
Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2013, Article ID 834731, 11 pages
http://dx.doi.org/10.1155/2013/834731

Research Article
A Discrete-Time 𝐺𝑒𝑜/𝐺/1 Retrial Queue with 𝐽 Vacations and
Two Types of Breakdowns

Feng Zhang and Zhifeng Zhu

College of Science, North University of China, Taiyuan 030051, China

Correspondence should be addressed to Feng Zhang; gigigi69@163.com

Received 12 July 2013; Revised 21 September 2013; Accepted 21 September 2013

Academic Editor: Ram N. Mohapatra

Copyright © 2013 F. Zhang and Z. Zhu.This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper is concerned with a discrete-time 𝐺𝑒𝑜/𝐺/1 retrial queueing model with 𝐽 vacations and two types of breakdowns. If the
orbit is empty, the server takes at most 𝐽 vacations repeatedly until at least one customer appears in the orbit upon returning from a
vacation. It is assumed that the server is subject to two types of different breakdowns and is sent immediately for repair. We analyze
the Markov chain underlying the considered queueing system and derive the system state distribution as well as the orbit size
and the system size distributions in terms of their generating functions. Then, we obtain some performance measures through the
generating functions. Moreover, the stochastic decomposition property and the corresponding continuous-time queueing system
are investigated. Finally, some numerical examples are provided to illustrate the effect of vacations and breakdowns on several
performance measures of the system.

1. Introduction

During the past few decades, retrial queueing systems have
been widely studied due to their important applications in
many practical systems such as inventory systems, computer
systems, and telecommunication networks. Retrial queueing
systems are characterized by the fact that arriving customers
who find the server busymay join a retrial group to retry their
requests after some random time. For excellent bibliographies
on retrial queues, the readers are referred to [1–3].

Althoughmany continuous-time retrial queueingmodels
have been studied extensively in the past years, only few
researchers studied the discrete-time retrial queues. In fact,
the discrete-time retrial queueing systems are suitable for
the description of the various phenomena in slotted time
computer and communication systems such as broad-band
integrated services digital network (B-ISDN) and time-
division multiple access (TDMA) systems. Yang and Li [4]
firstly studied a discrete-time 𝐺𝑒𝑜/𝐺/1 retrial queue and
obtained some performance measures of the systems. This
work was generalized to discrete-time 𝐺𝑒𝑜/𝐺/1 retrial queue
with general retrial times by Atencia and Moreno [5]. In
recent years, there has been a growing interest in the investi-
gation of discrete-time retrial queue with server breakdowns.

Such phenomena occur in day-to-day life, for example, the
components of the computer and communication systems are
subject to random breakdowns. Discrete-time retrial queues
that take into account server breakdowns were studied by
Atencia and Moreno [6, 7], Moreno [8], Wang and Zhao [9],
Wang [10], Wang and Zhang [11], and Atencia et al. [12].

On the other hand, queueing systems with server vaca-
tions have been widely used to analyze the performance of
some systems such as manufacturing systems and computer
systems. In recent years, retrial queues with server vacations
have drawn more and more attention. Li and Yang [13]
studied a 𝑀/𝐺/1 retrial queue with a finite number of
input sources and Bernoulli vacations by the method of
supplementary variables. Since the work of Li and Yang, the
retrial queues with Bernoulli vacations have been studied by
many authors, see Kumar and Arivudainambi [14], Kumar et
al. [15], and Choudhury [16]. In addition, the retrial queues
with exhaustive service vacations were also studied by several
authors. For example, Artalejo [17] analyzed an𝑀/𝐺/1 retrial
queue with multiple vacations and obtained two stochastic
decomposition results for the system size. As a generalization
of single andmultiple vacation policy, Chang and Ke [18] and
Ke and Chang [19] introduced the concept of 𝐽 vacations into
𝑀/𝐺/1 retrial queueing systems. Ke and Chang [20] andWu
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[21] studied the models concerning both server breakdowns
and vacations, simultaneously.

The majority of articles studied the continuous-time
retrial queues with server vacations. Most recently, Wang
[22] extended the continuous-time𝑀/𝐺/1 retrial queue with
Bernoulli vacations to discrete-time counterpart. Li et al. [23],
Liu and Song [24] considered the discrete-time 𝐺𝑒𝑜/𝐺𝑒𝑜/1

retrial queue with working vacation. Zhang et al. [25] studied
a discrete-time 𝐺𝑒𝑜/𝐺/1 retrial queue with single vacation
and starting failure. To the best of our knowledge, no work
appeared till now concerning the discrete-time retrial queue
with exhaustive 𝐽 vacations policy and server’s different types
of breakdowns. In fact, the discrete-time retrial queues with
𝐽 vacations and server breakdowns are more appropriate
to analyze some real situations, such as e-mail systems, IP
access networks, and computer systems. This motivates us to
analyze the discrete-time retrial queue with 𝐽 vacations and
and general retrial times. In this work, we consider a discrete-
time𝐺𝑒𝑜/𝐺/1 retrial queue with 𝐽 vacations where the server
may be subjected to two different types of breakdowns.

