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We study Chern-Simons-Schrödinger systems in one space dimension. We show that Chern-Simons-Schrödinger and N = 2

supersymmetric Chern-Simons-Schrödinger equations can be reduced, under the gauge condition 𝐴
1
≡ 0, to equations of 𝜙, 𝜓

only which are coupled cubic Schrödinger systems.

1. Introduction

In this paper, we consider the Chern-Simons-Schrödinger
(CSS) system
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and the N = 2 supersymmetric Chern-Simons-Schrödinger
(s-CSS) system
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onR1+1. Here,𝐴
0
,𝐴
1
, and𝑁 are real fields, 𝜙,𝜓 are complex

scalar fields, and 𝐹
01
= 𝜕
0
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is defined by 𝐷
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𝜅 > 0 are coupling constants. The space-time derivatives of
a function 𝑓 are denoted by (𝜕

0
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1
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𝑡
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The CSS model was proposed in [1] to study BPS domain
wall solutions. The Lagrangian density of the (1 + 1) dimen-
sional Chern-Simons-Schrödinger system is given by
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which is obtained by the dimensional reduction of the
Lagrangian density of (2 + 1) dimensional Chern-Simons-
Schrödinger system in [2]. The (s-CSS) system is derived, by
the dimensional reduction, from the paper [3].

An important property of the systems CSS and s-CSS is
the gauge invariance. Therefore, a solution to the systems
CSS and s-CSS is formed by a class of gauge equivalent pairs
(𝜙, 𝐴
0
, 𝐴
1
, 𝑁) and (𝜙, 𝜓, 𝐴

0
, 𝐴
1
, 𝑁), respectively. Here, we

will fix the gauge by imposing the condition 𝐴
1
≡ 0. Note

that temporal gauge condition 𝐴
0
≡ 0 is well known.

The motivation considering the gauge condition 𝐴
1
≡

0 comes from standing wave solutions of CSS. As shown
in Section 2.1, the usual ansatz of standing wave leads to
𝐴
1
≡ 0. To study stability, it seems natural to study the

initial value problem of CSS with the condition 𝐴
1
≡ 0. The
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othermotivation is that the Schrödinger part in CSS system is
written, under the Lorenz gauge condition 𝜕
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where we have a singular derivative nonlinear term 𝐴
1
𝜕
𝑥
𝜙.

The gauge condition𝐴
1
≡ 0 removes troublesome nonlinear-

ity automatically. Note that Lorenz gauge conditionwasmade
use of in previous studies [4, 5] on Maxwell-Schrödinger
equations in one space dimension.

The initial value problem of the Chern-Simons-
Schrödinger system in R2+1 was investigated in [6–9].
Blow-up solutions in finite time have been studied in [6] by
deriving a virial identity and in [10] by the use of a pseudocon-
formal transformation. The existence of standing wave
solutions has been studied in [11, 12]. Global energy solutions
of Chern-Simons-Higgs equations in one space dimension
have been studied in [13].

In this study, we consider smooth solutions which satisfy
equations in the classical sense and decay properly at spatial
infinity. Our first result says that CSS system can be reduced,
under the gauge condition 𝐴

1
≡ 0, to the equation of 𝜙 only

which is a cubic Schrödinger equation.

Theorem 1. Let one consider a smooth solution (𝜙, 𝐴
0
, 𝑁) of

(15)–(18) satisfying 𝜙 ∈ 𝐶([0, 𝑇];𝐻2(R)).Then, the scalar field
𝜙 is also a solution to the following Schrödinger equation:
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The s-CSS system can be reduced, under the gauge
condition 𝐴

1
≡ 0, to the system of 𝜙 and 𝜓 only.

Theorem 2. Let one consider a smooth solution (𝜙, 𝜓, 𝐴
0
, 𝑁)

of the system (27)–(31) satisfying 𝜙, 𝜓 ∈ 𝐶([0, 𝑇];𝐻2(R)).
Then, the scalar fields 𝜙 and 𝜓 are also a solution to the
following coupled Schrödinger equations:
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Remark 3. (i) The model (5) is a cubic Schrödinger equation
with attractive potential, and the system (6) is the two coupled
Schrödinger equations. In particular, when 𝜆

2
= −1/𝜅, the

equations are two versions of a single nonlinear Schrödinger
equation which is integrable.
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The existence of standing waves and their properties have
been studied extensively, for instance, in [14–16].

Theorem 1 is proved in Section 2, and Theorem 2 is
proved in Section 3. We give concluding remark in Section 4.
We use the standard Sobolev space𝐻2(R) which denotes the
set of weakly differentiable functions 𝑢 onR such that 𝑢, 𝜕

𝑥
𝑢,

and 𝜕
𝑥
𝜕
𝑥
𝑢 are square integrable.

