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We consider the Sturm-Liouville (S-L) problems with very general transmission conditions on a finite interval. Firstly, we obtain
the sufficient and necessary condition for 𝜆 being an eigenvalue of the S-L problems by constructing the fundamental solutions of
the problems and prove that the eigenvalues of the S-L problems are bounded below and are countably infinite. Furthermore, the
asymptotic formulas of the eigenvalues and eigenfunctions of the S-L problems are obtained. Finally, we derive the eigenfunction
expansion for Green’s function of the S-L problems with transmission conditions and establish the modified Parseval equality in
the associated Hilbert space.

1. Introduction

TheSturm-Liouville (S-L) theory, as an active area of research
in pure and applied mathematics, plays an important role
in solving many problems in mathematical physics and is
concerned in many publications [1–7]. It is well known that
for the classical S-L problems, the solutions or the derivatives
of the solutions are continuous on the interval, but these
conditions cannot be satisfied in many practical physical
problems. So, a class of S-L operators with “discontinuity,”
that is, the S-L problems with transmission conditions at
an interior point, are concerned by many mathematical
and physical researchers [8–10]. Such conditions are known
by various names including transmission conditions [11,
12], interface conditions [13–15], jump conditions [16], and
discontinuous conditions [17, 18].

In this paper, we consider the following Sturm-Liouville
equation:

𝑙𝑦 := −𝑦

+ 𝑞 (𝑥) 𝑦 = 𝜆𝑦, 𝑥 ∈ 𝐼 = [−1, 0) ∪ (0, 1] , (1)

with boundary conditions:

𝑙
1
𝑦 := 𝛼

1
𝑦 (−1) + 𝛼

2
𝑦


(−1) = 0, (2)

𝑙
2
𝑦 := 𝛽

1
𝑦 (1) + 𝛽

2
𝑦


(1) = 0, (3)

and transmission conditions:

𝑙
3
𝑦 := 𝑦 (0+) − 𝛾

1
𝑦 (0−) − 𝛾

2
𝑦


(0−) = 0,

𝑙
4
𝑦 := 𝑦



(0+) − 𝛾
3
𝑦 (0−) − 𝛾

4
𝑦


(0−) = 0,

(4)

where 𝜆 is a complex eigenparameter and 𝑞 ∈ 𝐿(𝐼,R);
notice that the potential function 𝑞(𝑥) guarantee 𝑦(0±) and
𝑦

(0±) in (4) makes sense (see Theorem 1); all coefficients of

the boundary and transmission conditions are real numbers.
Throughout this paper, we assume that𝛼2

1
+𝛼
2

2
̸= 0, 𝛽2
1
+𝛽
2

2
̸= 0,

and

𝜌 =



𝛾
1

𝛾
2

𝛾
3

𝛾
4


> 0. (5)

We derive the eigenfunction expansion for Green’s function
of the S-L problem (1)–(4) and establish themodified Parseval
equality of the S-L problem with very general transmission
conditions at one inner point 0 of the finite interval [−1, 1].

The organization of this paper is as follows. After the
Introduction, we construct the basic solutions of S-L equation
(1) with transmission conditions (4) and obtain the sufficient
and necessary condition for 𝜆 being an eigenvalue of the S-L
problem in Section 2. In Section 3, the asymptotic formulas
for eigenvalues and eigenfunctions of the S-L problem are
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obtained by using the asymptotic expressions of the solutions,
and we prove that the eigenvalues of the S-L problem
are bounded below and are countably infinite. Section 4
contains the eigenfunction expansion for Green’s function
of the S-L problem (1)–(4) and we establish the modified
Parseval equality in the associated Hilbert space by using the
eigenfunction expansion for Green’s function.

2. The Basic Solutions and Eigenvalues

We construct the basic solutions of S-L equation (1) with
transmission conditions (4) and obtain the sufficient and
necessary condition for 𝜆 being an eigenvalue of the S-L
problem in this section. At first, we prove the existence of
finite limits for all solution 𝑦 of (1) and its derivative at both
sides of 0 point in the following theorem.

Theorem 1. Assume the coefficient function 𝑞(𝑥) in S-L
equation (1) is real-valued and Lebesgue integrable on [−1, 0)

and (0, 1], that is, 𝑞 ∈ 𝐿(𝐼,R); then for the solution 𝑦 of (1),
the limits

𝑦 (0±) = lim
𝑥→0±

𝑦 (𝑥) , 𝑦


(0±) = lim
𝑥→0±

𝑦


(𝑥) (6)

exist and are finite.

In order to prove Theorem 1, we need the following
lemma.

Lemma 2 (see [19]). Let 𝐽 = (𝑎, 𝑏), −∞ ≤ 𝑎 < 𝑏 ≤ ∞. Let
𝑀
𝑛,𝑚

(𝐿(𝑎, 𝑏),C) denote the set of 𝑛 × 𝑚 matrices with entries
from 𝐿((𝑎, 𝑏),C)(𝑛,𝑚 ∈ N).

(1) Suppose that 𝑃, 𝐹 satisfy

𝑃 ∈ 𝑀
𝑛
(𝐿 (𝑎, 𝑐) ,C) ; 𝐹 ∈ 𝑀

𝑛,𝑚
(𝐿 (𝑎, 𝑐) ,C)

(7)

for some 𝑐 ∈ (𝑎, 𝑏), where 𝑀
𝑛
(𝐿(𝑎, 𝑐),C) = 𝑀

𝑛,𝑛

(𝐿(𝑎, 𝑐),C). For some 𝑢 ∈ 𝐽 and 𝐶 ∈ 𝑀
𝑛,𝑚

(C), let 𝑌
be the solution of

𝑌

= 𝑃𝑌 + 𝐹, 𝑌 (𝑢) = 𝐶. (8)

Then 𝑌(𝑎) = lim
𝑡→𝑎+

𝑌(𝑡) exists and is finite.
(2) Suppose that

𝑃 ∈ 𝑀
𝑛
(𝐿 (𝑐, 𝑏) ,C) ; 𝐹 ∈ 𝑀

𝑛,𝑚
(𝐿 (𝑐, 𝑏) ,C)

(9)

for some 𝑐 ∈ (𝑎, 𝑏). For some 𝑢 ∈ 𝐽 and 𝐶 ∈

𝑀
𝑛,𝑚

(C), let𝑌 be the solution of (8) on 𝐽.Then,𝑌(𝑏) =
lim
𝑡→𝑏−

𝑌(𝑡) exists and is finite.

Proof of Theorem 1. Let 𝑎 = 0, 𝑏 = 1, and let 𝑌 = (
𝑦

𝑦
 ) , 𝑃 =

(
0 1

𝑞−𝜆 0
) , and 𝐹 = ( 0

0
). Then (1) is equivalent to the equation

𝑌

= 𝑃𝑌+𝐹 on (0, 1]. From Lemma 2, we know that 𝑌(0+) =

lim
𝑡→0+

𝑌(𝑡) exists and is finite. This implies that

𝑦 (0+) = lim
𝑥→0+

𝑦 (𝑥) , 𝑦


(0+) = lim
𝑥→0+

𝑦


(𝑥) (10)

exist and are finite.

Let 𝑎 = −1, 𝑏 = 0. Then, (1) is equivalent to the equation
𝑌

= 𝑃𝑌 + 𝐹 on [−1, 0). Since 𝑌(0−) = lim

𝑡→0−
𝑌(𝑡) exists

and is finite by Lemma 2, the limits

𝑦 (0−) = lim
𝑥→0−

𝑦 (𝑥) , 𝑦


(0−) = lim
𝑥→0−

𝑦


(𝑥) (11)

exist and are finite.

Let us define a new inner product in 𝐿
2
(𝐼) as follows,

which is associated with transmission conditions (4) and
useful to investigate the S-L problem (1)–(4):

⟨𝑓, 𝑔⟩ = 𝜌∫

0

−1

𝑓
1
𝑔
1
𝑑𝑥 + ∫

1

0

𝑓
2
𝑔
2
𝑑𝑥, for 𝑓, 𝑔 ∈ 𝐿

2

(𝐼) ,

(12)

where 𝑓
1
= 𝑓(𝑥)|

[−1,0)
, 𝑓
2
= 𝑓(𝑥)|

(0,1]
. It is easy to verify that

(𝐿
2
(𝐼), ⟨⋅, ⋅⟩) is a Hilbert space. For simplicity, it is denoted

by 𝐻. The norm induced by the inner product is denoted by
‖ ⋅ ‖
𝐻
. We consider the S-L problem (1)–(4) in the associated

Hilbert space𝐻.

Theorem 3 (see [14]). The S-L problem (1)–(4) is self-adjoint.

We construct two basic solutions 𝜙(𝑥, 𝜆) and 𝜒(𝑥, 𝜆) of
S-L equation (1) by the following procedure. At first, we
consider the initial-value problem

−𝑦

+ 𝑞 (𝑥) 𝑦 = 𝜆𝑦, 𝑥 ∈ [−1, 0) ,

𝑦 (−1) = 𝛼
2
, 𝑦



(−1) = −𝛼
1
.