The rest of the paper is organized as follows. In Section 2,
the description of our model is given. In Section 3, We derive
the generating functions of the number of customers in
the orbit and in the system. The closed-form expressions of
some performance measures of the system are also obtained.
In Section 4, we give two stochastic decomposition results
for the system size. In Section 5, the relationship between
our model and the continuous-time counterpart is given. In
Section 6, we present some numerical results to show the
influence of the parameters on some performance measures
of the system.

2. Description of the Mathematical Model

We consider a discrete-time 𝐺𝑒𝑜/𝐺/1 retrial queue with 𝐽

vacations and two types of server breakdowns where the time
axis is segmented into slots of equal length and all queueing
activities occur at the slot boundaries. Specifically, let the time
axis be marked by 0, 1, . . . , 𝑚, . . .. Consider the epoch 𝑚 and
assume that the departures, the end of the vacations and the
end of repairs occur in the interval (𝑚−, 𝑚), while arrivals,
retrials, the beginning of the vacations, and the beginning of
repairs occur in the interval (𝑚,𝑚

+

) in sequence. That is, we
consider an early arrival system (EAS) policy in our model.

Customers arrive at the system according to a geometrical
arrival process with parameter 𝑝, where 𝑝 (0 < 𝑝 < 1) is
the probability that an arrival occurs in a slot. If an arriving
customer finds that the server is idle, he commences his
service immediately. Otherwise, if the server is busy, under
repair or on vacation, the arriving customer joins the retrial
orbit. It is assumed that only the customer at the head of the
orbit is permitted to access to the server. The time between
retrials is assumed to follow a general probability distribution
{𝑎
𝑖

}
∞

𝑖=0

with the generating function 𝐴(𝑥) = ∑
∞

𝑖=0

𝑎
𝑖

𝑥
𝑖.

The service times are independent and identically dis-
tributed with arbitrary distribution {𝑠

𝑖

}
∞

𝑖=1

, generating func-
tion 𝑆(𝑥) = ∑

∞

𝑖=1

𝑠
𝑖

𝑥
𝑖 and 𝑛th factorial moment 𝑆

𝑛

. It is
assumed that the server is subject to two different types of

breakdowns. The first type of breakdown is starting failure.
In this model, an arriving customer who finds the server idle
must turn on the server. If the server is activated successfully
(with a probability 𝜃

1

= 1 − 𝜃
1

), the customer begins
his service immediately; otherwise, if the server is started
unsuccessfully (with a complementary probability 𝜃

1

), the
server is sent to repair immediately and the customer being
served must join the orbit. The second type of breakdown is
normal breakdown, that is, the servermay break downduring
serving customers. The customer just being served before
breakdown waits until the server is repaired to complete
his remaining service time. The lifetime of the server is
assumed to be geometrically distributed with parameter 𝜃

2

.
The repair times for the server of two types of breakdowns
are independent and identically distributed with arbitrary
distribution {𝑟

𝑙,𝑖

}
∞

𝑖=1

, generating functions 𝑅
𝑙

(𝑥) = ∑
∞

𝑖=0

𝑟
𝑙,𝑖

𝑥
𝑖,

and 𝑛th factorial moment are 𝑅
𝑙,𝑛

, 𝑙 = 1, 2, respectively.
As soon as the system is empty, the server takes a

vacation immediately.The vacation time is assumed to follow
a general probability distribution {V

𝑖

}
∞

𝑖=1

with generating
function 𝑉(𝑥) = ∑

∞

𝑖=1

V
𝑖

𝑥
𝑖 and 𝑛th factorial moment 𝑉

𝑛

. If
there is at least one customer in the orbit at the end of a
vacation, the server begins to provide service for customers
immediately. Otherwise, if no customers appear in the orbit
when the server returns from the vacation, it leaves for
another vacation. This pattern continues until the server has
taken a maximum number 𝐽 of vacations. If the system is
empty at the end of the 𝐽th vacation, the server becomes idle
and waits for new arriving customers.

Finally, we assume that the interarrival times, the service
times, the retrial times, the repair times and the vacation
times are mutually independent.

3. The Markov Chain and Some
Performance Measures

At time 𝑚
+, the system can be described by the process

{𝑌
𝑚

; 𝑚 ≥ 1} with 𝑌
𝑚

= (𝐶
𝑚

, 𝜉
𝑚

, 𝜁
𝑚

, 𝐿
𝑚

, 𝑁
𝑚

), where 𝐶
𝑚

denotes the state of the server and 𝑁
𝑚

be the number of the
customers in the orbit. It is assumed that 𝐶

𝑚

= 0, 1, 2, 3, or
4 according to whether the server is free, busy, under repair
for first type of breakdown, under repair for second type
of breakdown, or on vacations, respectively. If 𝐶

𝑚

= 0, 𝜉
𝑚

represents the remaining retrial time. If𝐶
𝑚

= 1, 𝜉
𝑚

represents
the remaining service time of the customer currently being
served. If 𝐶

