
Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2013, Article ID 457089, 7 pages
http://dx.doi.org/10.1155/2013/457089

Research Article
A Polynomial Preconditioned Global CMRH Method for Linear
Systems with Multiple Right-Hand Sides

Ke Zhang and Chuanqing Gu

Department of Mathematics, Shanghai University, Shanghai 200444, China

Correspondence should be addressed to Chuanqing Gu; cqgu@shu.edu.cn

Received 14 March 2013; Revised 23 June 2013; Accepted 26 September 2013

Academic Editor: Jinyun Yuan

Copyright © 2013 K. Zhang and C. Gu.This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The restarted global CMRH method (Gl-CMRH(m)) (Heyouni, 2001) is an attractive method for linear systems with multiple
right-hand sides. However, Gl-CMRH(m) may converge slowly or even stagnate due to a limited Krylov subspace. To ameliorate
this drawback, a polynomial preconditioned variant of Gl-CMRH(m) is presented. We give a theoretical result for the square case
that assures that the number of restarts can be reduced with increasing values of the polynomial degree. Numerical experiments
from real applications are used to validate the effectiveness of the proposed method.

1. Introduction

We consider the linear systems of the form

𝐴𝑋 = 𝐵, (1)

where 𝐴 is a nonsingular and sparse matrix of order 𝑛,
𝐵 ∈ R𝑛×𝑠 with usually 𝑠 ≤ 𝑛. Such a situation arises from,
for instance, wave-scattering problems, image restorations,
recursive least squares computations, numerical methods for
integral equations, and structural mechanics problems; see
[1, 2] and references therein.

Numerical solvers for (1) can be roughly divided into two
categories. The first is the direct method; for instance, the LU
factorization is competent since 𝐴 is only factorized once
to recast (1) into a triangular system which is easy to solve.
However, if the coefficient matrix 𝐴 is large and sparse or
sometimes not readily available, then iterative solvers may
become the only choice and possibly fall into the following
three classes.

The first class is the block method. For symmetric prob-
lems, the first block methods are due to O’Leary, including
the block conjugate gradient method and block biconju-
gate gradient method [3]. For nonsymmetric cases, the
block generalized minimal residual method [4–6], the block
BiCGSTAB method [7], the block quasiminimal residual
method [8], the block least squares method [9], the block

Lanczos method [10], and the block IDR(𝑠) method [11] have
been proposed recently. In general, the block solvers aremore
suitable for dense systems with precondition.

The second class is the seed method. The main idea of
this kind of methods is briefed below. We first select a
single system (seed system) and develop the corresponding
Krylov subspace. Then we project all the residuals of the
other systems onto the same Krylov subspace to find new
approximations as initial guess; see [2, 12, 13] for details.

The last class is the global method. To our knowledge, the
term global is at least due to Saad [14, Chapter 10] and has
been further populated by Jbilou et al. [15] with the global
FOM and global GMRES methods for matrix equations. Fol-
lowing the work [15], many other global methods have been
developed, including, to name just a few of them, the global
BiCG and global BiCGSTAB methods [16, 17], the global
Hessenberg and global CMRH (changing minimal residual
method based on the Hessenberg process) methods [18] and
their weighted variants [19], the skew-symmetric methods
[20], and the global SCD method [21]. Generally, the global
methods are more appropriate for large and sparse systems.

It is well known that the performance of the above
Krylov subspace methods can be reinforced with a suitable
preconditioner [14] or through effective matrix splitting
techniques [22, 23]. In this paper, we are interested in
preconditioning the global methods. Specifically, we aim at



2 Journal of Applied Mathematics

improving the convergence behavior of the restarted global
CMRH method (Gl-CMRH(𝑚)) [18], which is originally
proposed to reduce the increasing storage requirement in its
full version. However, because of the use of a small subspace
(say 𝑚 ≪ 𝑛), Gl-CMRH(𝑚) is likely to slow down or
even stalls out. Heyouni and Essai give a weighted version
of Gl-CMRH(𝑚) (WGl-CMRH(𝑚)) [19] to alleviate such
disadvantage. Instead, we propose a different approach, that
is, by polynomial preconditioner to improve Gl-CMRH(𝑚)
in this paper.

The remainder of this work is organized as follows. In
Section 2, we first recall some notations and properties of
the global method, and then we sketch the Gl-CMRH(𝑚)
method. In Section 3, we construct the polynomial precon-
ditioner tailored to Gl-CMRH(𝑚) by exploiting the relation
between the Krylov matrix and the global basis. For square
right-hand side matrices, we also give a theoretical result that
justifies the use of the proposed polynomial preconditioner.
In Section 4, several numerical examples are employed to
substantiate the effectiveness of the proposed method. Some
concluding remarks and potential future work are briefed in
the last section.

2. Notations and the Global CMRH Method

In this section, we first give some notations and properties
used in the globalmethods, which will henceforth be adopted
extensively in deriving the main results. Then we present a
brief introduction of the Gl-CMRH(𝑚) method [18]. More
details about the global methods can be found, for instance,
in [15, 18, 19].