(13)

By virtue ofTheorem 1.5 in [20], the problem (13) has a unique
solution 𝜙

1
(𝑥, 𝜆) for each 𝜆 ∈ C, which is an entire function

of 𝜆 for each fixed 𝑥 ∈ [−1, 0).
Similarly, the initial-value problem

−𝑦

+ 𝑞 (𝑥) 𝑦 = 𝜆𝑦, 𝑥 ∈ (0, 1] ,

𝑦 (0+) = 𝛾
1
𝜙
1
(0−, 𝜆) + 𝛾

2
𝜙


1
(0−, 𝜆) ,

𝑦


(0+) = 𝛾
3
𝜙
1
(0−, 𝜆) + 𝛾

4
𝜙


1
(0−, 𝜆)

(14)

has a solution 𝜙
2
(𝑥, 𝜆) for each 𝜆 ∈ C. Moreover, 𝜙

2
(𝑥, 𝜆) is

an entire function of 𝜆 for each fixed 𝑥 ∈ (0, 1]. We define a
function 𝜙(𝑥, 𝜆) on 𝑥 ∈ 𝐼 = [−1, 0) ∪ (0, 1] by

𝜙 (𝑥, 𝜆) = {
𝜙
1
(𝑥, 𝜆) , 𝑥 ∈ [−1, 0) ,

𝜙
2
(𝑥, 𝜆) , 𝑥 ∈ (0, 1] .

(15)

Obviously, 𝜙(𝑥, 𝜆) satisfies S-L equation (1), the boundary
condition (2), and both transmission conditions (4); that is,
𝜙(𝑥, 𝜆) is a solution of S-L equation (1).

As same as above, the initial-value problem

−𝑦

+ 𝑞 (𝑥) 𝑦 = 𝜆𝑦, 𝑥 ∈ (0, 1] ,

𝑦 (1) = 𝛽
2
, 𝑦



(1) = −𝛽
1

(16)
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has a solution 𝜒
2
(𝑥, 𝜆) which is an entire function of 𝜆 for

each fixed 𝑥 ∈ (0, 1]. Similarly, the initial-value problem

−𝑦

+ 𝑞 (𝑥) 𝑦 = 𝜆𝑦, 𝑥 ∈ [−1, 0) ,

𝑦 (0−) =
1

𝜌
(𝛾
4
𝜒
2
(0+, 𝜆) − 𝛾

2
𝜒


2
(0+, 𝜆)) ,

𝑦


(0−) = −
1

𝜌
(𝛾
3
𝜒
2
(0+, 𝜆) − 𝛾

1
𝜒


2
(0+, 𝜆))

(17)

also has a unique solution𝜒
1
(𝑥, 𝜆), which is an entire function

of 𝜆 for each fixed 𝑥 ∈ [−1, 0). Let

𝜒 (𝑥, 𝜆) = {
𝜒
1
(𝑥, 𝜆) , 𝑥 ∈ [−1, 0) ,

𝜒
2
(𝑥, 𝜆) , 𝑥 ∈ (0, 1] .

(18)

By (16) and (17), 𝜒(𝑥, 𝜆) satisfies S-L equation (1) and
conditions (3) and (4); that is, 𝜒(𝑥, 𝜆) is another solution of
S-L equation (1).

It is well known that, from the ordinary linear differential
equation theory, the Wronskians 𝜔

𝑗
(𝜆) := 𝑊(𝜙

𝑗
(𝑥, 𝜆),

𝜒
𝑗
(𝑥, 𝜆)) (𝑗 = 1, 2) are independent of the variable 𝑥.

Lemma 4. The equality 𝜔
2
(𝜆) = 𝜌𝜔

1
(𝜆) holds for each 𝜆 ∈ C.

Proof. Since the Wronskians 𝜔
𝑗
(𝜆) := 𝑊(𝜙

𝑗
(𝑥, 𝜆), 𝜒

𝑗
(𝑥, 𝜆))

(𝑗 = 1, 2) are independent of the variable 𝑥, then by (14) and
(17),

𝜔
2
(𝜆)

= 𝜔
2
(𝜆)

𝑥=0+

=



𝜙
2
(0+, 𝜆) 𝜒

2
(0+, 𝜆)

𝜙


2
(0+, 𝜆) 𝜒



2
(0+, 𝜆)



=



𝛾
1
𝜙
1
(0−, 𝜆) + 𝛾

2
𝜙


1
(0−, 𝜆) 𝛾

1
𝜒
1
(0−, 𝜆) + 𝛾

2
𝜒


1
(0−, 𝜆)

𝛾
3
𝜙
1
(0−, 𝜆) + 𝛾

4
𝜙


1
(0−, 𝜆) 𝛾

3
𝜒
1
(0−, 𝜆) + 𝛾

4
𝜒


1
(0−, 𝜆)



= 𝜌𝜔
1
(𝜆) .

(19)

Let 𝜔(𝜆) = 𝜔
1
(𝜆). Then 𝜔(𝜆) = (1/𝜌)𝜔

2
(𝜆) and is an

entire function of 𝜆.

Theorem 5. The eigenvalues of the S-L problem (1)–(4) coin-
cide with the zeros of the function 𝜔(𝜆).

Proof. Let 𝜆
0
be an eigenvalue of the S-L problem (1)–(4)

and let 𝑦(𝑥, 𝜆
0
) be any corresponding eigenfunction. Let us

assume that 𝜔(𝜆
0
) ̸= 0. Then,𝑊(𝜙

𝑗
(𝑥, 𝜆
0
), 𝜒
𝑗
(𝑥, 𝜆
0
)) ̸= 0 (𝑗 =

1, 2). Consequently, each pair of functions𝜙
1
(𝑥, 𝜆
0
), 𝜒
1
(𝑥, 𝜆
0
)

and 𝜙
2
(𝑥, 𝜆
0
), 𝜒
2
(𝑥, 𝜆
0
) is linearly independent. Therefore,

the solution 𝑦(𝑥, 𝜆
0
) of (1) may be represented in the form

𝑦 (𝑥, 𝜆
0
) = {

𝑐
1
𝜙
1
(𝑥, 𝜆
0
) + 𝑐
2
𝜒
1
(𝑥, 𝜆
0
) , 𝑥 ∈ [−1, 0) ,

𝑑
1
𝜙
2
(𝑥, 𝜆
0
) + 𝑑
2
𝜒
2
(𝑥, 𝜆
0
) , 𝑥 ∈ (0, 1] ,

(20)

where at least one of the constants 𝑐
1
, 𝑐
2
, 𝑑
1
, 𝑑
2
is not zero.

Since 𝑦(𝑥, 𝜆
0
) satisfies boundary conditions (2) and (3), we

obtain 𝑐
2
= 0, 𝑑

1
= 0. And substituting (20) in condition (4),

we get 𝑐
1
and 𝑑

2
satisfying the following equations:

𝑑
2
𝜒
2
(0+, 𝜆

0
) − 𝑐
1
(𝛾
1
𝜙
1
(0−, 𝜆

0
) + 𝛾
2
𝜙


1
(0−, 𝜆

0
)) = 0,

𝑑
2
𝜒


2
(0+, 𝜆

0
) − 𝑐
1
(𝛾
3
𝜙
1
(0−, 𝜆

0
) + 𝛾
4
𝜙


1
(0−, 𝜆

0
)) = 0.

(21)

From (14), the determinant of the matrix of coefficients in
the last equations is equal to 𝜔

2
(𝜆
0
) which is not zero by the

assumption. Hence, 𝑐
1
= 0 and 𝑑

2
= 0.This is a contradiction.

Thus, each eigenvalue of the S-L problem (1)–(4) is a zero of
the function 𝜔(𝜆).

Conversely, let 𝜔(𝜆
0
) = 0. Then, 𝑊(𝜙

1
(𝑥, 𝜆
0
),

𝜒
1
(𝑥, 𝜆
0
)) = 0 for all 𝑥 ∈ [−1, 0). Consequently, the

functions 𝜙
1
(𝑥, 𝜆
0
) and 𝜒

1
(𝑥, 𝜆
0
) are linearly dependent.

That is,

𝜒
1
(𝑥, 𝜆
0
) = 𝑘
1
𝜙
1
(𝑥, 𝜆
0
) , 𝑥 ∈ [−1, 0) , (22)

for some 𝑘
1

̸= 0. Then

𝛼
1
𝜒 (−1, 𝜆

0
) + 𝛼
2
𝜒

(−1, 𝜆

0
)

= 𝛼
1
𝜒
1
(−1, 𝜆

0
) + 𝛼
2
𝜒


1
(−1, 𝜆

0
)

= 𝑘
1
(𝛼
1
𝜙
1
(−1, 𝜆

0
) + 𝛼
2
𝜙


1
(−1, 𝜆

0
)) = 0.