𝑚

= 2, 𝜉
𝑚

represents the remaining repair time
for the first type of breakdown. If 𝐶

𝑚

= 3, 𝜉
𝑚

represents the
remaining service time of a customer currently being served
and 𝜁

𝑚

represents the remaining repair time of the second
type of breakdowns. If 𝐶

𝑚

= 4, let 𝐿
𝑚

= 𝑛 represent that
the server takes the 𝑛th vacation and let 𝜉

𝑚

represent the
remaining vacation time, 𝑛 = 1, 2, . . . , 𝐽. It can be shown that
{𝑌
𝑚

; 𝑚 ≥ 1} is a Markov chain with the following state space:

Ω = {(0, 0) ; (0, 𝑖, 𝑘) : 𝑖 ≥ 1, 𝑘 ≥ 1;

(1, 𝑖, 𝑘) : 𝑖 ≥ 1, 𝑘 ≥ 0; (2, 𝑖, 𝑘) : 𝑖 ≥ 1, 𝑘 ≥ 1;
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(3, 𝑖, 𝑗, 𝑘) : 𝑖 ≥ 1, 𝑘 ≥ 0 (4, 𝑖, 𝑘) : 𝑖 ≥ 1,

𝑘 ≥ 0, 𝑛 = 1, 2, . . . , 𝐽} .

(1)

Our object is to find the stationary distribution of the
Markov chain which is defined as follows:

𝜋
0,0

= lim
𝑚→∞

𝑃 {𝐶
𝑚

= 0,𝑁
𝑚

= 0} ,

𝜋
0,𝑖,𝑘

= lim
𝑚→∞

𝑃 {𝐶
𝑚

= 0, 𝜉
𝑚

= 𝑖,𝑁
𝑚

= 𝑘} ; 𝑖 ≥ 1, 𝑘 ≥ 1,

𝜋
1,𝑖,𝑘

= lim
𝑚→∞

𝑃 {𝐶
𝑚

= 1, 𝜉
𝑚

= 𝑖,𝑁
𝑚

= 𝑘} ; 𝑖 ≥ 1, 𝑘 ≥ 0,

𝜋
2,𝑖,𝑘

= lim
𝑚→∞

𝑃 {𝐶
𝑚

= 2, 𝜉
𝑚

= 𝑖,𝑁
𝑚

= 𝑘} ; 𝑖 ≥ 1, 𝑘 ≥ 1,

𝜋
3,𝑖,𝑗,𝑘

= lim
𝑚→∞

𝑃 {𝐶
𝑚

= 3, 𝜉
𝑚

= 𝑖, 𝜁
𝑚

= 𝑗,𝑁
𝑚

= 𝑘} ;

𝑖 ≥ 1, 𝑗 ≥ 1, 𝑘 ≥ 0,

𝜔
𝑛,𝑖,𝑘

= lim
𝑚→∞

𝑃 {𝐶
𝑚

= 4, 𝐿
𝑚

= 𝑛, 𝜉
𝑚

= 𝑖,𝑁
𝑚

= 𝑘} ;

𝑖 ≥ 1, 𝑘 ≥ 0, 𝑛 = 1, 2, . . . , 𝐽.

(2)

The Kolmogorov equations for the stationary distribution of
the system are

𝜋
0,0

= 𝑝𝜋
0,0

+ 𝑝𝜔
𝐽,1,0

, (3)

𝜋
0,𝑖,𝑘
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(4)
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𝑝𝜃
1

𝜃
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𝑟
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∑
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𝜋
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1

𝜃
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𝑠
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𝑟
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+ 𝛿
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𝑝𝜃
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𝑟
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𝜋
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+ 𝛿
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𝑝𝜃
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𝜃
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2,𝑗
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𝑠
𝑖
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2,𝑗

𝜋
2,1,𝑘+1

+ 𝑝𝜋
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+ 𝑝𝜃
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+ 𝑝𝑎
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𝜃
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𝜃
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𝐽

∑
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𝜔
𝑛,1,𝑘+1

+ 𝛿
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𝑝𝜃
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𝜃
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𝑠
𝑖

𝑟
2,𝑗

𝐽−1

∑

𝑛=1

𝜔
𝑛,1,𝑘

+ 𝛿
0,𝑘

𝑝𝜃
2

𝑟
2,𝑗

𝜋
3,𝑖,1,𝑘−1

+ 𝛿
0,𝑘

𝑝𝜋
3,𝑖,𝑗+1,𝑘−1

,

𝑖 ≥ 1, 𝑗 ≥ 1, 𝑘 ≥ 0,

(7)

𝜔
1,𝑖,𝑘

= 𝑝𝜔
1,𝑖+1,𝑘

+ 𝛿
0,𝑘

𝑝𝜔
1,𝑖+1,𝑘−1

+ 𝛿
0,𝑘

𝑝V
𝑖

𝜋
1,1,0

+ 𝛿
1,𝑘

𝑝V
𝑖

𝜋
1,1,0

, 𝑖 ≥ 1, 𝑘 ≥ 0,

(8)

𝜔
𝑛,𝑖,𝑘

= 𝑝𝜔
𝑛,𝑖+1,𝑘

+ 𝛿
0,𝑘

𝑝𝜔
𝑛,𝑖+1,𝑘−1

+ 𝛿
0,𝑘
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𝑖

𝜔
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+ 𝛿
1,𝑘

𝑝V
𝑖

𝜔
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, 𝑖 ≥ 1, 𝑘 ≥ 0, 𝑛 = 2, 3, . . . , 𝐽,

