The standard 𝑞-HAM is powerful when 𝑧 = 1, and the series
solution expression by 𝑞-HAMcan bewritten in the following
form:

𝑢 (𝑥, 𝑡; 𝑛; ℎ) 2 𝑈
𝑀
(𝑥, 𝑡; 𝑛; ℎ) =

𝑀

∑

𝑖=0

𝑢
𝑖
(𝑥, 𝑡; 𝑛; ℎ) (

1

𝑛
)

𝑖

. (22)

But when 𝑧 ≥ 2, there are too many additional terms
where harder and more time consuming computations are
performed. So, the closed form solution needsmore numbers
of iteration.

3. The Proposed Modified 𝑞-Homotopy
Analysis Method (m𝑞-HAM)

When 𝑧 ≥ 2, we rewrite (1) as in the following system of first-
order differential equations:

𝑢
𝑡
= 𝑢1,

𝑢1
𝑡
= 𝑢2,

...

𝑢 {𝑧 − 1}
𝑡
= − 𝐴𝑢 (𝑥, 𝑡) − 𝐵𝑢 (𝑥, 𝑡) .

(23)

Set the initial approximation

𝑢
0
(𝑥, 𝑡) = 𝑓

0
(𝑥) ,

𝑢1
0 (𝑥, 𝑡) = 𝑓1 (𝑥) ,

...

𝑢 {𝑧 − 1}
0
(𝑥, 𝑡) = 𝑓

𝑧−1
(𝑥) .

(24)

Using the iteration formulas (19) and (21) as follows:

𝑢
1 (𝑥, 𝑡) = ℎ∫

𝑡

0

(−𝑢1
0 (𝑥, 𝜏)) 𝑑𝜏,

𝑢1
1
(𝑥, 𝑡) = ℎ∫

𝑡

0

(−𝑢2
0
(𝑥, 𝜏)) 𝑑𝜏,

...

𝑢{𝑧 − 1}1 (𝑥, 𝑡) = ℎ∫

𝑡

0

(𝐴𝑢
0 (𝑥, 𝜏) + 𝐵 (𝑢0 (𝑥, 𝜏))) 𝑑𝜏.

(25)
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For𝑚 > 1, 𝑘
𝑚
= 𝑛, and

𝑢
𝑚 (𝑥, 0) = 0, 𝑢1

𝑚 (𝑥, 0) = 0,

𝑢2
𝑚
(𝑥, 0) = 0, . . . , 𝑢 {𝑧 − 1}

𝑚
(𝑥, 0) = 0.

(26)

Substituting in (17), we obtain

𝑢
𝑚 (𝑥, 𝑡) = (𝑛 + ℎ) 𝑢𝑚−1 (𝑥, 𝑡) + ℎ∫

𝑡

0

(−𝑢1
𝑚−1 (𝑥, 𝜏)) 𝑑𝜏,

𝑢1
𝑚
(𝑥, 𝑡) = (𝑛 + ℎ) 𝑢1

𝑚−1
(𝑥, 𝑡)

+ ℎ∫

𝑡

0

(−𝑢2
𝑚−1
(𝑥, 𝜏)) 𝑑𝜏,

...

𝑢 {𝑧 − 1}
𝑚
(𝑥, 𝑡)

= (𝑛 + ℎ) 𝑢{𝑧 − 1}𝑚−1 (𝑥, 𝑡)

+ ℎ∫

𝑡

0

(𝐴𝑢
𝑚−1 (𝑥, 𝜏) + 𝐵 (𝑢𝑚−1 (𝑥, 𝜏))) 𝑑𝜏.

(27)

It should be noted that the case of 𝑛 = 1 in (27), the 𝑛HAM,
can be reached.

To illustrate the effectiveness of the proposed m𝑞-HAM,
comparison betweenm𝑞-HAMand the 𝑛HAMare illustrated
by the following examples.

4. Illustrative Examples

Example 1. Consider the following nonlinear sine-Gordon
equation:

𝑢
𝑡𝑡
− 𝑢
𝑥𝑥
+ sin 𝑢 = 0, (28)

subject to the following initial conditions:

𝑢 (𝑥, 0) = 0, 𝑢
𝑡
(𝑥, 0) = 4 sech 𝑥. (29)

The exact solution is

𝑢 (𝑥, 𝑡) = 4 tan−1 (𝑡 sech𝑥) . (30)

In order to prevent suffering from the strongly nonlinear
term sin 𝑢 in the frame of 𝑞-HAM, we can use Taylor series
expansion of sin 𝑢 as follows:

sin 𝑢 = 𝑢 − 𝑢
3

6
+
𝑢
5

120
, (31)