(23)

So, 𝜒(𝑥, 𝜆
0
) satisfies condition (2). And the solution 𝜒(𝑥, 𝜆

0
)

satisfies condition (3) and both transmission condition (4)
from its construction. Thus 𝜒(𝑥, 𝜆

0
) would be an eigenfunc-

tion of the S-L problem (1)–(4) for the eigenvalue 𝜆
0
.

Lemma 6. The eigenvalues of the S-L problem (1)–(4) are
simple.

Proof. Let 𝜆 = 𝑢+ 𝑖V. We differentiate the equation 𝑙𝜒(𝑥, 𝜆) =

𝜆𝜒(𝑥, 𝜆) with respect to 𝜆 and have 𝑙𝜒
𝜆
(𝑥, 𝜆) = 𝜆𝜒

𝜆
(𝑥, 𝜆) +

𝜒(𝑥, 𝜆). Then

⟨𝑙𝜒
𝜆
, 𝜙⟩ − ⟨𝜒

𝜆
, 𝑙𝜙⟩ = ⟨𝜆𝜒

𝜆
+ 𝜒, 𝜙⟩ − ⟨𝜒

𝜆
, 𝜆𝜙⟩

= ⟨𝜒, 𝜙⟩ + 2𝑖V⟨𝜒
𝜆
, 𝜙⟩.

(24)

By integration by parts and some calculations

⟨𝑙𝜒
𝜆
, 𝜙⟩ − ⟨𝜒

𝜆
, 𝑙𝜙⟩

= 𝜌∫

0

−1

(−𝜒


𝜆
(𝑥, 𝜆) + 𝑞 (𝑥) 𝜒

𝜆
(𝑥, 𝜆)) 𝜙(𝑥, 𝜆)𝑑𝑥

+ ∫

1

0

(−𝜒


𝜆
(𝑥, 𝜆) + 𝑞 (𝑥) 𝜒

𝜆
(𝑥, 𝜆)) 𝜙(𝑥, 𝜆)𝑑𝑥
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− 𝜌∫

0

−1

𝜒
𝜆
(𝑥, 𝜆) (−𝜙 (𝑥, 𝜆) + 𝑞 (𝑥) 𝜙 (𝑥, 𝜆))𝑑𝑥

− ∫

1

0

𝜒
𝜆
(𝑥, 𝜆) (−𝜙 (𝑥, 𝜆) + 𝑞 (𝑥) 𝜙 (𝑥, 𝜆))𝑑𝑥

= 𝜌 [(𝜒
1𝜆

(𝑥, 𝜆) 𝜙


1
(𝑥, 𝜆) − 𝜒



1𝜆
(𝑥, 𝜆) 𝜙

1
(𝑥, 𝜆))



0−

−1

+ (𝜒
2𝜆

(𝑥, 𝜆) 𝜙


2
(𝑥, 𝜆) − 𝜒



2𝜆
(𝑥, 𝜆) 𝜙

2
(𝑥, 𝜆))



1

0+

]

= 𝜌 (𝛼
2
𝜒


𝜆
(−1, 𝜆) + 𝛼

1
𝜒
𝜆
(−1, 𝜆))

(25)

from (13), (14), (16), and (17) where 𝜒
𝑗𝜆
(𝑥, 𝜆), 𝜒



𝑗𝜆
(𝑥, 𝜆) are the

derivatives of 𝜒
𝑗
(𝑥, 𝜆), 𝜒



𝑗
(𝑥, 𝜆) with respect to 𝜆(𝑗 = 1, 2).

Since 𝜔(𝜆) is independent of the variable 𝑥 and the value of
𝜙
1
(−1, 𝜆) and 𝜙



1
(−1, 𝜆) given in (13),

𝜔


(𝜆)
𝑥=−1

=
𝑑𝜔
1
(𝜆)

𝑑𝜆

𝑥=−1

=
𝑑

𝑑𝜆
(𝜙
1
(−1, 𝜆) 𝜒



1
(−1, 𝜆)

− 𝜙
1
(−1, 𝜆) 𝜒



1
(−1, 𝜆))

= 𝛼
2
𝜒


1𝜆
(−1, 𝜆) + 𝛼

1
𝜒
1𝜆

(−1, 𝜆) .

(26)

So, by (24), (25), and (26),

𝜔


(𝜆) =
1

𝜌
(⟨𝜒, 𝜙⟩ + 2𝑖V ⟨𝜒

𝜆
, 𝜙⟩) . (27)

Let 𝜆
0
be an eigenvalue of the S-L problem (1)–(4).Then 𝜆

0
is

real. Since 𝜔(𝜆
0
) = 0 for the eigenvalue of the S-L problem

(1)–(4) from Theorem 5, 𝜒
𝑗
(𝑥, 𝜆
0
) = 𝑐

𝑗
𝜙
𝑗
(𝑥, 𝜆
0
) for some

𝑐
𝑗

̸= 0 (𝑗 = 1, 2). And from (4),

𝜒
2
(0+, 𝜆

0
) = 𝑐
1
(𝛾
1
𝜙
1
(0−, 𝜆

0
) + 𝛾
2
𝜙


1
(0−, 𝜆

0
))

= 𝑐
1
𝜙
2
(0+, 𝜆

0
) ,

𝜒


2
(0+, 𝜆

0
) = 𝑐
1
(𝛾
3
𝜙
1
(0−, 𝜆

0
) + 𝛾
4
𝜙


1
(0−, 𝜆

0
))

= 𝑐
1
𝜙


2
(0+, 𝜆

0
) ,

(28)

we get 𝑐
1
= 𝑐
2

̸= 0. Thus, (27) becomes

𝜔

(𝜆
0
) =

1

𝜌
⟨𝜒, 𝜙⟩ =

𝑐
1

𝜌
⟨𝜙, 𝜙⟩ ̸= 0. (29)

Hence 𝜆
0
is simple.

3. Asymptotic Formulas for
Eigenvalues and Eigenfunctions

In this section, the asymptotic formulas for eigenvalues and
eigenfunctions of the S-L problem (1)–(4) are obtained by
using the asymptotic expressions of the solutions. At first, we
calculate the asymptotic expressions of the solutions.

Lemma 7. Let 𝜆 = 𝑠
2, 𝑠 = 𝜎 + 𝑖𝑡. If 𝛼

2
̸= 0, then one has the

following asymptotic expressions:

𝑑
𝑘

𝑑𝑥𝑘
𝜙
1
(𝑥, 𝜆) = 𝛼

2

𝑑
𝑘

𝑑𝑥𝑘
cos 𝑠 (𝑥 + 1) + 𝑂 (|𝑠|

𝑘−1
𝑒
|𝑡|(𝑥+1)

) ,

𝑘 = 0, 1,

(30)

as |𝜆| → ∞. If 𝛼
2
= 0, then

𝑑
𝑘

𝑑𝑥𝑘
𝜙
1
(𝑥, 𝜆) = −

𝛼
1

𝑠

𝑑
𝑘

𝑑𝑥𝑘
sin 𝑠 (𝑥 + 1) + 𝑂 (|𝑠|

𝑘−2
𝑒
|𝑡|(𝑥+1)

) ,

𝑘 = 0, 1,

(31)

as |𝜆| → ∞.

Proof. The asymptotic formulas for 𝜙
1
(𝑥, 𝜆) follow from the

similar formulas of Lemma 1.7 in [20].

The asymptotic formulas for 𝜙
2
(𝑥, 𝜆) are as follows.

Lemma 8. Let 𝜆 = 𝑠
2, 𝑠 = 𝜎 + 𝑖𝑡; then 𝜙

2
(𝑥, 𝜆) has the

following asymptotic formulas as |𝜆| → ∞:

(1) if 𝛼
2

̸= 0, 𝛾
2

̸= 0, then

𝑑
𝑘

𝑑𝑥𝑘
𝜙
2
(𝑥, 𝜆) = −𝛼

2
𝛾
2
𝑠 sin 𝑠

𝑑
𝑘

𝑑𝑥𝑘
cos 𝑠𝑥 + 𝑂 (𝑒

|𝑡|𝑥
) , (32)

(2) if 𝛼
2

̸= 0, 𝛾
2
= 0, then

𝑑
𝑘

𝑑𝑥𝑘
𝜙
2
(𝑥, 𝜆)

= 𝛼
2
(𝛾
1
cos 𝑠 𝑑

𝑘

𝑑𝑥𝑘
cos 𝑠𝑥 − 𝛾

4
sin 𝑠

𝑑
𝑘

𝑑𝑥𝑘
sin 𝑠𝑥)

+ 𝑂 (|𝑠|
−1
𝑒
|𝑡|𝑥

) ,

(33)

(3) if 𝛼
2
= 0, 𝛾
2

̸= 0, then

𝑑
𝑘

𝑑𝑥𝑘
𝜙
2
(𝑥, 𝜆) = −𝛼

1
𝛾
2
cos 𝑠 𝑑

𝑘

𝑑𝑥𝑘
cos 𝑠𝑥 + 𝑂 (|𝑠|

−1
𝑒
|𝑡|𝑥

) ,

(34)