(9)

where 𝛿
𝑖,𝑗

is the Kronecker’s symbol, 𝛿
𝑖,𝑗

= 1 − 𝛿
𝑖,𝑗

, and the
normalizing condition is

𝜋
0,0

+

∞

∑

𝑖=1

∞

∑

𝑘=1

(𝜋
0,𝑖,𝑘

+ 𝜋
2,𝑖,𝑘

) +

∞

∑

𝑖=1

∞

∑

𝑘=0

𝜋
1,𝑖,𝑘

+

∞

∑

𝑖=1

∞

∑

𝑗=1

∞

∑

𝑘=0

𝜋
3,𝑖,𝑗,𝑘
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∑

𝑛=1

∞

∑
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∞

∑

𝑘=0

𝜔
𝑛,𝑖,𝑘

= 1.

(10)

To solve (3)–(10), we introduce the following generating
functions:

𝜑
0

(𝑥, 𝑧) =

∞

∑

𝑖=1

∞

∑

𝑘=1

𝜋
0,𝑖,𝑘

𝑥
𝑖

𝑧
𝑘

,

𝜑
1

(𝑥, 𝑧) =

∞

∑

𝑖=1

∞

∑

𝑘=0

𝜋
1,𝑖,𝑘

𝑥
𝑖

𝑧
𝑘

,
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𝜑
2

(𝑥, 𝑧) =

∞

∑

𝑖=1

∞

∑

𝑘=1

𝜋
2,𝑖,𝑘

𝑥
𝑖

𝑧
𝑘

,

𝜑
3

(𝑥, 𝑦, 𝑧) =

∞

∑

𝑖=1

∞

∑

𝑗=1

∞

∑

𝑘=0

𝜋
3,𝑖,𝑗,𝑘

𝑥
𝑖

𝑦
𝑖

𝑧
𝑘

,

𝜓
𝑛

(𝑥, 𝑧) =

∞

∑

𝑖=1

∞

∑

𝑘=0

𝜔
𝑛,𝑖,𝑘

𝑥
𝑖

𝑧
𝑘

, 𝑛 = 1, 2, . . . , 𝐽,

𝜑
4

(𝑥, 𝑧) =

𝐽

∑

𝑛=1

𝜓
𝑛

(𝑥, 𝑧) ,

(11)

and the following auxiliary generating functions:

𝜑
0,𝑖

(𝑧) =

∞

∑

𝑘=1

𝜋
0,𝑖,𝑘

𝑧
𝑘

, 𝜑
1,𝑖

(𝑧) =

∞

∑

𝑘=0

𝜋
1,𝑖,𝑘

𝑧
𝑘

,

𝜑
2,𝑖

(𝑧) =

∞

∑

𝑘=1

𝜋
2,𝑖,𝑘

𝑧
𝑘

, 𝜓
𝑛,𝑖

(𝑧) =

∞

∑

𝑘=1

𝜔
𝑛,𝑖,𝑘

𝑧
𝑘

,

𝜑
3,𝑖,𝑗

(𝑧) =

∞

∑

𝑘=0

𝜋
3,𝑖,𝑗,𝑘

𝑧
𝑘

, 𝜑
3,𝑖

(𝑦, 𝑧) =

∞

∑

𝑘=0

𝜋
3,𝑖,𝑗,𝑘

𝑦
𝑗

𝑧
𝑘

,

𝜙
1

(𝑥, 𝑧) =

∞

∑

𝑖=1

∞

∑

𝑘=0

𝜋
3,𝑖,1,𝑘

𝑥
𝑖

𝑧
𝑘

.

(12)

Now, we can solve (3)–(10) by using the generating function
technique.We first give some lemmaswhichwill be used later
on and their proof which can be readily obtained. Thus, they
are omitted. The following inequalities hold.

Lemma 1. If 𝜃
1

𝜌
1

+𝜃
1

+𝜃
1

𝜌
2

< 𝑝+𝑝𝐴(𝑝), then the inequality

[𝑧 + (1 − 𝑧) 𝑝𝐴 (𝑝)]Ω (𝑧) − 𝑧𝛾 (𝑧) > 0 (13)

holds for 0 ≤ 𝑧 < 1, where

𝛾 (𝑧) = 𝑝 + 𝑝𝑧, 𝜌
1

= 𝑝𝑆
1

(1 +
𝜃
2

𝜃
2

𝑅
2,1

) ,

𝜌
2

= 𝑝𝑅
1,1

,

Ω (𝑧) = 𝜃
1

𝑆 (𝜏 (𝛾 (𝑧))) + 𝑧𝜃
1

𝑅
1

(𝛾 (𝑧)) ,

𝜏 (𝑧) =
𝜃
2

𝑧

1 − 𝜃
2

𝑅
2

(𝑧)
.