2. Reduction of
Chern-Simons-Schrödinger System

Here, we consider the reduction of Chern-Simons-
Schrödinger system in one space dimension. In Section
2.1, we investigate standing wave solutions of CSS system,
andTheorem 1 is proved in Section 2.2.

2.1. Standing Wave Solutions of CSS System. In this section,
we look for standing wave solutions of the form
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where 𝜔 is a real constant and 𝑢 is a real-valued function.The
fourth equation in (1) leads us to𝐴
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where  denotes a derivative 𝑑/𝑑𝑥. From (10) and (11), wemay
have the following expressions, with a boundary condition
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Wemay obtain a solution 𝑢(𝑥) = √𝜅𝜔sech(√𝜔𝑥) and𝑁(𝑥) =
−√𝜔(1 + tanh(√𝜔𝑥)).

2.2. Reduction of CSS System. The (CSS) system (1) is invari-
ant under the following gauge transformation:
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where 𝜒 : R1+1 → R is a smooth function. Here, we impose
the gauge condition 𝐴

1
≡ 0 which reformulates the CSS sys-

tem (1) as follows:
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which proves Theorem 1.

3. Reduction of s-CSS System

The Lagrangian density of the (1 + 1) dimensional N = 2

supersymmetric Chern-Simons-Schrödinger system is given
by
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which is obtained by the dimensional reduction of the
Lagrangian density of (2 + 1) dimensionalN = 2 supersym-
metric Chern-Simons-Schrödinger system in [3]. The s-CSS
system (2) is invariant under the following gauge transforma-
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where 𝜒 : R1+1 → R is a smooth function. We consider the
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We have showed that the study of (27)–(31) reduces to the
following system:
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2

𝜓 = 0, (39)

which proves Theorem 2.

4. Concluding Remark

As we pointed out in Section 1, Schrödinger equations
with electromagnetic field like Maxwell-Schrödinger and
Chern-Simons-Schrödinger have singular derivative nonlin-
ear termswhich give difficulties in analysis of the PDEs.Those
challenging problems have prompted development of ana-
lytic methods and the results [4–12, 17] regarding issues
such as existence, blowup, and asymptotic behaviors of the
solution. In this aspect, the results of this study seem interest-
ing and quite unique. CSS and s-CSS systems with gauge
condition 𝐴

1
≡ 0 reduce to coupled cubic Schrödinger

equationswhich aremuch easier from analytic and numerical
point of view.We could not obtain similar reduction result for
the related equations like Chern-Simons-Higgs and Chern-
Simons-Dirac in one space dimension which have their own
interesting structures [13, 18].
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24, no. 2, pp. 207–225, 2007.

[8] S. Demoulini and D. Stuart, “Adiabatic limit and the slow
motion of vortices in a Chern-Simons-Schrödinger system,”
Communications in Mathematical Physics, vol. 290, no. 2, pp.
597–632, 2009.

[9] H. Huh, “Energy solution to the Chern-Simons-Schrödinger
equations,” Abstract and Applied Analysis, vol. 2013, Article ID
590653, 7 pages, 2013.

[10] H. Huh, “Blow-up solutions of the Chern-Simons-Schrödinger
equations,” Nonlinearity, vol. 22, no. 5, pp. 967–974, 2009.

[11] J. Byeon, H. Huh, and J. Seok, “Standing waves of nonlinear
Schrödinger equations with the gauge field,” Journal of Func-
tional Analysis, vol. 263, no. 6, pp. 1575–1608, 2012.

[12] H. Huh, “Standing waves of the Schrödinger equation coupled
with the Chern-Simons gauge field,” Journal of Mathematical
Physics, vol. 53, no. 6, Article ID 063702, 8 pages, 2012.

[13] H. Huh, “Global energy solutions of Chern-Simons-Higgs
equations in one space dimension,” Preprint.

[14] D. Cao, I. L. Chern, and J. C. Wei, “On ground state of spinor
Bose-Einstein condensates,” Nonlinear Differential Equations
and Applications, vol. 18, no. 4, pp. 427–445, 2011.

[15] S. V. Manakov, “On the theory of two-dimensional stationary
self-focusing of electromagneticwaves,” Journal of Experimental
and Theoretical Physics, vol. 38, pp. 248–253, 1974.

[16] J. Yang, “Classification of the solitary waves in coupled nonlin-
ear Schrödinger equations,” Physica D, vol. 108, no. 1-2, pp. 92–
112, 1997.

[17] T. Wada, “Smoothing effects for Schrödinger equations with
electro-magnetic potentials and applications to the Maxwell-
Schrödinger equations,” Journal of Functional Analysis, vol. 263,
no. 1, pp. 1–24, 2012.

[18] H. Huh, “Remarks on Chern-Simons-Dirac equations in one
space dimension,” Preprint.