2.1. Notations and Properties. Throughout this paper, the
following notations will be used. The norms ‖ ⋅ ‖

2
and ‖ ⋅ ‖

𝐹

represent the vector 2-norm andmatrix𝐹-norm, respectively.
Let M be the set of 𝑛 × 𝑠 rectangular matrices. If 𝑋 ∈ M,
then 𝑋

𝑇 stands for its transpose. For a square matrix 𝐴,
𝐴
−1 indicates the inverse of 𝐴 if existed. Unless otherwise

stated, subscripts denote the corresponding iteration step; for
example, 𝑋

𝑘
denotes the 𝑘th iterate of the matrix (vector)𝑋.

Moreover, the (𝑖, 𝑗) entries of matrices 𝑌 and 𝑋
𝑘
are denoted

by (𝑌)
𝑖,𝑗

and (𝑋
𝑘
)
𝑖,𝑗
, respectively. If a column or a row of a

matrix is invoked, then we denote it in a dot format; that is,
(𝑋
𝑘
)
⋅,𝑗
and (𝑋

𝑘
)
𝑖,⋅
mean correspondingly the 𝑗th column and

the 𝑖th row of 𝑋
𝑘
. Besides, (𝑋

𝑘
)
𝑖:𝑗,𝑠:𝑡

extracts the submatrix
from 𝑖 to 𝑗 rows and from 𝑠 to 𝑡 columns of𝑋

𝑘
.

Next we present some notations and basic properties used
in the global methods [15]. Given the 𝑛 × 𝑚𝑠 block matrix
V
𝑚

= [𝑉
1
, 𝑉
2
, . . . , 𝑉

𝑚
], where𝑉

𝑖
∈ M, 𝑖 = 1, 2, . . . , 𝑚, then we

define the matrix product ∗ as

V
𝑚
∗ 𝑓 =

𝑚

∑

𝑖=1

(𝑓)
𝑖
𝑉
𝑖
, (2)

where 𝑓 ∈ R𝑚. For any matrix 𝐻 ∈ R𝑚×𝑚, we define
analogously the ∗ product by

V
𝑚
∗ 𝐻 = [V

𝑚
∗ (𝐻)

⋅,1
,V
𝑚
∗ (𝐻)

⋅,2
, . . . ,V

𝑚
∗ (𝐻)

⋅,𝑚
] .

(3)

It can be verified that such matrix product satisfies the
following properties:

V
𝑚
∗ (𝑓 + 𝑔) = (V

𝑚
∗ 𝑓) + (V

𝑚
∗ 𝑔) ,

(V
𝑚
∗ 𝐻) ∗ 𝑓 = V

𝑚
∗ (𝐻𝑓) ,

(4)

where 𝑓, 𝑔 ∈ R𝑚.

2.2. The Global CMRH Method. The Gl-CMRH method [18]
is an efficient extension of the CMRH method [24] for
solving (1). It is based on the global Hessenberg process [18].
As for the numerical performance, Gl-CMRH is in general
competitive with the classic global GMRES method (Gl-
GMRES) [15].

Now we give a brief sketch of Gl-CMRH. Let 𝑋
0

∈ M

be the initial guess of (1) with the associated residual
matrix 𝑅

0
= 𝐵 − 𝐴𝑋

0
. The 𝑚th iteration 𝑋

𝑚
is searched

in the affine subspace 𝑋
0
+ K
𝑚
(𝐴, 𝑅
0
); that is, 𝑋

𝑚
− 𝑋
0
=

𝑊
𝑚

∈ K
𝑚
(𝐴, 𝑅
0
), where 𝑊

𝑚
is the 𝑚th correction matrix.

The matrix Krylov subspace is defined as K
𝑚
(𝐴, 𝑅
0
) =

span{𝑅
0
, 𝐴𝑅
0
, . . . , 𝐴

𝑚−1

𝑅
0
}. Using the basis V

𝑚
of

K
𝑚
(𝐴, 𝑅
0
) given by the global Hessenberg process [18],

we get

𝑋
𝑚

= 𝑋
0
+V
𝑚
∗ 𝑦
𝑚
, (5)

where 𝑦
𝑚

∈ R𝑚. The global Hessenberg process in [18] also
yields

𝐴V
𝑚

= V
𝑚+1

∗ 𝐻
𝑚

= V
𝑚
∗ 𝐻
𝑚

+ (𝐻
𝑚
)
𝑚+1,𝑚

[0, 0, . . . , 0, 𝑉
𝑚+1

] ,

(6)

where 𝐻
𝑚
is an (𝑚 + 1) × 𝑚 upper Hessenberg matrix, 𝐻

𝑚

is obtained by deleting the last row of 𝐻
𝑚
, and 0 is the zero

matrix inM. Thus it follows immediately that

𝑅
𝑚

= 𝑅
0
− 𝐴V

𝑚
∗ 𝑦
𝑚

= V
𝑚+1

∗ (𝛽𝑒
(𝑚+1)

1
− 𝐻
𝑚
𝑦
𝑚
) , (7)

where 𝛽 = max
1≤𝑖≤𝑛,1≤𝑗≤𝑠

{|(𝑅
0
)
𝑖,𝑗
|} and 𝑒

(𝑚+1)

1
= [1, 0, . . . , 0]

𝑇

∈ R𝑚+1. To obtain the vector 𝑦
𝑚
, a restriction is imposed on

the Gl-CMRHmethod; that is,
󵄩󵄩󵄩󵄩𝑅𝑚

󵄩󵄩󵄩󵄩𝐹
= min
𝑊∈K

𝑚(𝐴,𝑅0)