(14)

Lemma 2. The following limits exist, if 𝜃
1

𝜌
1

+ 𝜃
1

+ 𝜃
1

𝜌
2

< 𝑝 +

𝑝𝐴(𝑝)

lim
𝑧→1

𝛾 (𝑧) Γ (𝑧) − 𝜂
3

Ω (𝑧)

Λ (𝑧)

=

𝑝𝑉
1

𝜂
2

+ 𝑝𝜂
3

[𝜃
1

𝑆
1

(1 + (𝜃
2

/𝜃
2

) 𝑅
2,1

) − 𝜃
1

+ 𝜃
1

𝑅
1,1

]

𝑝 + 𝑝𝐴 (𝑝) − 𝜃
1

𝜌
1

− 𝜃
1

− 𝜃
1

𝜌
2

,

lim
𝑧→1

Θ (𝑧)

Λ (𝑧)
=

𝑝𝑉
1

𝜂
2

+ 𝑝𝐴 (𝑝) 𝜂
3

𝑝 + 𝑝𝐴 (𝑝) − 𝜃
1

𝜌
1

− 𝜃
1

− 𝜃
1

𝜌
2

,

(15)

where

𝜉 = 𝑉 (𝑝) , 𝜂
1

= 1 − 𝜉
𝐽+1

,

𝜂
2

= 1 − 𝜉
𝐽

, 𝜂
3

= (1 − 𝜉) 𝜉
𝐽

,

Θ (𝑧) = 𝑧𝜂
2

[1 − 𝑉 (𝛾 (𝑧))] + 𝑝𝐴 (𝑝) (1 − 𝑧) Γ (𝑧) ,

Γ (𝑧) = 𝜂
1

− 𝜂
2

𝑉 (𝛾 (𝑧)) ,

Λ (𝑧) = [𝑧 + 𝑝𝐴 (𝑝) (1 − 𝑧)]Ω (𝑧) − 𝑧𝛾 (𝑧) .

(16)

By using Lemmas 1 and 2, we can obtain the generating
functions of the stationary distribution of the system which
are given by the following theorem.

Theorem 3. If 𝜃
1

𝜌
1

+ 𝜃
1

+ 𝜃
1

𝜌
2

< 𝑝 + 𝑝𝐴(𝑝), the stationary
distribution of the Markov chain {𝑌

𝑚

, 𝑚 = 0, 1, 2, . . .} has the
following generating functions:

𝜑
0

(𝑥, 𝑧) =
𝐴 (𝑥) − 𝐴 (𝑝)

𝑥 − 𝑝

𝑝𝑥𝑧 [𝛾 (𝑧) Γ (𝑧) − 𝜂
3

Ω (𝑧)]

𝜂
3

Λ (𝑧)
𝜋
0,0

,

𝜑
1

(𝑥, 𝑧) =
𝑆 (𝑥) − 𝑆 (𝜏 (𝛾 (𝑧)))

𝑥 − 𝜏 (𝛾 (𝑧))

Θ (𝑧) 𝑝𝑥𝜃
1

𝜏 (𝛾 (𝑧))

𝑝𝜂
3

Λ (𝑧)
𝜋
0,0

,

𝜑
2

(𝑥, 𝑧) =
𝑅
1

(𝑥) − 𝑅
1

(𝛾 (𝑧))

𝑥 − 𝛾 (𝑧)

Θ (𝑧) 𝑝𝑥𝜃
1

𝑧𝛾 (𝑧)

𝑝𝜂
3

Λ (𝑧)
𝜋
0,0

,

𝜑
3

(𝑥, 𝑦, 𝑧)

=
𝑆 (𝑥) − 𝑆 (𝜏 (𝛾 (𝑧)))

𝑥 − 𝜏 (𝛾 (𝑧))

×
𝑅
2

(𝑦) − 𝑅
2

(𝛾 (𝑧))

𝑦 − 𝛾 (𝑧)

Θ (𝑧) 𝑝𝑥𝑦𝜃
1

𝜏 (𝛾 (𝑧))

𝑝𝜂
3

Λ (𝑧)

𝜃
2

𝜃
2

𝜋
0,0

,

𝜑
4

(𝑥, 𝑧) =
𝑝𝜂
2

𝑥𝛾 (𝑧) [𝑉 (𝑥) − 𝑉 (𝛾 (𝑧))]

𝑝𝜂
3

[𝑥 − 𝛾 (𝑧)]
𝜋
0,0

,

(17)

where

𝜋
0,0

=

𝑝𝜂
3

[𝑝 + 𝑝𝐴 (𝑝) − 𝜃
1

𝜌
1

− 𝜃
1

− 𝜃
1

𝜌
2

]

𝜃
1

[𝑝𝑉
1

𝜂
2

+ 𝑝𝐴 (𝑝) 𝜂
3

]

. (18)
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Proof. Multiplying (3)–(9) by 𝑧𝑘 and summing over 𝑘, we get
the following equations:

𝜑
0,𝑖

(𝑧) = 𝑝𝜑
0,𝑖+1

(𝑧)

+ 𝑝𝑎
𝑖

[𝜑
1,1

(𝑧) + 𝜑
2,1

(𝑧) +

𝐽

∑

𝑛=1

𝜓
𝑛,1

(𝑧)]

− 𝑝𝑎
𝑖

𝜋
1,1,0

− 𝑝𝑎
𝑖

𝐽

∑

𝑛=1

𝜔
𝑛,1,0

, 𝑖 ≥ 1,

(19)