(4) if 𝛼
2
= 0, 𝛾
2
= 0, then

𝑑
𝑘

𝑑𝑥𝑘
𝜙
2
(𝑥, 𝜆)

= −
𝛼
1

𝑠
(𝛾
1
sin 𝑠

𝑑
𝑘

𝑑𝑥𝑘
cos 𝑠𝑥 + 𝛾

4
cos 𝑠 𝑑

𝑘

𝑑𝑥𝑘
sin 𝑠𝑥)

+ 𝑂 (|𝑠|
−2
𝑒
|𝑡|𝑥

)

(35)

for 𝑘 = 0, 1.
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Proof. Let 𝜆 = 𝑠
2, 𝑠 = 𝜎 + 𝑖𝑡. 𝜙

2
(𝑥, 𝜆) satisfies (14). By the

method of variation of constants, we have 𝜙
2
(𝑥, 𝜆) satisfying

the following integral equation:

𝜙
2
(𝑥, 𝜆) = (𝛾

1
𝜙
1
(0−, 𝜆) + 𝛾

2
𝜙


1
(0−, 𝜆)) cos 𝑠𝑥

+
1

𝑠
(𝛾
3
𝜙
1
(0−, 𝜆) + 𝛾

4
𝜙


1
(0−, 𝜆)) sin 𝑠𝑥

+
1

𝑠
∫

𝑥

0

sin [𝑠 (𝑥 − 𝑧)] 𝑞 (𝑧) 𝜙
2
(𝑧, 𝜆) 𝑑𝑧.

(36)

Let 𝛼
2

̸= 0. Substituting (30), for 𝑘 = 0, in (36), we have

𝜙
2
(𝑥, 𝜆) = − 𝛼

2
𝛾
2
𝑠 sin 𝑠 cos 𝑠𝑥

+ 𝛼
2
(𝛾
1
cos 𝑠 cos 𝑠𝑥 − 𝛾

4
sin 𝑠 sin 𝑠𝑥)

+
1

𝑠
𝛼
2
𝛾
3
cos 𝑠 sin 𝑠𝑥

+
1

𝑠
∫

𝑥

0

sin [𝑠 (𝑥 − 𝑧)] 𝑞 (𝑧) 𝜙
2
(𝑧, 𝜆) 𝑑𝑧

+ 𝑂(
1

𝑠
𝑒
|𝑡|(𝑥+1)

) .

(37)

We consider the case 𝛾
2

̸= 0. Let 𝜙
2
(𝑥, 𝜆) = |𝑠|𝑒

|𝑡|𝑥
𝐹(𝑥, 𝜆).

Multiplying (37) by |𝑠|
−1
𝑒
−|𝑡|𝑥, we have the following:

𝐹 (𝑥, 𝜆) = − 𝛼
2
𝛾
2
𝑒
−|𝑡|𝑥 sin 𝑠 cos 𝑠𝑥

+
1

|𝑠|
𝛼
2
𝑒
−|𝑡|𝑥

(𝛾
1
cos 𝑠 cos 𝑠𝑥 − 𝛾

4
sin 𝑠 sin 𝑠𝑥)

+
1

|𝑠|
2
𝛼
2
𝛾
3
𝑒
−|𝑡|𝑥 cos 𝑠 sin 𝑠𝑥

+
1

|𝑠|
∫

𝑥

0

sin [𝑠 (𝑥 − 𝑧)] 𝑒
−|𝑡|(𝑥−𝑧)

𝑞 (𝑧) 𝐹 (𝑧, 𝜆) 𝑑𝑧

+ 𝑂(
1

|𝑠|
2
𝑒
|𝑡|
) .

(38)

Let 𝜇(𝜆) = max
−1≤𝑥≤1

|𝐹(𝑥, 𝜆)|. Then

𝜇 (𝜆) ≤
𝛼2𝛾2

 +
𝑀
0

|𝑠|
(39)

for some 𝑀
0
> 0. Consequently, 𝜇(𝜆) = 𝑂(1) as |𝜆| → ∞.

So, 𝜙
2
(𝑥, 𝜆) = |𝑠|𝑒

|𝑡|𝑥
𝐹(𝑥, 𝜆) = 𝑂(|𝑠|𝑒

|𝑡|𝑥
) as |𝜆| → ∞.

Substituting the asymptotic equality in (37) gives (32) for
𝑘 = 0. And the case for 𝑘 = 1 is obtained by differentiating
(37) and by some similar calculations.

Similarly, we can prove (33), (34), and (35).

When 𝜆 is big enough, the asymptotic formulas for
𝜙
2
(𝑥, 𝜆) are obtained in Lemma 8. Substituting the asymp-

totic formulas of 𝜙
2
(𝑥, 𝜆) and the value of 𝜒

2
(𝑥, 𝜆) at 𝑥 =

1, which is given in (16), into 𝜔(𝜆) = (1/𝜌)𝜔
2
(𝜆), we can

establish the following lemma.

Lemma 9. Let 𝜆 = 𝑠
2, 𝑠 = 𝜎 + 𝑖𝑡; then 𝜔(𝜆) has the following

asymptotic formulas for large enough 𝜆.

(1) If 𝛼
2

̸= 0, 𝛾
2

̸= 0, 𝛽
2

̸= 0, then

𝜔 (𝜆) = −
1

𝜌
𝛼
2
𝛽
2
𝛾
2
𝑠
2sin2𝑠 + 𝑂 (|𝑠| 𝑒

|𝑡|
) . (40)

(2) If 𝛼
2

̸= 0, 𝛾
2

̸= 0, 𝛽
2
= 0, then

𝜔 (𝜆) =
1

𝜌
𝛼
2
𝛽
1
𝛾
2
𝑠 sin 𝑠 cos 𝑠 + 𝑂 (𝑒

|𝑡|
) . (41)

(3) If 𝛼
2

̸= 0, 𝛾
2
= 0, 𝛽

2
̸= 0, then

𝜔 (𝜆) =
1

𝜌
𝛼
2
𝛽
2
(𝛾
1
+ 𝛾
4
) 𝑠 sin 𝑠 cos 𝑠 + 𝑂 (𝑒

|𝑡|
) . (42)

(4) If 𝛼
2

̸= 0, 𝛾
2
= 0, 𝛽

2
= 0, then

𝜔 (𝜆) =
1

𝜌
𝛼
2
𝛽
1
(𝛾
4
sin2𝑠 − 𝛾

1
cos2𝑠) + 𝑂 (|𝑠|

−1
𝑒
|𝑡|
) . (43)

(5) If 𝛼
2
= 0, 𝛾
2

̸= 0, 𝛽
2

̸= 0, then

𝜔 (𝜆) = −
1

𝜌
𝛼
1
𝛽
2
𝛾
2
𝑠 sin 𝑠 cos 𝑠 + 𝑂 (𝑒

|𝑡|
) . (44)

(6) If 𝛼
2
= 0, 𝛾
2

̸= 0, 𝛽
2
= 0, then

𝜔 (𝜆) =
1

𝜌
𝛼
1
𝛽
1
𝛾
2
cos2𝑠 + 𝑂 (|𝑠|

−1
𝑒
|𝑡|
) . (45)

(7) If 𝛼
2
= 0, 𝛾
2
= 0, 𝛽

2
̸= 0, then

𝜔 (𝜆) =
1

𝜌
𝛼
1
𝛽
2
(𝛾
1
sin2𝑠 − 𝛾

4
cos2𝑠) + 𝑂 (|𝑠|

−1
𝑒
|𝑡|
) . (46)

(8) If 𝛼
2
= 0, 𝛾
2
= 0, 𝛽

2
= 0, then

𝜔 (𝜆) =
1

𝜌𝑠
𝛼
1
𝛽
1
(𝛾
1
+ 𝛾
4
) sin 𝑠 cos 𝑠 + 𝑂 (|𝑠|

−2
𝑒
|𝑡|
) . (47)

Theorem 10. The eigenvalues of the S-L problem (1)–(4) are
bounded below and countably infinite; the unique cluster point
is infinity.