Then, (28) becomes

𝑢
𝑡𝑡
− 𝑢
𝑥𝑥
+ 𝑢 −

𝑢
3

6
+
𝑢
5

120
= 0. (32)

In order to solve (28) by m𝑞-HAM, we construct system of
differential equations as follows:

𝑢
𝑡
(𝑥, 𝑡) = V (𝑥, 𝑡) ,

V
𝑡
(𝑥, 𝑡) =

𝜕
2
𝑢 (𝑥, 𝑡)

𝜕𝑥2
− 𝑢 +

𝑢
3

6
−
𝑢
5

120
,

(33)

with the following initial approximations:

𝑢
0
(𝑥, 𝑡) = 0, V

0
(𝑥, 𝑡) = 4 sech𝑥, (34)

and the following auxiliary linear operators:

𝐿𝑢 (𝑥, 𝑡) =
𝜕𝑢 (𝑥, 𝑡)

𝜕𝑡
, 𝐿V (𝑥, 𝑡) =

𝜕V (𝑥, 𝑡)
𝜕𝑡

,

𝐴𝑢
𝑚−1 (𝑥, 𝑡) = −

𝜕
2
𝑢
𝑚−1
(𝑥, 𝑡)

𝜕𝑥2
+ 𝑢
𝑚−1 (𝑥, 𝑡) ,

𝐵
󳨀󳨀󳨀⇀
𝑢
𝑚−1 (𝑥, 𝑡) = −

1

6

𝑚−1

∑

𝑗=0

𝑢
𝑚−1−𝑗

𝑗

∑

𝑖=0

𝑢
𝑖
𝑢
𝑗−𝑖

+
1

120

𝑚−1

∑

𝑗=0

𝑢
𝑚−1−𝑗

𝑗

∑

𝑖=0

𝑢
𝑗−𝑖

𝑖

∑

𝑘=0

𝑢
𝑖−𝑘

𝑘

∑

𝑙=0

𝑢
𝑙
𝑢
𝑘−𝑙
.

(35)

From (25) and (27), we obtain

𝑢
1
(𝑥, 𝑡) = ℎ∫

𝑡

0

(−V
0
(𝑥, 𝜏)) 𝑑𝜏,

V
1
(𝑥, 𝑡) = ℎ∫

𝑡

0

(−
𝜕
2
𝑢
0

𝜕𝑥2
+ 𝑢
0
−
𝑢
3

0

6
+
𝑢
5

0

120
)𝑑𝜏.

(36)

Now, for𝑚 ≥ 2, we get

𝑢
𝑚
(𝑥, 𝑡) = (𝑛 + ℎ) 𝑢

𝑚−1
(𝑥, 𝑡) + ℎ∫

𝑡

0

(−V
𝑚−1
(𝑥, 𝜏)) 𝑑𝜏,

V
𝑚 (𝑥, 𝑡) = (𝑛 + ℎ) V𝑚−1 (𝑥, 𝑡)

+ ℎ∫

𝑡

0

(𝐴𝑢
𝑚−1 (𝑥, 𝜏) + 𝐵 (𝑢𝑚−1 (𝑥, 𝜏))) 𝑑𝜏.

(37)

And the following results are obtained:

𝑢
1 (𝑥, 𝑡) = −4ℎ𝑡 sech 𝑥,

V
1
(𝑥, 𝑡) = 0,

𝑢
2 (𝑥, 𝑡) = −4ℎ (ℎ + 𝑛) 𝑡 sech 𝑥,

V
2
(𝑥, 𝑡) = −4ℎ

2
𝑡
2sech3𝑥,

𝑢
3
(𝑥, 𝑡) = −4ℎ(ℎ + 𝑛)

2
𝑡 sech 𝑥 + 4

3
ℎ
3
𝑡
3sech3𝑥,

(38)

𝑢
𝑚
(𝑥, 𝑡), (𝑚 = 4, 5, . . .) can be calculated similarly. Then, the

series solution expression by m𝑞-HAM can be written in the
following form:

𝑢 (𝑥, 𝑡; 𝑛; ℎ) 2 𝑈𝑀 (𝑥, 𝑡; 𝑛; ℎ) =
𝑀

∑

𝑖=0

𝑢
𝑖 (𝑥, 𝑡; 𝑛; ℎ) (

1

𝑛
)

𝑖

. (39)