𝜑
1,𝑖

(𝑧) = 𝑝𝜃
1

𝜃
2

𝑠
𝑖

𝜋
0,0

+ 𝑝𝜃
1

𝜃
2

𝑠
𝑖

𝜑
0

(1, 𝑧)

+
𝑝

𝑧
𝜃
1

𝜃
2

𝑠
𝑖

𝜑
0,1

(𝑧) + 𝜃
2

𝛾 (𝑧) 𝜑
1,𝑖+1

(𝑧)

+ (𝑝 +
𝑝

𝑧
𝑎
0

)𝜃
1

𝜃
2

𝑠
𝑖

[𝜑
1,1

(𝑧)

+ 𝜑
2,1

(𝑧) +

𝐽

∑

𝑛=1

𝜓
𝑛,1

(𝑧)]

− (𝑝 +
𝑝

𝑧
𝑎
0

)𝜃
1

𝜃
2

𝑠
𝑖

𝜋
1,1,0

, −𝑝𝜃
1

𝜃
2

𝑠
𝑖

𝐽−1

∑

𝑛=1

𝜔
𝑛,1,0

−
𝑝

𝑧
𝑎
0

𝜃
1

𝜃
2

𝑠
𝑖

𝐽

∑

𝑛=1

𝜔
𝑛,1,0

+ 𝜃
2

𝛾 (𝑧) 𝜑
3,𝑖,1

(𝑧) , 𝑖 ≥ 1,

(20)

𝜑
2,𝑖

(𝑧) = 𝑝𝜃
1

𝑧𝑟
1,𝑖

𝜋
0,0

+ 𝑝𝜃
1

𝑧𝑟
1,𝑖

𝜑
0

(1, 𝑧)

+ 𝑝𝜃
1

𝑟
1,𝑖

𝜑
0,1

(𝑧) + 𝛾 (𝑧) 𝜑
2,𝑖+1

(𝑧)

+ (𝑝𝑧 + 𝑝𝑎
0

) 𝜃
1

𝑟
1,𝑖

[𝜑
1,1

(𝑧) + 𝜑
2,1

(𝑧)

+

𝐽

∑

𝑛=1

𝜓
𝑛,1

(𝑧)]

− (𝑝𝑧 + 𝑝𝑎
0

) 𝜃
1

𝑟
1,𝑖

𝜋
1,1,0

− 𝑝𝑎
0

𝜃
1

𝑟
1,𝑖

𝐽

∑

𝑛=1

𝜔
𝑛,1,0

− 𝑝𝜃
1

𝑟
1,𝑖

𝑧

𝐽−1

∑

𝑛=1

𝜔
𝑛,1,0

, 𝑖 ≥ 1,

(21)

𝜑
3,𝑖,𝑗

(𝑧) = 𝑝𝜃
1

𝜃
2

𝑠
𝑖

𝑟
2,𝑗

𝜋
0,0

+ 𝑝𝜃
1

𝜃
2

𝑠
𝑖

𝑟
2,𝑗

𝜑
0

(1, 𝑧)

+
𝑝

𝑧
𝜃
1

𝜃
2

𝑠
𝑖

𝑟
2,𝑗

𝜑
0,1

(𝑧) + 𝜃
2

𝛾 (𝑧) 𝑟
2,𝑗

𝜑
1,𝑖+1

(𝑧)

+ (𝑝 +
𝑝

𝑧
𝑎
0

)𝜃
1

𝜃
2

𝑠
𝑖

𝑟
2,𝑗

[𝜑
1,1

(𝑧) + 𝜑
2,1

(𝑧)

+

𝐽

∑

𝑛=1

𝜓
𝑛,1

(𝑧)]

+ 𝛾 (𝑧) 𝜑
3,𝑖,𝑗+1

(𝑧) − 𝑝𝜃
1

𝜃
2

𝑠
𝑖

𝑟
2,𝑗

𝐽−1

∑

𝑛=1

𝜔
𝑛,1,0

−
𝑝

𝑧
𝑎
0

𝜃
1

𝜃
2

𝑠
𝑖

𝑟
2,𝑗

𝐽

∑

𝑛=1

𝜔
𝑛,1,0

+ 𝜃
2

𝛾 (𝑧) 𝜑
3,𝑖,1

(𝑧)

− (𝑝 +
𝑝

𝑧
𝑎
0

)𝜃
1

𝜃
2

𝑠
𝑖

𝑟
2,𝑗

𝜋
1,1,0

, 𝑖 ≥ 1,

(22)
𝜓
1,𝑖

(𝑧) = 𝑝𝜓
1,𝑖+1

(𝑧) + 𝑝𝑧𝜓
1,𝑖+1

(𝑧)

+ 𝛾 (𝑧) V
𝑖

𝜋
1,1,0

, 𝑖 ≥ 1, 𝑘 ≥ 0,

(23)

𝜓
𝑛,𝑖

(𝑧) = 𝑝𝜓
𝑛,𝑖+1

(𝑧) + 𝑝𝑧𝜓
𝑛,𝑖+1

(𝑧)

+ 𝛾 (𝑧) V
𝑖

𝜔
𝑛−1,1,0

, 𝑖 ≥ 1, 𝑘 ≥ 0, 2 ≤ 𝑛 ≤ 𝐽.