Proof. From Theorem 5, the eigenvalues of the S-L problem
(1)–(4) are zeros of the function 𝜔(𝜆) which is an entire
function of 𝜆. And the asymptotic formulas of the function
𝜔(𝜆) are obtained in Lemma 9. Let

𝜔 (𝜆) = 𝜔
∗

(𝜆) + 𝛿 (𝜆) , (48)

where 𝜔∗(𝜆) = −(1/𝜌)𝛼
2
𝛽
2
𝛾
2
𝑠
2sin2𝑠, 𝛿(𝜆) = 𝑂(|𝑠|𝑒

|𝑡|
) for the

case 𝛼
2

̸= 0, 𝛾
2

̸= 0, 𝛽
2

̸= 0 from Lemma 9.
Let 𝜆 = 𝑠

2, 𝑠 = 𝜎 + 𝑖𝑡 and let

Γ


𝑛
= {𝜆 = 𝑠

2
= (𝜎 + 𝑖𝑡)

2
| |𝜎| = (𝑛 +

1

2
)𝜋, 0 ≤ 𝑡 ≤ 𝑛} ,

Γ


𝑛
= {𝜆 = 𝑠

2
= (𝜎 + 𝑖𝑡)

2
| |𝜎| ≤ (𝑛 +

1

2
)𝜋, 𝑡 = 𝑛} ,

(49)
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and let Γ
𝑛
= Γ


𝑛
∪ Γ


𝑛
. Then Γ

𝑛
is a closed curve on the plane of

𝜆. Next, we prove that |𝜔∗(𝜆)| > |𝛿(𝜆)| on Γ
𝑛
. When |𝜆| is big

enough, on Γ


𝑛

|sin 𝑠| =
1

2


𝑒
𝑖𝑠
− 𝑒
−𝑖𝑠

=
1

2


𝑒
𝑖(𝑛+(1/2))𝜋

𝑒
−𝑡

− 𝑒
−𝑖(𝑛+(1/2))𝜋

𝑒
𝑡

=
1

2


𝑖𝑒
−𝑡

+ 𝑖𝑒
𝑡
=

1

2
𝑒
𝑡 
1 + 𝑒
−2t >

𝑒
|𝑡|

4
.

(50)

Similarly, when |𝜆| is big enough, on Γ


𝑛

|sin 𝑠| =
1

2


𝑒
𝑖𝜎𝜋

𝑒
−𝑛

− 𝑒
−𝑖𝜎𝜋

𝑒
𝑛

=
1

2
𝑒
𝑛 
1 − 𝑒
2𝑖𝜎𝜋

𝑒
−2𝑛

>
𝑒
𝑛

4
.

(51)

We obtain

𝜔
∗

(𝜆)
Γ
𝑛

=


−
1

𝜌
𝛼
2
𝛽
2
𝛾
2
𝑠
2sin2𝑠

Γ
𝑛

>
𝑛

4𝜌
𝑒
|𝑡| 𝛼2𝛽2𝛾2𝑠 sin 𝑠

 .

(52)

So,
𝜔
∗

(𝜆)
Γ
𝑛

> |𝛿 (𝜆)|
Γ
𝑛

. (53)

By Rouche’s Theorem in [21], 𝜔(𝜆) and 𝜔
∗
(𝜆) have the same

zeros interior of Γ
𝑛
= Γ


𝑛
∪ Γ


𝑛
as follows:

0
2
, 𝜋
2
, (2𝜋)
2
, . . . , (𝑛𝜋)

2
. (54)

Letting 𝑠 = 𝑖𝑡, we can prove that |𝜔∗(𝜆)|
Γ
𝑛

> |𝛿(𝜆)|
Γ
𝑛

.
Hence, 𝜔(𝜆) = 𝜔(−𝑡

2
) ̸= 0 as |𝑡| → ∞. Thus, 𝜔(𝜆) only has

finite negative zeros. The proof of other cases in Lemma 9 is
similar to the proof of the case 𝛼

2
̸= 0, 𝛾
2

̸= 0, 𝛽
2

̸= 0.

Theorem 11. Let 𝜆
1
, 𝜆
2
, 𝜆
3
, . . ., be the collection of all eigen-

values of the S-L problem (1)–(4) and let 𝜑
1
(𝑥), 𝜑
2
(𝑥), . . . be

the corresponding normalized eigenfunctions. Then

−∞ < 𝜆
1
≤ 𝜆
2
≤ ⋅ ⋅ ⋅ 𝜆

𝑛
⋅ ⋅ ⋅ → ∞. (55)

And {𝜑
𝑛
; 𝑛 ∈ N} is complete in𝐻 and

⟨𝜑
𝑛
, 𝜑
𝑚
⟩ = {

1, 𝑛 = 𝑚,

0, 𝑛 ̸=𝑚.
(56)

Theorem 12. The following asymptotic formulas hold for
eigenvalues and eigenfunctions of the S-L problem (1)–(4) for
large enough 𝑛 ∈ N.

(1) If 𝛼
2

̸= 0, 𝛾
2

̸= 0, 𝛽
2

̸= 0, then

√𝜆
𝑛
= (𝑛 − 1) 𝜋 + 𝑂(

1

𝑛
) ,

𝜙 (𝑥, 𝜆
𝑛
)=

{

{

{

𝛼
2
cos (𝑛−1) 𝜋 (𝑥+1)+𝑂(

1

𝑛
) , 𝑥 ∈ [−1, 0) ,

𝑂 (1) , 𝑥 ∈ (0, 1] .

(57)

(2) If 𝛼
2

̸= 0, 𝛾
2

̸= 0, 𝛽
2
= 0, then

√𝜆
𝑛
=

(𝑛 − 1)

2
𝜋 + 𝑂(

1

𝑛
) ,

𝜙 (𝑥, 𝜆
𝑛
) =

{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{

{

𝛼
2
cos (𝑛 − 1)

2
𝜋 (𝑥 + 1)

+ 𝑂(
1

𝑛
) , 𝑥 ∈ [−1, 0) ,

𝛼
2
𝛾
2

(𝑛 − 1)

2
𝜋 cos (𝑛 − 1)

2
𝜋𝑥

+ 𝑂 (1) (𝑘 𝑖𝑠 𝑒V𝑒𝑛) ,

𝑂 (1) (𝑘 𝑖𝑠 𝑜𝑑𝑑) , 𝑥 ∈ (0, 1] .

(58)

(3) If 𝛼
2

̸= 0, 𝛾
2
= 0, 𝛽

2
̸= 0, then

√𝜆
𝑛
=

(𝑛 − 1)

2
𝜋 + 𝑂(

1

𝑛
) ,

𝜙 (𝑥, 𝜆
𝑛
)=

{{

{{

{

𝛼
2
cos (𝑛−1)

2
𝜋 (𝑥+1)+𝑂(

1

𝑛
) , 𝑥 ∈ [−1, 0) ,

𝑂 (
1

𝑛
) , 𝑥 ∈ (0, 1] .

(59)

(4) If 𝛼
2

̸= 0, 𝛾
2
= 0, 𝛽

2
= 0, then

√𝜆
𝑛
= (𝑛 − 1) 𝜋 ± arctan√

𝛾
1

𝛾
4

+ 𝑂(
1

𝑛
) ,

𝜙 (𝑥, 𝜆
𝑛
)

=

{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

𝛼
2
cos [(𝑛 − 1) 𝜋 ± arctan√

𝛾
1

𝛾
4

]

× (𝑥 + 1) + 𝑂(
1

𝑛
) , 𝑥 ∈ [−1, 0) ,

𝛼
2
(𝛾
1
cos [(𝑛 − 1) 𝜋 ± arctan√

𝛾
1

𝛾
4

]

× cos [(𝑛 − 1) 𝜋 ± arctan√
𝛾
1

𝛾
4

] 𝑥

− 𝛾
4
sin [(𝑛 − 1) 𝜋 ± arctan√

𝛾
1

𝛾
4

]

× sin [ (𝑛 − 1) 𝜋 ± arctan√
𝛾
1

𝛾
4

] 𝑥) ,

𝑥 ∈ (0, 1] .

(60)
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(5) If 𝛼
2
= 0, 𝛾
2

̸= 0, 𝛽
2

̸= 0, then

√𝜆
𝑛
=

(𝑛 − 1)

2
+ 𝑂(

1

𝑛
) ,

𝜙 (𝑥, 𝜆
𝑛
) =

{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{

{

−
2𝛼
1

(𝑛 − 1) 𝜋
sin (𝑛 − 1)

2
𝜋 (𝑥 + 1)

+ 𝑂(
1

𝑛2
) , 𝑥 ∈ [−1, 0) ,

𝛼
1
𝛾
2
cos (𝑛 − 1)

2
𝜋𝑥

+ 𝑂(
1

𝑛
) (𝑘 𝑖𝑠 𝑜𝑑𝑑)

𝑂(
1

𝑛
) (𝑘 𝑖𝑠 𝑒V𝑒𝑛) , 𝑥 ∈ (0, 1] .

(61)

(6) If 𝛼
2
= 0, 𝛾
2

̸= 0, 𝛽
2
= 0, then

√𝜆
𝑛
= (𝑛 −

1

2
)𝜋 + 𝑂(

1

𝑛
) ,

𝜙 (𝑥, 𝜆
𝑛
) =

{{{{{{{{{

{{{{{{{{{

{

−
𝛼
1

(𝑛 − (1/2)) 𝜋
sin(𝑛 −

1

2
)

× 𝜋 (𝑥 + 1) + 𝑂(
1

𝑛2
) , 𝑥 ∈ [−1, 0) ,

𝑂 (
1

𝑛
) , 𝑥 ∈ (0, 1] .