Equation (39) is a family of approximation solutions to the
problem (28) in terms of the convergence parameters ℎ and
𝑛. To find the valid region of ℎ, the ℎ-curves given by the
6th-order 𝑛HAM (m𝑞-HAM; 𝑛 = 1) approximation and
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Figure 1: ℎ-curve for the 𝑛HAM (m𝑞-HAM; 𝑛 = 1) approximation
solution 𝑈

6
(𝑥, 𝑡) of problem (28) at different values of 𝑥 and 𝑡.
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Figure 2: ℎ-curve for the (m𝑞-HAM; 𝑛 = 13) approximation
solution 𝑈

6
(𝑥, 𝑡; 13) of problem (28) at different values of 𝑥 and 𝑡.

the 6th-order m𝑞-HAM (𝑛 = 13) approximation at different
values of 𝑥, 𝑡 are drawn in Figures 1 and 2, respectively, and
these figures show the interval of ℎ in which the value of
𝑈
6
is constant at certain 𝑥, 𝑡, and 𝑛; we chose the horizontal

line parallel to 𝑥-axis (ℎ) as a valid region which provides
us with a simple way to adjust and control the convergence
region. Figure 3 shows the comparison between𝑈

6
of 𝑛HAM

and 𝑈
6
of m𝑞-HAM using different values of 𝑛 with the

solution (30). The absolute errors of the 6th-order solutions
𝑛HAM approximate and the 6th-order solutions m𝑞-HAM
approximate using different values of 𝑛 are shown in Figure 4.
The results obtained by m𝑞-HAM indicate that the speed of
convergence for m𝑞-HAMwith 𝑛 > 1 is faster in comparison
to 𝑛 = 1 (𝑛HAM). The results show that the convergence
region of series solutions obtained by m𝑞-HAM is increasing
as 𝑞 is decreased as shown in Figures 3 and 4.

By increasing the number of iterations by m𝑞-HAM, the
series solution becomes more accurate, more efficient, and
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Figure 3: Comparison between𝑈
6
of 𝑛HAM (m𝑞-HAM; 𝑛 = 1) and

𝑈
6
m𝑞-HAM (𝑛 = 5.5, 13, 30, 75)with exact solution of (28) at 𝑥 = 1

with (ℎ = −1, ℎ = −4.9, ℎ = −10.8, ℎ = −23.15, ℎ = −49.25),
respectively.
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Figure 4: The absolute error of 𝑈
6
of 𝑛HAM (m𝑞-HAM; 𝑛 = 1)

and 𝑈
6
m𝑞-HAM (𝑛 = 5.5, 13, 30, 75) for problem (28) at 𝑥 = 1

using (ℎ = −1, ℎ = −4.9, ℎ = −10.8, ℎ = −23.15, ℎ = −49.25),
respectively.

the interval of t (convergent region) increases as shown in
Figures 5, 6, 7, and 8.

Example 2. Consider the following Klein-Gordon equation:

𝑢
𝑡𝑡
− 𝑢
𝑥𝑥
+
3

4
𝑢 −
3

2
𝑢
3
= 0, (40)

subject to the following initial conditions:

𝑢 (𝑥, 0) = −sech𝑥,

𝑢
𝑡
(𝑥, 0) =

1

2
sech 𝑥 tanh𝑥.

(41)
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Figure 5: The comparison between the 𝑈
3
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6
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10
of 𝑛HAM

(m𝑞-HAM; 𝑛 = 1) and the exact solution of (28) at ℎ = −1 and
𝑥 = 1.
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Figure 6:The comparison between the𝑈
3
, 𝑈
6
, and𝑈

10
of m𝑞-HAM

(𝑛 = 75) and the exact solution of (28) at ℎ = −49.25 and 𝑥 = 1.

The exact solution is

𝑢 (𝑥, 𝑡) = −sech(𝑥 + 𝑡
2
) . (42)

In order to solve (40) by m𝑞-HAM, we construct system
of differential equations as follows:

𝑢
𝑡
(𝑥, 𝑡) = V (𝑥, 𝑡) ,

V
𝑡
(𝑥, 𝑡) =

𝜕
2
𝑢 (𝑥, 𝑡)

𝜕𝑥2
−
3

4
𝑢 +
3

2
𝑢
3
,

(43)

with the following initial approximations:

𝑢
0
(𝑥, 𝑡) = −sech𝑥, V

0
(𝑥, 𝑡) =

1

2
sech 𝑥 tanh𝑥, (44)
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Figure 7:The comparison between the absolute error of 𝑈
3
,𝑈
6
, and