(24)

Multiplying (23) and (24) by 𝑥
𝑖, and summing over 𝑖, we get

𝑥 − 𝛾 (𝑧)

𝑥
𝜓
1

(𝑥, 𝑧) = −𝛾 (𝑧) 𝜓
1,1

(𝑧) + 𝛾 (𝑧) 𝑉 (𝑥) 𝜋
1,1,0

, (25)

𝑥 − 𝛾 (𝑧)

𝑥
𝜓
𝑛

(𝑥, 𝑧) = −𝛾 (𝑧) 𝜓
𝑛,1

(𝑧) + 𝛾 (𝑧) 𝑉 (𝑥) 𝜔
𝑛−1,1,0

,

2 ≤ 𝑛 ≤ 𝐽.

(26)

Setting 𝑥 = 𝛾(𝑧) in (25) and (26), we get

𝜓
1,1

(𝑧) = 𝑉 (𝛾 (𝑧)) 𝜋
1,1,0

, (27)

𝜓
𝑛,1

(𝑧) = 𝑉 (𝛾 (𝑧)) 𝜔
𝑛−1,1,0

, 2 ≤ 𝑛 ≤ 𝐽. (28)

Substituting (27) and (28) into (25) and (26), respectively, we
obtain

𝜓
1

(𝑥, 𝑧) =
𝑝𝑥 (𝑉 (𝑥) − 𝑉 [𝛾 (𝑧)])

𝑥 − 𝛾 (𝑧)
𝜋
1,1,0

,

𝜓
𝑛

(𝑥, 𝑧) =
𝑝𝑥 (𝑉 (𝑥) − 𝑉 [𝛾 (𝑧)])

𝑥 − 𝛾 (𝑧)
𝜔
𝑛−1,1,0

, 2 ≤ 𝑛 ≤ 𝐽.

(29)

Taking the derivative of (29) with respective to 𝑥, and letting
𝑥 = 𝑧 = 0, we get

𝜔
1,1,0

= 𝜉𝜋
1,1,0

, (30)

𝜔
𝑛,1,0

= 𝜉𝜔
𝑛−1,1,0

= 𝜉
𝑛

𝜋
1,1,0

, 2 ≤ 𝑛 ≤ 𝐽. (31)

Substituting (31) into (3), we get

𝜋
1,1,0

=
𝑝𝜋
0,0

𝑝𝜉𝐽
. (32)
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Multiplying (19) by 𝑥
𝑗, summing over 𝑗 and taking into

account (30)–(32), we obtain

𝑥 − 𝑝

𝑥
𝜑
0

(𝑥, 𝑧)

= 𝑝 (𝐴 (𝑥) − 𝑎
0

) (𝜑
1,1

(𝑧) + 𝜑
2,1

(𝑧))

− 𝑝𝜑
0,1

(𝑧) − 𝑝 (𝐴 (𝑥) − 𝑎
0

)
𝜂
1

− 𝜂
2

𝑉 (𝛾 (𝑧))

𝜂
3

𝜋
0,0

.

(33)

Note that we can find 𝜑
0

(1, 𝑧) by setting 𝑥 = 1 in (33), then
multiplying (20) and (21) by 𝑥

𝑗, summing over 𝑗, and taking
into account (30)–(32), we obtain

𝑥 − 𝛾 (𝑧) 𝜃
2

𝑥
𝜑
1

(𝑥, 𝑧)

=
𝑧 + 𝑝𝑎

0

(1 − 𝑧)

𝑧
𝜃
1

𝜃
2

𝑆 (𝑥) [𝜑
1,1

(𝑧) + 𝜑
2,1

(𝑧)]

− 𝛾 (𝑧) 𝜃
2

𝜑
1,1

(𝑧) +
𝑝 (1 − 𝑧)

𝑧
𝜃
1

𝜃
2

𝑆 (𝑥) 𝜑
0,1

(𝑧)

+ 𝛾 (𝑧) 𝜃
2

𝜙
1

(𝑥, 𝑧) −
𝐾 (𝑧)

𝑧𝑝𝜂
3

𝑝𝜃
1

𝜃
2

𝑆 (𝑥) 𝜋
0,0

,

(34)

𝑥 − 𝛾 (𝑧)

𝑥
𝜑
2

(𝑥, 𝑧) = [𝑧 + 𝑝𝑎
0

(1 − 𝑧)] 𝜃
1

𝑅
1

(𝑥)

× (𝜑
1,1

(𝑧) + 𝜑
2,1

(𝑧)) − 𝛾 (𝑧) 𝜑
2,1

(𝑧)

+ 𝑝𝜃
1

𝑅
1

(𝑥) (1 − 𝑧) 𝜑
0,1

(𝑧)

−
𝐾 (𝑧)