(62)

(7) If 𝛼
2
= 0, 𝛾
2
= 0, 𝛽

2
̸= 0, then

√𝜆
𝑛
= (𝑛 − 1) 𝜋 ± arctan√

𝛾
4

𝛾
1

+ 𝑂(
1

𝑛
) ,

𝜙 (𝑥, 𝜆
𝑛
)

=

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

−
𝛼
1

(𝑛 − 1) 𝜋 ± arctan√𝛾
4
/𝛾
1

× sin [(𝑛 − 1) 𝜋 ± arctan√
𝛾
4

𝛾
1

]

× (𝑥 + 1) + 𝑂(
1

𝑛2
) , 𝑥 ∈ [−1, 0) ,

−
𝛼
1

(𝑛 − 1) 𝜋 ± arctan√𝛾
4
/𝛾
1

×(𝛾
1
sin [(𝑛 − 1) 𝜋 ± arctan√

𝛾
4

𝛾
1

]

× cos [(𝑛 − 1) 𝜋 ± arctan√
𝛾
4

𝛾
1

] 𝑥

+ 𝛾
4
cos [(𝑛 − 1) 𝜋 ± arctan√

𝛾
4

𝛾
1

]

× sin [ (𝑛 − 1) 𝜋 ± arctan√
𝛾
4

𝛾
1

] 𝑥)

+ 𝑂(
1

𝑛2
) , 𝑥 ∈ (0, 1] .

(63)

(8) If 𝛼
2
= 0, 𝛾
2
= 0, 𝛽

2
= 0, then

√𝜆
𝑛
=

(𝑛 − 1)

2
𝜋 + 𝑂(

1

𝑛
) , (64)

𝜙 (𝑥, 𝜆
𝑛
) =

{{{{{{{{{

{{{{{{{{{

{

−
2𝛼
1

(𝑛 − 1) 𝜋
sin (𝑛 − 1)

2
𝜋 (𝑥 + 1)

+ 𝑂(
1

𝑛2
) , 𝑥 ∈ [−1, 0) ,

𝑂 (
1

𝑛2
) , 𝑥 ∈ (0, 1] .

(65)

Proof. ByTheorem 5, we know that the eigenvalues of the S-L
problem (1)–(4) coincide with the zeros of the function 𝜔(𝜆).
From Lemma 9 andTheorem 10, the entire function𝜔(𝜆) has
a sequence of zeros:

√𝜆
𝑛
= (𝑛 − 1) 𝜋 + 𝑂(

1

𝑛
) , (66)

for the case 𝛼
2

̸= 0, 𝛾
2

̸= 0, 𝛽
2

̸= 0 when 𝑛 is big enough.
By using the asymptotic formulas of eigenvalues 𝜆

𝑛
, the

corresponding eigenfunctions 𝜙(𝑥, 𝜆
𝑛
) have the following

asymptotic formulas:

𝜙 (𝑥, 𝜆
𝑛
)=

{

{

{

𝛼
2
cos (𝑛−1) 𝜋 (𝑥+1)+𝑂(

1

𝑛
) , 𝑥 ∈ [−1, 0) ,

𝑂 (1) , 𝑥 ∈ (0, 1]

(67)

for the case 𝛼
2

̸= 0, 𝛾
2

̸= 0, 𝛽
2

̸= 0. Similarly, we can obtain the
other cases.

By the asymptotic formulas for the eigenvalues and
eigenfunctions of the S-L problem (1)–(4) in the above theo-
rem, we know that the series ∑∞

𝑛=1
(𝜑
𝑛
(𝑥)𝜑
𝑛
(𝜉)/𝜆
𝑛
) converges

absolutely and uniformly where 𝜑
𝑛
(𝑥) is the normalized

eigenfunction.
Green’s function of the classical S-L problem is studied in

[22]. Here, we obtain Green’s function of the S-L problem (1)–
(4) as follows:

𝐺 (𝑥, 𝜉, 𝜆)

=

{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{

{

−
1

𝜌

𝜙
1
(𝜉, 𝜆) 𝜒

1
(𝑥, 𝜆)

𝜔
1

, −1 ≤ 𝜉 ≤ 𝑥 < 0,

−
1

𝜌

𝜙
1
(𝑥, 𝜆) 𝜒

1
(𝜉, 𝜆)

𝜔
1

, −1 ≤ 𝑥 ≤ 𝜉 < 0,

−
1

𝜌

𝜙
1
(𝑥, 𝜆) 𝜒

2
(𝜉, 𝜆)

𝜔
2

, −1 ≤ 𝑥 < 0, 0 < 𝜉 ≤ 1,

−
𝜙
1
(𝜉, 𝜆) 𝜒

2
(𝑥, 𝜆)

𝜔
1

, −1 ≤ 𝜉 < 0, 0 < 𝑥 ≤ 1,

−
𝜙
2
(𝜉, 𝜆) 𝜒

2
(𝑥, 𝜆)

𝜔
2

, 0 < 𝜉 ≤ 𝑥 ≤ 1,

−
𝜙
2
(𝑥, 𝜆) 𝜒

2
(𝜉, 𝜆)

𝜔
2

, 0 < 𝑥 ≤ 𝜉 ≤ 1.

(68)
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Let us consider the nonhomogeneous differential equa-
tion

𝑙𝑦 − 𝜆𝑦 = 𝑓 (𝑥) (69)

together with boundary and transmission conditions (2)–(4)
where 𝑓 ∈ 𝐻. Green’s functions provide a powerful method
for solving the linear nonhomogeneous equations.

Theorem 13. Let 𝑓 ∈ 𝐻. Then the function

𝑦 (𝑥, 𝜆) = 𝜌∫

0

−1

𝐺 (𝑥, 𝜉, 𝜆) 𝑓 (𝜉) 𝑑𝜉 + ∫

1

0

𝐺 (𝑥, 𝜉, 𝜆) 𝑓 (𝜉) 𝑑𝜉

(70)

satisfies (69) and both boundary and transmission conditions
(2)–(4), where 𝐺(𝑥, 𝜉, 𝜆) is the Green function defined in (68).

Proof. Putting (68) in (70), we have

𝑦 (𝑥, 𝜆) =

{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{

{

−
1

𝜔
1

𝜒
1
(𝑥, 𝜆) ∫

𝑥

−1

𝜙
1
(𝜉, 𝜆) 𝑓 (𝜉) 𝑑𝜉

−
1

𝜔
1

𝜙
1
(𝑥, 𝜆) ∫

0

𝑥

𝜒
1
(𝜉, 𝜆) 𝑓 (𝜉) 𝑑𝜉

−
1

𝜔
2

𝜙
1
(𝑥, 𝜆) ∫

1

0

𝜒
2
(𝜉, 𝜆) 𝑓 (𝜉) 𝑑𝜉, 𝑥 ∈ [−1, 0) ,

−
1

𝜔
1

𝜒
2
(𝑥, 𝜆) ∫

0

−1

𝜙
1
(𝜉, 𝜆) 𝑓 (𝜉) 𝑑𝜉

−
1

𝜔
2

𝜒
2
(𝑥, 𝜆) ∫

𝑥

0

𝜙
2
(𝜉, 𝜆) 𝑓 (𝜉) 𝑑𝜉

−
1

𝜔
2

𝜙
2
(𝑥, 𝜆) ∫

1

𝑥

𝜒
2
(𝜉, 𝜆) 𝑓 (𝜉) 𝑑𝜉, 𝑥 ∈ (0, 1] .

(71)

By differentiating twice 𝑦(𝑥, 𝜆) and by the definitions of solu-
tions 𝜙

𝑗
(𝑥, 𝜆) and 𝜒

𝑗
(𝑥, 𝜆) (𝑗 = 1, 2), we obtain 𝑦


(𝑥, 𝜆) =

(𝑞(𝑥) − 𝜆)𝑦(𝑥, 𝜆) − 𝑓(𝑥). So, the function 𝑦(𝑥, 𝜆) defined in
(70) is the solution of (69). And by calculations, wemay prove
that (71) satisfies both boundary and transmission conditions
(2)–(4).

4. Eigenfunction Expansion for
Green’s Function and the Modified
Parseval Equality

In this section, we derive the eigenfunction expansion for
Green’s function of the S-L problem (1)–(4) and establish the
modified Parseval equality in the associated Hilbert space𝐻.
Without loss of generality, we assume that 𝜆 = 0 is not an
eigenvalue. Let 𝐺(𝑥, 𝜉) = 𝐺(𝑥, 𝜉, 0).

Theorem 14. Let 𝜆
𝑛
be the eigenvalue of the S-L problem (1)–

(4) and let 𝜑
𝑛
(𝑥) be the corresponding normalized eigenfunc-

tion. Then,

𝐺 (𝑥, 𝜉) = −

∞

∑

𝑛=1

𝜑
𝑛
(𝑥) 𝜑
𝑛
(𝜉)

𝜆
𝑛

. (72)

In order to prove Theorem 14, we need the following
lemma.