𝑈
10

of 𝑛HAM (m𝑞-HAM; 𝑛 = 1) of (28) at ℎ = −1, 𝑥 = 1, and
0 ≤ 𝑡 ≤ 1.5.
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Figure 8:The comparison between the absolute error of 𝑈
3
, 𝑈
6
, and

𝑈
10
of m𝑞-HAM (𝑛 = 75) of (28) at ℎ = −49.25, 𝑥 = 1, and 0 ≤ 𝑡 ≤

1.5.

and the following auxiliary linear operators:

𝐿𝑢 (𝑥, 𝑡) =
𝜕𝑢 (𝑥, 𝑡)

𝜕𝑡
, 𝐿V (𝑥, 𝑡) =

𝜕V (𝑥, 𝑡)
𝜕𝑡

,

𝐴𝑢
𝑚−1 (𝑥, 𝑡) = −

𝜕
2
𝑢
𝑚−1
(𝑥, 𝑡)

𝜕𝑥2
+
3

4
𝑢
𝑚−1 (𝑥, 𝑡) ,

𝐵
󳨀󳨀󳨀⇀
𝑢
𝑚−1
(𝑥, 𝑡) = −

3

2

𝑚−1

∑

𝑗=0

𝑢
𝑚−1−𝑗

𝑗

∑

𝑖=0

𝑢
𝑖
𝑢
𝑗−𝑖
.

(45)

From (25) and (27), we obtain

𝑢
1
(𝑥, 𝑡) = ℎ∫

𝑡

0

(−V
0
(𝑥, 𝜏)) 𝑑𝜏,

V
1 (𝑥, 𝑡) = ℎ∫

𝑡

0

(−
𝜕
2
𝑢
0

𝜕𝑥2
+
3

4
𝑢
0
−
3

2
𝑢
3

0
)𝑑𝜏.

(46)
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Figure 9: ℎ-curve for the 𝑛HAM (m𝑞-HAM; 𝑛 = 1) approximation
solution 𝑈

6
(𝑥, 𝑡) of problem (40) at different values of 𝑥 and 𝑡.

For𝑚 ≥ 2, we get

𝑢
𝑚
(𝑥, 𝑡) = (𝑛 + ℎ) 𝑢

𝑚−1
(𝑥, 𝑡) + ℎ∫

𝑡

0

(−V
𝑚−1
(𝑥, 𝜏)) 𝑑𝜏,

V
𝑚
(𝑥, 𝑡) = (𝑛 + ℎ) V

𝑚−1
(𝑥, 𝑡)

+ ℎ∫

𝑡

0

(−
𝜕
2
𝑢
𝑚−1 (𝑥, 𝑡)

𝜕𝑥2
+
3

4
𝑢
𝑚−1
(𝑥, 𝑡)

−
3

2

𝑚−1

∑

𝑗=0

𝑢
𝑚−1−𝑗

𝑗

∑

𝑖=0

𝑢
𝑖
𝑢
𝑗−𝑖
)𝑑𝜏.

(47)

The following results are obtained:

𝑢
1 (𝑥, 𝑡) = −

1

2
ℎ𝑡 sech𝑥 tanh𝑥,

V
1 (𝑥, 𝑡) = ℎ𝑡 (−

3 sech𝑥
4

+
sech3𝑥
2

+ sech𝑥tanh2𝑥) ,

𝑢
2
(𝑥, 𝑡) = ℎ (

3

16
ℎ𝑡
2sech3𝑥 − 1

16
ℎ𝑡
2 cosh (2𝑥) sech3𝑥)

−
1

2
ℎ (ℎ + 𝑛) 𝑡 sech 𝑥 tanh𝑥,

(48)

𝑢
𝑚
(𝑥, 𝑡), (𝑚 = 3, 4, . . .) can be calculated similarly. Then, the

series solution expression by m𝑞-HAM can be written in the
following form:

𝑢 (𝑥, 𝑡; 𝑛; ℎ) 2 𝑈
𝑀
(𝑥, 𝑡; 𝑛; ℎ) =

𝑀

∑

𝑖=0

𝑢
𝑖
(𝑥, 𝑡; 𝑛; ℎ) (

1

𝑛
)

𝑖

. (49)

Equation (49) is a family of approximation solutions to
the problem (40) in terms of the convergence parameters ℎ
and 𝑛. To find the valid region of ℎ, the ℎ-curves given by
the 6th-order 𝑛HAM (m𝑞-HAM; 𝑛 = 1) approximation and
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Figure 10: ℎ-curve for the m𝑞-HAM (𝑛 = 100) approximation
solution 𝑈