󵄩󵄩󵄩󵄩𝑅0 − 𝐴𝑊
󵄩󵄩󵄩󵄩𝐹

. (8)

Relations (7) and (8) yield

𝑦
𝑚

= arg min
𝑦∈R𝑚

󵄩󵄩󵄩󵄩󵄩
V
𝑚+1

∗ (𝛽𝑒
(𝑚+1)

1
− 𝐻
𝑚
𝑦)

󵄩󵄩󵄩󵄩󵄩𝐹
. (9)

Instead of solving (9), which requires O(𝑛𝑚
2

) operations
and O(𝑛𝑚) storage, we solve a smaller problem

min
𝑦∈R𝑚

󵄩󵄩󵄩󵄩󵄩
𝛽𝑒
(𝑚+1)

1
− 𝐻
𝑚
𝑦
󵄩󵄩󵄩󵄩󵄩2
, (10)



Journal of Applied Mathematics 3

which leads to 𝑦
𝑚

= 𝛽(𝐻
𝑇

𝑚
𝐻
𝑚
)
−1

𝐻
𝑇

𝑚
𝑒
(𝑚+1)

1
by assuming that

𝐻
𝑚
is of full rank. From (5) and (10), the𝑚th iterate 𝑋

𝑚
can

be updated by

𝑋
𝑚

= 𝑋
0
+ 𝛽V

𝑚
∗ ((𝐻

𝑇

𝑚
𝐻
𝑚
)

−1

𝐻
𝑇

𝑚
𝑒
(𝑚+1)

1
) . (11)

As in the Gl-GMRES method [15], a restarting strategy
is used to address the problem that the computational and
storage requirements increase with iterations. Algorithm 1
gives a framework of the restarted version of Gl-CMRH (Gl-
CMRH(𝑚)). We refer to [18, 19] for elaborate explanation for
the Gl-CMRHmethod.

3. A New Polynomial Preconditioned
Gl-CMRH(𝑚) Method

In many cases, the accuracy of Gl-CMRH(𝑚) is sufficient.
Due to the limited dimension of the matrix Krylov sub-
space K

𝑚
, however, Gl-CMRH(𝑚) may suffer from slow

convergence or even stagnation in practice, just like in
GMRES(𝑚) [25] and Gl-GMRES(𝑚) [15]. To remedy this
drawback, some accelerating techniques are demanded, for
instance, a weighting strategy exploited in [19]. Besides, a
polynomial preconditioner can also be adapted to improve
the convergence [26]. In this sectionwe focus on constructing
an efficient polynomial preconditioner pertinent to the Gl-
CMRH(𝑚) method.

The essence of the polynomial preconditioned method is
to devise a polynomial𝑄(𝐴) ≈ 𝐴

−1 such that an easier system

𝑄 (𝐴)𝐴𝑋 = 𝑄 (𝐴) 𝐵 (12)

is solved instead of solving the original system (1). In what
follows, we obtain a polynomial preconditioner 𝑄(𝑥) by
extracting some useful information from Gl-CMRH(𝑚).

Now suppose that the block Krylov matrix 𝐾
𝑘
is of the

form

𝐾
𝑘
= [𝑅
0
, 𝐴𝑅
0
, . . . , 𝐴

𝑘−1

𝑅
0
] , (13)

where 𝑅
0
is the initial residual matrix. By comparing the last

𝑠 columns of the second equation in (6), we have

𝐴𝑉
𝑘
= V
𝑘
∗ (𝐻
𝑘
)
⋅,𝑘

+ (𝐻
𝑘
)
𝑘+1,𝑘

𝑉
𝑘+1

. (14)

The equality (14) can be rearranged as

𝑉
𝑘+1

= ((𝐻
𝑘
)
𝑘+1,𝑘

)

−1

(𝐴𝑉
𝑘
−V
𝑘
∗ (𝐻
𝑘
)
⋅,𝑘
) . (15)

Let us consider the relationship between𝐾
𝑘
and the basis

V
𝑘
. SinceV

𝑘
and𝐾

𝑘
span the same space, it follows that

V
𝑘
= 𝐾
𝑘
∗ 𝑈
𝑘
, (16)

where 𝑈
𝑘
is an upper triangular matrix. The relation (16),

however, does not shed too much light because how to
compute 𝑈

𝑘
still remains unclear. Fortunately, an explicit

recurrence for 𝑈
𝑘
can be derived in terms of 𝑈

𝑘−1
and 𝐻

𝑘−1
.

By combining (16) and (4), we get

V
𝑘
∗ (𝐻
𝑘
)
⋅,𝑘

= 𝐾
𝑘
∗ (𝑈
𝑘
(𝐻
𝑘
)
⋅,𝑘

)

= [𝐾
𝑘
, 𝐴
𝑘

𝑅
0
] ∗ (

𝑈
𝑘
(𝐻
𝑘
)
⋅,𝑘

0
) .

(17)

Since 𝑉
𝑘
= (V
𝑘
)
⋅,(𝑘−1)𝑠+1:𝑘𝑠

= 𝐾
𝑘
∗ (𝑈
𝑘
)
⋅,𝑘
, then

𝐴𝑉
𝑘
= [𝐴𝑅

0
, 𝐴
2

𝑅
0
, . . . , 𝐴

𝑘

𝑅
0
] ∗ (𝑈

𝑘
)
⋅,𝑘

= 𝐾
𝑘+1

∗ (
0

(𝑈
𝑘
)
⋅,𝑘

) .