Lemma 15. The S-L problem (1)–(4) is equivalent to

𝑦 (𝑥, 𝜆)−𝜆(𝜌∫

0

−1

𝐺 (𝑥, 𝜉) 𝑦 (𝜉) 𝑑𝜉+∫

1

0

𝐺 (𝑥, 𝜉) 𝑦 (𝜉) 𝑑𝜉) = 0.

(73)

Proof. ByTheorem 13, we know that

𝑦 (𝑥, 𝜆) = 𝜌∫

0

−1

𝐺 (𝑥, 𝜉) 𝑓 (𝜉) 𝑑𝜉 + ∫

1

0

𝐺 (𝑥, 𝜉) 𝑓 (𝜉) 𝑑𝜉 (74)

satisfies −𝑦(𝑥) + 𝑞(𝑥)𝑦(𝑥) = 𝑓(𝑥) and both boundary and
transmission conditions (2)–(4). Equation (69) can bewritten
in the form −𝑦


(𝑥) + 𝑞(𝑥)𝑦(𝑥) = 𝑓(𝑥) where 𝑓(𝑥) = 𝑓(𝑥) +

𝜆𝑦. Similar to (74), the new form of (69) has a solution

𝑦 (𝑥, 𝜆) = 𝜌∫

0

−1

𝐺 (𝑥, 𝜉) 𝑓 (𝜉) 𝑑𝜉 + ∫

1

0

𝐺 (𝑥, 𝜉) 𝑓 (𝜉) 𝑑𝜉, (75)

which satisfies both boundary and transmission conditions
(2)–(4). If 𝑓(𝑥) ≡ 0, then the corresponding homogeneous
case is the S-L problem (1)–(4). Consequently, the S-L
problem (1)–(4) is equivalent to

𝑦 (𝑥, 𝜆)−𝜆(𝜌∫

0

−1

𝐺 (𝑥, 𝜉) 𝑦 (𝜉) 𝑑𝜉+∫

1

0

𝐺 (𝑥, 𝜉) 𝑦 (𝜉) 𝑑𝜉) = 0.

(76)

Proof of Theorem 14. Let 𝜆
𝑛
be the eigenvalue of the S-L

problem (1)–(4) and let 𝜑
𝑛
(𝑥) be the corresponding nor-

malized eigenfunction as in Theorem 11. Let 𝑃(𝑥, 𝜉) =

𝐺(𝑥, 𝜉) + ∑
∞

𝑛=1
(𝜑
𝑛
(𝑥)𝜑
𝑛
(𝜉)/𝜆
𝑛
). Then 𝑃(𝑥, 𝜉) is continuous

and symmetric. We assume that 𝑃(𝑥, 𝜉) ̸= 0. Then, by the
Fredholm integral equation, there are a number �̃� and a
function 𝑦(𝑥) ̸= 0 in𝐻 such that

𝑦 (𝑥) = �̃� (𝜌∫

0

−1

𝑃 (𝑥, 𝜉) 𝑦 (𝜉) 𝑑𝜉 + ∫

1

0

𝑃 (𝑥, 𝜉) 𝑦 (𝜉) 𝑑𝜉) .

(77)

By Lemma 15,

𝜑
𝑛
(𝑥) − 𝜆

𝑛
(𝜌∫

0

−1

𝐺 (𝑥, 𝜉) 𝜑
𝑛
(𝜉) 𝑑𝜉

+∫

1

0

𝐺 (𝑥, 𝜉) 𝜑
𝑛
(𝜉) 𝑑𝜉) = 0.

(78)

Putting 𝐺(𝑥, 𝜉) = 𝑃(𝑥, 𝜉) − ∑
∞

𝑛=1
(𝜑
𝑛
(𝑥)𝜑
𝑛
(𝜉)/𝜆
𝑛
) in (78), we

obtain

𝜌∫

0

−1

𝑃 (𝑥, 𝜉) 𝜑
𝑛
(𝜉) 𝑑𝜉 + ∫

1

0

𝑃 (𝑥, 𝜉) 𝜑
𝑛
(𝜉) 𝑑𝜉 = 0. (79)
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In the following, we prove that ⟨𝑦, 𝜑
𝑛
⟩ = 0 and 𝑦 is an

eigenfunction of the S-L problem (1)–(4). By (77) and (79)

⟨𝑦, 𝜑
𝑛
⟩ = 𝜌∫

0

−1

𝑦 (𝑥) 𝜑
𝑛
(𝑥)𝑑𝑥 + ∫

1

0

𝑦 (𝑥) 𝜑
𝑛
(𝑥)𝑑𝑥

= �̃�𝜌∫

0

−1

(𝜌∫

0

−1

𝑃 (𝑥, 𝜉) 𝑦 (𝜉) 𝑑𝜉

+∫

1

0

𝑃 (𝑥, 𝜉) 𝑦 (𝜉) 𝑑𝜉)𝜑
𝑛
(𝑥)𝑑𝑥

+ �̃� ∫

1

0

(𝜌∫

0

−1

𝑃 (𝑥, 𝜉) 𝑦 (𝜉) 𝑑𝜉

+∫

1

0

𝑃 (𝑥, 𝜉) 𝑦 (𝜉) 𝑑𝜉)𝜑
𝑛
(𝑥)𝑑𝑥

= �̃�𝜌∫

0

−1

(𝜌∫

0

−1

𝑃 (𝑥, 𝜉) 𝜑
𝑛
(𝑥)𝑑𝑥

+∫

1

0

𝑃 (𝑥, 𝜉) 𝜑
𝑛
(𝑥)𝑑𝑥)𝑦 (𝜉) 𝑑𝜉

+ �̃� ∫

1

0

(𝜌∫

0

−1

𝑃 (𝑥, 𝜉) 𝜑
𝑛
(𝑥)𝑑𝑥

+ ∫

1

0

𝑃 (𝑥, 𝜉) 𝜑
𝑛
(𝑥)𝑑𝑥)𝑦 (𝜉) 𝑑𝜉 = 0.

(80)

And we have

𝑦 (𝑥) − �̃� (𝜌∫

0

−1

𝐺 (𝑥, 𝜉) 𝑦 (𝜉) 𝑑𝜉 + ∫

1

0

𝐺 (𝑥, 𝜉) 𝑦 (𝜉) 𝑑𝜉)

= 𝑦 (𝑥) − �̃�(𝜌∫

0

−1

(𝑃 (𝑥, 𝜉) −

∞

∑

𝑛=1

𝜑
𝑛
(𝑥) 𝜑
𝑛
(𝜉)

𝜆
𝑛

)𝑦 (𝜉) 𝑑𝜉

+∫

1

0

(𝑃 (𝑥, 𝜉)−

∞

∑

𝑛=1

𝜑
𝑛
(𝑥) 𝜑
𝑛
(𝜉)

𝜆
𝑛

)𝑦 (𝜉) 𝑑𝜉)

= 𝑦 (𝑥)−�̃� ((𝜌∫

0

−1

𝑃 (𝑥, 𝜉) 𝑦 (𝜉) 𝑑𝜉+∫

1

0

𝑃 (𝑥, 𝜉) 𝑦 (𝜉) 𝑑𝜉)

−

∞

∑

𝑛=1

𝜑
𝑛
(𝑥)

𝜆
𝑛

⟨𝑦, 𝜑
𝑛
⟩)

= 𝑦 (𝑥) − �̃� (𝜌∫

0

−1

𝑃 (𝑥, 𝜉) 𝑦 (𝜉) 𝑑𝜉

+ ∫

1

0

𝑃 (𝑥, 𝜉) 𝑦 (𝜉) 𝑑𝜉) = 0

(81)

by (77). This implies that 𝑦 is the eigenfunction of the S-
L problem (1)–(4) by Lemma 15. So, by ⟨𝑦, 𝜑

𝑛
⟩ = 0 and

the completeness of the eigenfunctions in Theorem 11, we
know that 𝑦 = 0. Consequently, 𝑃(𝑥, 𝜉) = 0. The proof is
completed.

Lemma 16. Let 𝐶∞
0

be the set of all functions defined by

𝜓 (𝑥) = {
𝜓
1
(𝑥) 𝑥 ∈ [−1, 0) ,

𝜓
2
(𝑥) 𝑥 ∈ (0, 1] ,

(82)

where 𝜓
1
(𝑥) ∈ 𝐶

∞

0
[−1, 0), 𝜓

2
(𝑥) ∈ 𝐶

∞

0
(0, 1]. Then 𝐶

∞

0
is

dense in𝐻.