6
(𝑥, 𝑡; 100) of problem (40) at different values of 𝑥 and

𝑡.
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Figure 11: Comparison between 𝑈
6
of 𝑛HAM (m𝑞-HAM; 𝑛 = 1)

and 𝑈
6
of m𝑞-HAM (𝑛 = 5, 20, 50, 100) with exact solution of (40)

at 𝑥 = 1 with (ℎ = −1, ℎ = −4.85, ℎ = −18.55, ℎ = −43.11, ℎ =
−79.5), respectively.

the 6th-order m𝑞-HAM (𝑛 = 100) approximation at different
values of 𝑥, 𝑡 are drawn in Figures 9 and 10; these figures show
the interval of ℎ in which the value of𝑈

6
is constant at certain

𝑥, 𝑡, and 𝑛; we chose the horizontal line parallel to 𝑥-axis (ℎ)
as a valid regionwhich provides uswith a simpleway to adjust
and control the convergence region. Figure 11 shows the
comparison between𝑈

6
of 𝑛HAM and𝑈

6
of m𝑞-HAM using

different values of 𝑛with the solution (42).The absolute errors
of the 6th-order solutions 𝑛HAM approximate and the 6th-
order solutions m𝑞-HAM approximate using different values
of 𝑛 are shown in Figure 12. The results obtained by m𝑞-
HAM indicate that the speed of convergence for m𝑞-HAM
with 𝑛 > 1 is faster in comparison to 𝑛 = 1 (𝑛HAM). The
results show that the convergence region of series solutions
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Figure 12: The absolute error of 𝑈
6
of 𝑛HAM (m𝑞-HAM; 𝑛 = 1)

and 𝑈
6
of m𝑞-HAM (𝑛 = 5, 20, 50, 100) for problem (40) at 𝑥 = 1

using (ℎ = −1, ℎ = −4.85, ℎ = −18.55, ℎ = −43.11, ℎ = −79.5),
respectively.
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Figure 13: The comparison between the 𝑈
3
, 𝑈
6
of 𝑛HAM (m𝑞-

HAM; 𝑛 = 1), and the exact solution of (40) at ℎ = −1 and 𝑥 = 1.
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Figure 14: The comparison between the 𝑈
3
, 𝑈
6
of m𝑞-HAM (𝑛 =

100), and the exact solution of (40) at ℎ = −79.5 and 𝑥 = 1.
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Figure 15: The comparison between the absolute error of 𝑈
3
and

𝑈
6
of 𝑛HAM (m𝑞-HAM; 𝑛 = 1) of (40) at ℎ = −1, 𝑥 = 1, and

0 ≤ 𝑡 ≤ 3.5.
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Figure 16:The comparison between the absolute error of 𝑈
3
and𝑈

6

of m𝑞-HAM(𝑛 = 100) of (40) at ℎ = −79.5, 𝑥 = 1, and 0 ≤ 𝑡 ≤ 3.5.

obtained bym𝑞-HAM is increasing as 𝑞 is decreased as shown
in Figures 11 and 12.

By increasing the number of iterations by m𝑞-HAM, the
series solution becomes more accurate, more efficient, and
the interval of 𝑡 (convergent region) increases as shown in
Figures 13, 14, 15, and 16.

Figure 17 shows that the convergence of the series solu-
tions obtained by the 3rd-order m𝑞-HAM (𝑛 = 100) is faster
than that of the series solutions obtained by the 6th order
𝑛HAM. This fact shows the importance of the convergence
parameters 𝑛 in the m𝑞-HAM.

5. Conclusion

In this paper, a modified 𝑞-homotopy analysis method was
proposed (m𝑞-HAM).This method provides an approximate
solution by rewriting the 𝑛th-order nonlinear differential
equations in the form of system of 𝑛 first-order differential
equations. The solution of these 𝑛 differential equations is
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Figure 17: The comparison between the 𝑈
3
of m𝑞-HAM (𝑛 = 100),

𝑈
6
of 𝑛HAM (m𝑞-HAM; 𝑛 = 1), and the exact solution of (40) at

(ℎ = −79.5, ℎ = −1) and 𝑥 = 1.

obtained as a power series solution, which converges to a
closed form solution. The m𝑞-HAM contains two auxiliary
parameters 𝑛 and ℎ such that the case of 𝑛 = 1 (m𝑞-HAM; 𝑛 =
1); the 𝑛HAM which is proposed in [21, 22] can be reached.
In general, it was noticed from the illustrative examples that
the convergence of m𝑞-HAM is faster than that of 𝑛HAM.
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