(18)

Substituting (17) and (18) into (15) gives rise to

𝑉
𝑘+1

= ((𝐻
𝑘
)
𝑘+1,𝑘

)

−1

𝐾
𝑘+1

∗ ((
0

(𝑈
𝑘
)
⋅,𝑘

) − (
𝑈
𝑘
(𝐻
𝑘
)
⋅,𝑘

0
)) .

(19)

Besides, the relation (16) gives 𝑉
𝑘+1

= 𝐾
𝑘+1

∗ (𝑈
𝑘+1

)
⋅,𝑘+1

.
By combining it with (19), we obtain a recurrence for the (𝑘 +
1)st column of 𝑈

𝑘+1
; that is,

(𝑈
𝑘+1

)
⋅,𝑘+1

= ((𝐻
𝑘
)
𝑘+1,𝑘

)

−1

((
0

(𝑈
𝑘
)
⋅,𝑘

) − (
𝑈
𝑘
(𝐻
𝑘
)
⋅,𝑘

0
)) .

(20)

Therefore, 𝑈
𝑘
in (16) can be updated recursively by (20).

Recall that in (5)𝑋
𝑘
is updated on the basisV

𝑘
. Here we will

show another way to update 𝑋
𝑘
which is based on the block

Krylov matrix𝐾
𝑘
. It follows from (5), (16), and (4) that

𝑋
𝑘
= 𝑋
0
+ (𝐾
𝑘
∗ 𝑈
𝑘
) ∗ 𝑦
𝑘
= 𝑋
0
+ 𝐾
𝑘
∗ (𝑈
𝑘
𝑦
𝑘
)

= 𝑋
0
+

𝑘−1

∑

𝑖=0

𝛼
𝑖
𝐴
𝑖

𝑅
0
,

(21)

where 𝑈
𝑘
𝑦
𝑘
= [𝛼
0
, 𝛼
1
, . . . , 𝛼

𝑘−1
]
𝑇 and 𝑦

𝑘
is solved from (10).

Denote by 𝑄
𝑘−1

a polynomial in 𝐴 of degree 𝑘 − 1; that is,
𝑄
𝑘−1

(𝐴) = ∑
𝑘−1

𝑖=0
𝛼
𝑖
𝐴
𝑖. Hence (21) can be recast as

𝑋
𝑘
= 𝑋
0
+ 𝑄
𝑘−1

(𝐴) 𝑅
0
. (22)

The matrix polynomial 𝑄
𝑘−1

(𝐴) in (22) can be regarded
as the approximation to 𝐴

−1 in some sense. This is justified
for the case 𝑛 = 𝑠 in (1) by the following result.

Theorem 1. Let𝑄
𝑘−1

(𝐴),𝑋
0
and 𝑅

0
= 𝐵−𝐴𝑋

0
be the square

matrices defined in (22), and lot𝑋
∗
be the true solution of (1).

Suppose that𝑋
∗
− 𝑋
0
is nonsingular. Then one has

󵄩󵄩󵄩󵄩𝐼 − 𝑄
𝑘−1

(𝐴)𝐴
󵄩󵄩󵄩󵄩𝐹

≤
󵄩󵄩󵄩󵄩𝐸𝑘

󵄩󵄩󵄩󵄩𝐹

󵄩󵄩󵄩󵄩󵄩
𝐸
−1

0

󵄩󵄩󵄩󵄩󵄩𝐹
, (23)

where 𝐸
𝑘
:= 𝑋
∗
− 𝑋
𝑘
and 𝐸

0
:= 𝑋
∗
− 𝑋
0
.

Proof. The inequality (23) follows immediately from an
arrangement of (22).



4 Journal of Applied Mathematics

(1) Choose an initial guess𝑋
0
, the restarting frequency𝑚 and the tolerance tol. Compute 𝑅

0
= 𝐵 − 𝐴𝑋

0
.

Determine 𝑖
0
, 𝑗
0
such that 󵄨󵄨󵄨󵄨󵄨(𝑅0)𝑖0 ,𝑗0

󵄨󵄨󵄨󵄨󵄨
= max
1≤𝑖≤𝑛,1≤𝑗≤𝑠

{(𝑅
0
)
𝑖
0
,𝑗
0

}. Set 𝛽 =
󵄨󵄨󵄨󵄨󵄨
(𝑅
0
)
𝑖
0
,𝑗
0

󵄨󵄨󵄨󵄨󵄨
, 𝑉
1
= 𝑅
0
/𝛽, 𝑝
1,1

= 𝑖
0
and 𝑝

1,2
= 𝑗
0
.

(2) Construct the matrix basisV
𝑚
= [𝑉
1
, 𝑉
2
, . . . , 𝑉

𝑚
] and𝐻

𝑚
by the global Hessenberg process [18].

(3) Solve 𝑦
𝑚
by (10) and update𝑋

𝑚
by (5).

(4) Compute 𝑅
𝑚
= 𝐵 − 𝐴𝑋

𝑚
. If 󵄩󵄩󵄩󵄩𝑅𝑚

󵄩󵄩󵄩󵄩𝐹/
󵄩󵄩󵄩󵄩𝑅0

󵄩󵄩󵄩󵄩𝐹 ≤ tol, then stop; otherwise set𝑋
0
= 𝑋
𝑚
, 𝑅
0
= 𝑅
𝑚
.