Proof. Let 𝑓 be any function in 𝐿
2
(𝐼) with 𝑓(𝑥) = 𝑓

1
(𝑥), 𝑥 ∈

[−1, 0), and 𝑓(𝑥) = 𝑓
2
(𝑥), 𝑥 ∈ (0, 1]. Since 𝐶

∞

0
[−1, 0) is

dense in 𝐿
2
[−1, 0) as in [23], for 𝑓

1
∈ 𝐿
2
[−1, 0), there exists a

function 𝑔
1
∈ 𝐶
∞

0
[−1, 0) such that

𝜌∫

0

−1

𝑓1 (𝑥) − 𝑔
1
(𝑥)


2

𝑑𝑥 <
𝜖

2
. (83)

Similarly, for 𝑓
2

∈ 𝐿
2
(0, 1], there exists a function 𝑔

2
∈

𝐶
∞

0
(0, 1] such that

∫

1

0

𝑓2 (𝑥) − 𝑔
2
(𝑥)


2

𝑑𝑥 <
𝜖

2
. (84)

Then, for any 𝑓 ∈ 𝐻 and 𝜖 > 0, there exists 𝑔 ∈ 𝐶
∞

0
with

𝑔(𝑥) = {
𝑔
1
(𝑥) 𝑥∈[−1,0),

𝑔
2
(𝑥) 𝑥∈(0,1]

such that

𝑓 − 𝑔

2

𝐻
= 𝜌∫

0

−1

𝑓1 (𝑥) − 𝑔
1
(𝑥)


2

𝑑𝑥

+∫

1

0

𝑓2 (𝑥) − 𝑔
2
(𝑥)


2

𝑑𝑥 < 𝜖.

(85)

Thus, 𝐶∞
0

is dense in𝐻.

In the following theorem, we prove the modified Parseval
equality in the associated Hilbert space𝐻.

Theorem 17. Let f ∈ 𝐻. Then, the modified Parseval equality
holds; that is,

𝑓

2

𝐻
=

∞

∑

𝑛=1

𝑐
2

𝑛
(𝑓) , (86)

where ‖𝑓‖2
𝐻

= ⟨𝑓, 𝑓⟩ and

𝑐
𝑛
(𝑓) = 𝜌∫

0

−1

𝑓 (𝑥) 𝜑
𝑛
(𝑥)𝑑𝑥 + ∫

1

0

𝑓 (𝑥) 𝜑
𝑛
(𝑥)𝑑𝑥. (87)

Proof. Let 𝐶∞
0

be as in Lemma 16. At first, we prove that (86)
holds for 𝑓 ∈ 𝐶

∞

0
. Denote 𝑔(𝑥) = −𝑓


(𝑥) + 𝑞(𝑥)𝑓. Then by

Theorems 13 and 14,

𝑓 (𝑥) = 𝜌∫

0

−1

𝐺 (𝑥, 𝜉) 𝑔 (𝜉) 𝑑𝜉 + ∫

1

0

𝐺 (𝑥, 𝜉) 𝑔 (𝜉) 𝑑𝜉

= −

∞

∑

𝑛=1

1

𝜆
𝑛

𝜑
𝑛
(𝑥)

× (𝜌∫

0

−1

𝜑
𝑛
(𝜉)𝑔 (𝜉) 𝑑𝜉 + ∫

1

0

𝜑
𝑛
(𝜉)𝑔 (𝜉) 𝑑𝜉) .

(88)
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Multiplying by 𝜑
𝑚
(𝑥) and integrating the new equation, we

have

𝜌∫

0

−1

𝜑
𝑚
(𝑥)𝑓 (𝑥) 𝑑𝑥 + ∫

1

0

𝜑
𝑚
(𝑥)𝑓 (𝑥) 𝑑𝑥

= −
1

𝜆
𝑚

(𝜌∫

0

−1

𝜑
𝑚
(𝜉)𝑔 (𝜉) 𝑑𝜉 + ∫

1

0

𝜑
𝑚
(𝜉)𝑔 (𝜉) 𝑑𝜉) .

(89)

Then

𝑓 (𝑥) =

∞

∑

𝑛=1

𝑐
𝑛
(𝑓) 𝜑
𝑛
(𝑥) , (90)

where 𝑐
𝑛
(𝑓) = ⟨𝑓, 𝜑

𝑛
⟩ = 𝜌 ∫

0

−1
𝑓(𝑥)𝜑

𝑛
(𝑥)𝑑𝑥 + ∫

1

0
𝑓(𝑥)

𝜑
𝑛
(𝑥)𝑑𝑥. Thus, for 𝑓 ∈ 𝐶

∞

0
,

𝑓

2

𝐻
=

∞

∑

𝑛=1

𝑐
2

𝑛
(𝑓) . (91)

Next, we prove that (86) holds for 𝑓 ∈ 𝐻. For any 𝑓 ∈ 𝐻,
there exists a sequence {𝑓

𝑘
}
𝑘∈N ⊂ 𝐶

∞

0
converging to 𝑓 in 𝐻

since𝐶∞
0
is dense in𝐻. Firstly, we prove that∑∞

𝑛=1
𝑐
2

𝑛
(𝑓) < ∞

and lim
𝑘→∞

∑
∞

𝑛=1
𝑐
2

𝑛
(𝑓
𝑘
) = ∑
∞

𝑛=1
𝑐
2

𝑛
(𝑓).

By the Cauchy-Schwartz inequality, |𝑐
𝑛
(𝑓
𝑘
) − 𝑐
𝑛
(𝑓)| =

|⟨𝑓
𝑘
− 𝑓, 𝜑

𝑛
⟩| ≤ ‖𝑓

𝑘
− 𝑓‖
𝐻
. Hence, lim

𝑘→∞
𝑐
𝑛
(𝑓
𝑘
) = 𝑐
𝑛
(𝑓).

Since∑∞
𝑛=1

(𝑐
𝑛
(𝑓
𝑘
)−𝑐
𝑛
(𝑓
𝑚
))
2
= ∑
∞

𝑛=1
𝑐
2

𝑛
(𝑓
𝑘
−𝑓
𝑚
) = ‖𝑓

𝑘
− 𝑓
𝑚
‖
2

𝐻

for 𝑓
𝑘
− 𝑓
𝑚

∈ 𝐶
∞

0
,

𝑁

∑

𝑛=1

(𝑐
𝑛
(𝑓
𝑘
) − 𝑐
𝑛
(𝑓
𝑚
))
2

≤
𝑓𝑘 − 𝑓

𝑚


2

𝐻
. (92)

Let 𝑘 → ∞, then inequality (92) becomes ∑
𝑁

𝑛=1
(𝑐
𝑛
(𝑓) −

𝑐
𝑛
(𝑓
𝑚
))
2
≤ ‖𝑓 − 𝑓

𝑚
‖
2

𝐻
. Letting𝑁 → ∞, we have

∞

∑

𝑛=1

(𝑐
𝑛
(𝑓) − 𝑐

𝑛
(𝑓
𝑚
))
2

≤
𝑓 − 𝑓

𝑚


2

𝐻
. (93)

Then by the Minkowski inequality

∞

∑

𝑛=1

𝑐
2

𝑛
(𝑓) =

∞

∑

𝑛=1

(𝑐
𝑛
(𝑓) − 𝑐

𝑛
(𝑓
𝑚
) + 𝑐
𝑛
(𝑓
𝑚
))
2

≤ ((

∞

∑

𝑛=1

(𝑐
𝑛
(𝑓) − 𝑐

𝑛
(𝑓
𝑚
))
2

)

1/2

+(

∞

∑

𝑛=1

𝑐
2

𝑛
(𝑓
𝑚
))

1/2

)

2

< ∞

(94)

and by Hölder’s inequality,


∞

∑

𝑛=1

𝑐
2

𝑛
(𝑓) −

∞

∑

𝑛=1

𝑐
2

𝑛
(𝑓
𝑘
)



=



∞

∑

𝑛=1

(𝑐
𝑛
(𝑓) − 𝑐

𝑛
(𝑓
𝑘
)) (𝑐
𝑛
(𝑓) + 𝑐

𝑛
(𝑓
𝑘
))



≤ (

∞

∑

𝑛=1

(𝑐
𝑛
(𝑓) − 𝑐

𝑛
(𝑓
𝑘
))
2

)

1/2

(

∞

∑

𝑛=1

(𝑐
𝑛
(𝑓) + 𝑐

𝑛
(𝑓
𝑘
))
2

)

1/2

→ 0, as 𝑘 → ∞.

(95)

This means that lim
𝑘→∞

∑
∞

𝑛=1
𝑐
2

𝑛
(𝑓
𝑘
) = ∑

∞

𝑛=1
𝑐
2

𝑛
(𝑓).

Since 𝑓
𝑘
→ 𝑓 in𝐻 as 𝑘 → ∞, lim

𝑘→∞
‖𝑓
𝑘
‖
𝐻

= ‖𝑓‖
𝐻
.

We obtain

𝑓

2

𝐻
= lim
𝑘→∞

𝑓𝑘

2

𝐻
= lim
𝑘→∞

∞

∑

𝑛=1

𝑐
2

𝑛
(𝑓
𝑘
) =

∞

∑

𝑛=1

𝑐
2

𝑛
(𝑓) . (96)
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