Choose 𝑖
0
, 𝑗
0
such that 󵄨󵄨󵄨󵄨󵄨(𝑅0)𝑖0 ,𝑗0

󵄨󵄨󵄨󵄨󵄨
= max
1≤𝑖≤𝑛,1≤𝑗≤𝑠

{(𝑅
0
)
𝑖
0
,𝑗
0

}.

Set 𝛽 =
󵄨󵄨󵄨󵄨󵄨
(𝑅
0
)
𝑖
0
,𝑗
0

󵄨󵄨󵄨󵄨󵄨
, 𝑉
1
= 𝑅
0
/𝛽, 𝑝
1,1

= 𝑖
0
and 𝑝

1,2
= 𝑗
0
. Go to Step 2.

Algorithm 1: The Gl-CMRH(𝑚) method for 𝐴𝑋 = 𝐵 [18].

Remark 2. In (23), the term ‖𝐸
𝑘
‖
𝐹
becomes smaller with

growing 𝑘 and hence the upper bound diminishes corre-
spondingly, which in turn implies that𝑄

𝑘−1
(𝐴) approximates

𝐴
−1 asymptotically. This justifies the use of the polynomial

preconditioner. In general, (23) assures that the number of
restarts will be reduced correspondingly with increasing 𝑘.
Yet this does not necessarily mean that the CPU time will
be reduced simultaneously since the time saved from the
reduction of restarts may be offset by the extra time spent in
constructing the polynomial. In practice, we are often more
concerned with the CPU time than the restarting number.
Therefore, we restrict ourselves to small values of 𝑘. For
𝑠 < 𝑛, an inequality similar to (23) is generally unavailable.
Nevertheless, numerical examples seem to demonstrate that
the asymptotical property of (23) is also shared by the case
𝑠 < 𝑛; see Example 3 in Section 4 for more discussions.

By putting all together, we propose the new polynomial
preconditioned global CMRHmethod (PGl-CMRH(𝑚, deg))
that is shown in Algorithm 2.

4. Numerical Examples

In this section, we present some numerical experiments
which are coded with MATLAB 7.8.0. For fair compar-
isons, some other global solvers mentioned earlier like Gl-
CMRH(𝑚) [18], WGl-CMRH(𝑚) [19], and Gl-GMRES(𝑚)
[15] have also been implemented. From now on we drop the
parameters 𝑚 and deg in brackets without ambiguity. In all
examples, we assume that 𝑋

0
= 0. The terminating criterion

for the 𝑘th iteration is tol = ‖𝑅
𝑘
‖
𝐹
/‖𝑅
0
‖
𝐹
≤ 10
−10. Though

other alternatives are possible, we use𝐷 = √𝑛𝑠|(𝑅
0
)
𝑖,𝑗
|/‖𝑅
0
‖
𝐹

as the the weighting matrix for WGl-CMRH, which is also
preferred in [19]. The coefficient matrices 𝐴 in the first two
examples are derived from the discretizations of the Poisson’s
equation and convection-diffusion problems which occur
frequently in applied science and engineering.The coefficient
matrices 𝐴 in the third example are quoted from the Matrix
Market [27].

Example 1. We consider the linear systems of (1) in which its
coefficient matrix 𝐴 is obtained from the discretization of

L𝑢 = 𝑢
𝑥𝑥

+ 𝑢
𝑦𝑦

(24)

Table 1: Number of restarts and CPU time (in brackets) for
Example 1.

𝑛 Gl-GMRES Gl-CMRH WGl-CMRH PGl-CMRH
10,000 121 (18.0) 85 (7.4) 89 (8.4) 24 (4.1)
14,400 150 (34.6) 85 (11.8) 116 (17.3) 23 (6.0)
22,500 259 (133.4) 165 (42.8) 173 (53.5) 37 (17.0)
40,000 450 (585.8) 255 (173.0) 302 (235.2) 26 (32.3)
44,100 496 (699.9) 322 (253.3) 368 (313.6) 39 (45.0)

on the unit square (0, 1) × (0, 1) with 𝑢 = 0 on the boundary.
It can be discretized through the centered difference scheme
at the gird points (𝑥

𝑖
, 𝑦
𝑖
) with 𝑥

𝑖
= 𝑖ℎ, 𝑦

𝑗
= 𝑗ℎ, where

the mesh size ℎ = 1/(𝑁 + 1) for 𝑖, 𝑗 = 0, . . . , 𝑁 + 1.
This yields a block tridiagonal matrix of size 𝑛 = 𝑁

2. The
right-hand side matrix 𝐵 is chosen with entries uniformly
distributed on [0, 1]; see [14, Chapter 2] formore details about
(24). Related parameters are given by 𝑠 = 2, 𝑚 = 20 and
deg = 5. The number of restarts and CPU time for matrices
𝐴 of different sizes are given in Table 1. As observed from
Table 1, PGl-CMRH improves the original CMRH method
by time ratios from 17.8% to 55.4%. Compared with WGl-
CMRH, PGl-CMRH requires less number of restarts and
CPU time to achieve the required accuracy. Note that WGl-
CMRHdoes not speed up the convergence ofGl-CMRH.This
indicates that a different weighting matrix should be used. To
find the optimal weighting matrix, however, remains an open
problem [19].

Example 2. Consider the linear systems of (1) where its
coefficient matrix𝐴 is obtained from the discretization of the
three-dimensional convection-diffusion problem

T𝑢 = − (𝑢
𝑥𝑥

+ 𝑢
𝑦𝑦

+ 𝑢
𝑧𝑧
) + 𝑞 (𝑢

𝑥
+ 𝑢
𝑦
+ 𝑢
𝑧
) (25)

on the unit cube Ω = [0, 1] × [0, 1] × [0, 1]. Here 𝑞 is
a constant coefficient and (25) subjects to Dirichlet-type
boundary conditions. This equation can be discretized by
applying seven-point finite difference discretizations. For
instance, we use the centered difference to the diffusive terms
and the first-order upwind approximations to the convective
terms. This approach yields a coefficient matrix 𝐴 of size
𝑛 = 𝑁

3, where the equidistant mesh size ℎ = 1/(𝑁 + 1)

is used, and the natural lexicographic ordering is adopted to



Journal of Applied Mathematics 5

(1) Input:𝑚, deg and𝑋
0
.

(2) Phase I: Compute 𝑅
0
= 𝐵 − 𝐴𝑋

0
. Determine 𝑖

0
, 𝑗
0
such that (𝑅

0
)
𝑖
0
,𝑗
0

= max
1≤𝑖≤𝑛,1≤𝑗≤𝑠

{|(𝑅
0
)
𝑖,𝑗
|} .

Set 𝛽 = (𝑅
0
)
𝑖
0
,𝑗
0

, 𝑉
1
= 𝑅
0
/𝛽, 𝑝
1,1

= 𝑖
0
and 𝑝

1,2
= 𝑗
0
. Let 𝑈

1,1
= (𝑅
0
)
𝑖
0
,𝑗
0

(the upper triangular matrix
defined in (16)).
(3) for 𝑘 = 1 : deg
(4) 𝑀 = 𝐴𝑉

𝑘

(5) for 𝑗 = 1 : 𝑘

(6) (𝐻)
𝑗,𝑘

= (𝑀)
𝑝
𝑗,1
,𝑝
𝑗,2

(7) 𝑀 = 𝑀 − (𝐻)
𝑗,𝑘
𝑉
𝑗

(8) end for
(9) Determine 𝑖

0
, 𝑗
0
such that (𝑀)

𝑖
0
,𝑗
0

= max
1≤𝑖≤𝑛,1≤𝑗≤𝑠

{
󵄨󵄨󵄨󵄨󵄨
(𝑀)
𝑖,𝑗

󵄨󵄨󵄨󵄨󵄨
}.

(10) Set (𝐻)
𝑘+1,𝑘

= (𝑀)
𝑖
0
,𝑗
0

, 𝑉
𝑘+1

= 𝑀/(𝐻)
𝑘+1,𝑘

, 𝑝
𝑘+1,1

= 𝑖
0
and 𝑝

𝑘+1,2
= 𝑗
0
.

(11) Compute (𝑈
𝑘+1

)
.,𝑘+1

from (20).
(12) end for
(13)𝑋deg = 𝑋

0
+Vdeg ∗ 𝑦deg, where 𝑦deg = arg min

𝑦∈Rdeg

󵄩󵄩󵄩󵄩󵄩
(𝑅
0
)
𝑖
0
,𝑗
0

𝑒
(deg+1)
1

− 𝐻deg𝑦
󵄩󵄩󵄩󵄩󵄩2
.

(14) Construct the polynomial preconditioner 𝑄deg−1(𝐴) with its coefficients decided by entries of 𝑈deg𝑦deg.
(15) Phase II: Solve 𝑄deg−1(𝐴)𝐴𝑋 = 𝑄deg−1(𝐴)𝐵 using Algorithm 1.

Algorithm 2: PGl-CMRH(𝑚, deg) method for 𝐴𝑋 = 𝐵.

Table 2: Number of restarts and CPU time for Example 2; 𝑞 = 0.1

(top) and 𝑞 = 1 (bottom).

𝑛 Gl-GMRES Gl-CMRH WGl-CMRH PGl-CMRH
8,000 14 (1.2) 11 (0.6) 13 (0.7) 2 (0.3)
27,000 26 (8.4) 23 (5.0) 21 (4.9) 5 (2.3)
64,000 40 (40.7) 32 (21.2) 32 (22.8) 7 (9.5)
125,000 58 (147.2) 41 (53.3) 47 (74.6) 9 (23.2)
216,000 81 (298.8) 58 (122.5) 61 (160.7) 17 (74.4)
𝑛 Gl-GMRES Gl-CMRH WGl-CMRH PGl-CMRH
8,000 14 (1.2) 13 (0.6) 14 (0.7) 2 (0.3)
27,000 25 (7.4) 22 (4.6) 22 (4.8) 5 (2.4)
64,000 39 (37.0) 32 (20.6) 34 (23.3) 7 (9.9)
125,000 57 (114.8) 43 (53.6) 48 (70.8) 9 (23.3)
216,000 79 (313.1) 51 (114.7) 61 (181.0) 17 (76.2)

the unknowns; we refer to [22, Section 4] for more details.
The right-hand sidematrix𝐵 is chosenwith entries uniformly
distributed on [0, 1]. Here, 𝑠 = 2, 𝑚 = 15, and deg = 5.
The number of restarts and CPU time for 𝑞 = 0.1 and 𝑞 =

1 is given in Table 2. For this large problem, as expected,
PGl-CMRH performs better than CMRH and other variants
concerning CPU time.

Example 3. In practice, the degree of the polynomial pre-
conditioner 𝑄deg−1 has a great impact on the numerical
performance of PGl-CMRH. Thus it deserves our attention
to investigate how to choose the “optimal” degree (if existed)
for generic matrices. Nevertheless, theoretical analysis to this
end can be very hard. Instead, we show empirically how to
choose a range of degrees for the polynomial 𝑄deg−1 such
that PGl-CMRH at least yields amodest performance. To this
end, we use ten unsymmetrical testing matrices from [27]
and illustrate how PGl-CMRHperforms for eachmatrix with

Table 3: Properties of testing matrices in Example 3.

Matrix 𝑛 𝑛𝑛𝑧 Discipline
add32 4960 19848 Electronic circuit design

cdde6 961 4681 Computational fluid
dynamics

fs680.1 680 2184 Chemical kinetics
fidap001 216 4339 Finite element modeling

gre115 115 421 Simulation studies in
computer systems

pde2961 2961 14585 Partial differential
equations

rdb200 200 1120 Chemical engineering
rdb2048l 2048 12032 Chemical engineering
rdb3200l 3200 18880 Chemical engineering
sherman4 1104 3786 Oil reservoir modeling

deg varying from 2 to 15; see Figure 1. Some properties of
these testing matrices are listed in Table 3. The right-hand
side matrix 𝐵 is chosen with entries uniformly distributed
on [0, 1]. Since we are only concerned with the value of deg
that makes PGl-CMRH performs stably with the shortest
CPU time, we have normalized values of CPU time by
dividing the maximum value of CPU time for a certain
curve. Take the matrix pde2961 for example. The longest
time is 4.2 seconds (with deg = 3); then we divide all
values of CPU time by 4.2 for pde2961 and plot the result
in Figure 1. This approach facilitates our comparison since
different curves become more clustered now. Some remarks
can be made from Figure 1. First, the curves seem rather
problem-dependent and are not necessarily nonincreasing
with increasing values of deg; for instance, the curve of



6 Journal of Applied Mathematics

2 4 6 8 10 12 14 16
Values of deg

CP
U

 ti
m

e (
no

rm
al

iz
ed

)

gre115
fs680.1
cdde6
pde2961
sherman4

rdb2048l
rdb3200l
add32
fidap001
rdb200

10
−3

10
−2

10
−1

10
0

Figure 1: Normalized CPU time against deg (from 2 to 15) for ten
testing matrices.

rdb2048l is rather irregular and hence unpredictable. How-
ever, this does not contradictTheorem 1 where it is stated that
𝑄deg−1(𝐴) can approximate 𝐴

−1 better with growing values
of deg. In other words, Theorem 1 explains theoretically that
the total number of restarts will be reduced with increasing
values of deg. However, this does not apply to the change
of CPU time. In fact, it is likely that PGl-CMRH with high
degree preconditioner takes more CPU time in generating
the polynomial preconditioner (even with less number of
restarts) and hence uses more time to converge than that of
its low degree counterpart. Second, most curves locate the
corresponding shortest CPU time point with deg between 2

and 10. This can be the first reason for favoring small values
of deg. Finally, more rounding errors can be introduced
in developing high-degree polynomial preconditioners from
the numerical point of view. This is the second reason
for the approval of low-degree polynomial preconditioners.
Therefore it is useful to test with deg from 2 to 10. Under
extreme situations, however, higher degreemay be demanded
if a low-degree preconditioner fails to bring the required
accuracy.

5. Conclusion

To remedy the slow convergence of the original Gl-
CMRH(𝑚) method, a new variant of Gl-CMRH(𝑚) for linear
systems with multiple right-hand sides is developed. The

proposed method often yields better performance than its
predecessor Gl-CMRH(𝑚) and other global variants in terms
of CPU time. We show experimentally that polynomial pre-
conditioners with degree lower than 10 should be considered
if no prior knowledge is known.

Acknowledgments

The authors would like to thank Professor Jinyun Yuan and
the referees for their valuable remarks that improved this
paper. The work is supported by the National Natural Sci-
ence Foundation (11371243), the Key Disciplines of Shanghai
Municipality (S30104), the Innovation Program of Shanghai
Municipal Education Commission (13ZZ068), and the Anhui
Provincial Natural Science Foundation (1308085QF117).

References

[1] T. F. Chan and M. K. Ng, “Galerkin projection methods for
solving multiple linear systems,” SIAM Journal on Scientific
Computing, vol. 21, no. 3, pp. 836–850, 1999.

[2] T. F. Chan and W. L. Wan, “Analysis of projection methods for
solving linear systems with multiple right-hand sides,” SIAM
Journal on Scientific Computing, vol. 18, no. 6, pp. 1698–1721,
1997.

[3] D. P. O’Leary, “The block conjugate gradient algorithm and
related methods,” Linear Algebra and Its Applications, vol. 29,
pp. 293–322, 1980.

[4] B. Vital, Etude de quelques méthodes de résolution de probl𝜇emes
linéaires de grande taille sur multiprocesseurs [Ph.D. thesis],
Universit de Rennes, Rennes, France, 1990.

[5] V. Simoncini and E. Gallopoulos, “An iterative method for
nonsymmetric systems with multiple right-hand sides,” SIAM
Journal on Scientific Computing, vol. 16, no. 4, pp. 917–933, 1995.

[6] V. Simoncini and E. Gallopoulos, “Convergence properties of
block GMRES and matrix polynomials,” Linear Algebra and Its
Applications, vol. 247, pp. 97–119, 1996.

[7] A. El Guennouni, K. Jbilou, and H. Sadok, “A block version of
BICGSTAB for linear systems with multiple right-hand sides,”
Electronic Transactions on Numerical Analysis, vol. 16, pp. 129–
142, 2003.

[8] R. W. Freund and M. Malhotra, “A block QMR algorithm for
non-Hermitian linear systems with multiple right-hand sides,”
Linear Algebra and Its Applications, vol. 254, no. 1–3, pp. 119–157,
1997.

[9] S. Karimi and F. Toutounian, “The block least squares method
for solving nonsymmetric linear systems with multiple right-
hand sides,”AppliedMathematics and Computation, vol. 177, no.
2, pp. 852–862, 2006.

[10] A. El Guennouni, K. Jbilou, and H. Sadok, “The block Lanczos
method for linear systems with multiple right-hand sides,”
Applied Numerical Mathematics, vol. 51, no. 2-3, pp. 243–256,
2004.

[11] L. Du, T. Sogabe, B. Yu, Y. Yamamoto, and S.-L. Zhang,
“A block 𝐼𝐷𝑅(𝑠) method for nonsymmetric linear systems
with multiple right-hand sides,” Journal of Computational and
Applied Mathematics, vol. 235, no. 14, pp. 4095–4106, 2011.

[12] C. F. Smith, A. F. Peterson, and R. Mittra, “Conjugate gradient
algorithm for the treatment of multiple incident electromag-
netic fields,” IEEE Transactions on Antennas and Propagation,
vol. 37, no. 11, pp. 1490–1493, 1989.



Journal of Applied Mathematics 7

[13] A. M. Abdel-Rehim, R. B. Morgan, and W. Wilcox, “Improved
seed methods for symmetric positive definite linear equations
with multiple right-hand sides,” Numerical Linear Algebra with
Applications, 2013.

[14] Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM,
Philadelphia, Pa, USA, 2nd edition, 2003.

[15] K. Jbilou, A. Messaoudi, and H. Sadok, “Global FOM and
GMRES algorithms for matrix equations,” Applied Numerical
Mathematics, vol. 31, no. 1, pp. 49–63, 1999.

[16] K. Jbilou and H. Sadok, “Global Lanczos-based methods with
applications,” Tech. Rep. LMA 42, Université du Littoral, Calais,
France, 1997.

[17] K. Jbilou, H. Sadok, and A. Tinzefte, “Oblique projection
methods for linear systems with multiple right-hand sides,”
Electronic Transactions on Numerical Analysis, vol. 20, pp. 119–
138, 2005.

[18] M. Heyouni, “The global Hessenberg and CMRH methods
for linear systems with multiple right-hand sides,” Numerical
Algorithms, vol. 26, no. 4, pp. 317–332, 2001.

[19] M. Heyouni and A. Essai, “Matrix Krylov subspace methods
for linear systems with multiple right-hand sides,” Numerical
Algorithms, vol. 40, no. 2, pp. 137–156, 2005.

[20] C. Gu and H. Qian, “Skew-symmetric methods for nonsym-
metric linear systems with multiple right-hand sides,” Journal
of Computational and Applied Mathematics, vol. 223, no. 2, pp.
567–577, 2009.

[21] C. Gu and Z. Yang, “Global SCD algorithm for real positive
definite linear systems with multiple right-hand sides,” Applied
Mathematics and Computation, vol. 189, no. 1, pp. 59–67, 2007.

[22] Z.-Z. Bai, G. H. Golub, and M. K. Ng, “Hermitian and
skew-Hermitian splitting methods for non-Hermitian positive
definite linear systems,” SIAM Journal on Matrix Analysis and
Applications, vol. 24, no. 3, pp. 603–626, 2003.

[23] Z.-Z. Bai, G. H. Golub, L.-Z. Lu, and J.-F. Yin, “Block triangular
and skew-Hermitian splitting methods for positive-definite
linear systems,” SIAM Journal on Scientific Computing, vol. 26,
no. 3, pp. 844–863, 2005.

[24] H. Sadok, “CMRH: a new method for solving nonsymmetric
linear systems based on the Hessenberg reduction algorithm,”
Numerical Algorithms, vol. 20, no. 4, pp. 303–321, 1999.

[25] Y. Saad and M. H. Schultz, “GMRES: a generalized minimal
residual algorithm for solving nonsymmetric linear systems,”
SIAM Journal on Scientific and Statistical Computing, vol. 7, no.
3, pp. 856–869, 1986.

[26] M. B. van Gijzen, “A polynomial preconditioner for the GMRES
algorithm,” Journal of Computational and Applied Mathematics,
vol. 59, no. 1, pp. 91–107, 1995.

[27] Matrix Market, http://math.nist.gov/MatrixMarket/.