𝑝𝜂
3

𝑝𝜃
1

𝑅
1

(𝑥) 𝜋
0,0

,

(35)

where𝐾(𝑧) = 𝑧𝜂
2

[1 − 𝑉(𝛾(𝑧))] + 𝑝𝑎
0

(1 − 𝑧)Γ(𝑧).
Multiplying (22) by 𝑦

𝑗 and 𝑥
𝑖, summing over 𝑗 and 𝑖,

respectively, and taking into account (30)–(32), we obtain

𝑦 − 𝛾 (𝑧)

𝑦
𝜑
3

(𝑥, 𝑦, 𝑧) =
𝑧 + 𝑝𝑎

0

(1 − 𝑧)

𝑧
𝜃
1

𝜃
2

𝑆 (𝑥) 𝑅
2

(𝑦)

× [𝜑
1,1

(𝑧) + 𝜑
2,1

(𝑧)]

− 𝛾 (𝑧) 𝜃
2

𝑅
2

(𝑦) 𝜑
1,1

(𝑧)

+
𝑝 (1 − 𝑧)

𝑧
𝜃
1

𝜃
2

𝑆 (𝑥) 𝑅
2(𝑦)

𝜑
0,1

(𝑧)

+ 𝛾 (𝑧) (1 − 𝜃
2

𝑅
2

(𝑦)) 𝜙
1

(𝑥, 𝑧)

−
𝐾 (𝑧)

𝑧𝑝𝜂
3

𝑝𝜃
1

𝜃
2

𝑆 (𝑥) 𝑅
2

(𝑦) 𝜋
0,0

+
𝛾 (𝑧) 𝜃

2

𝑅
2

(𝑦)

𝑥
𝜑
1

(𝑥, 𝑧) .

(36)

Note that we can find 𝜙
1

(𝑥, 𝑧) by setting 𝑦 = 𝛾(𝑧) in (36) and
substituting the expression of 𝜙

1

(𝑥, 𝑧) into (34), we get

𝑥 − 𝜏
1

(𝛾 (𝑧))

𝑥
[1 − 𝜃

2

𝑅
2

(𝛾 (𝑧))] 𝜑
1

(𝑥, 𝑧)

= 𝜃
2

{
𝑧 + 𝑝𝑎

0

(1 − 𝑧)

𝑧
𝜃
1

𝑆 (𝑥) [𝜑
1,1

(𝑧) + 𝜑
2,1

(𝑧)]

− 𝛾 (𝑧) 𝜑
1,1

(𝑧) +
𝑝 (1 − 𝑧)

𝑧
𝜃
1

𝑆 (𝑥) 𝜑
0,1

(𝑧)

+𝛾 (𝑧) 𝜙
1

(𝑥, 𝑧) −
𝐾 (𝑧)

𝑧𝑝𝜂
3

𝑝𝜃
1

𝑆 (𝑥) 𝜋
0,0

} .

(37)

Setting𝑥 = 𝑝 in (33),𝑥 = 𝛾(𝑧) in (35), and𝑥 = 𝜏(𝛾(𝑧)) in (37),
respectively, we can get the equations for 𝜑

0,1

(𝑧), 𝜑
1,1

(𝑧) and
𝜑
2,1

(𝑧). By solving these equations, we get the the generating
functions as follows:

𝜑
0,1

(𝑧) = 𝑝𝑧 (A (𝑝) − 𝑎
0

)
𝛾 (𝑧) Γ (𝑧) − 𝜂

3

Ω (𝑧)

𝑝𝜂
3

Λ (𝑧)
𝜋
0,0

,

𝜑
1,1

(𝑧) =
Θ (𝑧) 𝑝𝜃

1

𝑆 (𝜏 (𝛾 (𝑧)))

𝑝𝜂
3

Λ (𝑧)
𝜋
0,0

,

𝜑
2,1

(𝑧) =
Θ (𝑧) 𝑝𝜃

1

𝑧𝑅 (𝛾 (𝑧))

𝑝𝜂
3

Λ (𝑧)
𝜋
0,0

.

(38)

Using Lemmas 1 and 2, it is easy to show that 𝜑
0,1

(𝑧),
𝜑
1,1

(𝑧), and 𝜑
2,1

(𝑧) are defined for 𝑧 ∈ [0, 1) and can be
extended by continuity in 𝑧 = 1, if 𝜃

1

𝜌
1

+ 𝜃
1

+ 𝜃
1

𝜌
2

<

𝑝 + 𝑝𝐴(𝑝). Now substituting (30)–(32) into (29), we can get
𝜑
4

(𝑥, 𝑧). Similarly, substituting (38) into (33), (35)–(37) we
derive 𝜑

0

(𝑥, 𝑧), 𝜑
1

(𝑥, 𝑧), 𝜑
2

(𝑥, 𝑧) and 𝜑
3

(𝑥, 𝑦, 𝑧). Using the
normalizing condition, we can find the unknown constant
𝜋
0,0

. This completes the proof.

Based on Theorem 3, we can easily obtain the marginal
generating functions of the number of customers when the
server is in various states and some performance measures.
They are summarized in the following Corollary.Their proofs
are very easy, and thus are omitted. For convenience, we
define variable𝑁 be the orbit size and 𝐿 be the system size.

Corollary 4.

(1) The marginal generating function of the number of
customers in the orbit when the server is idle or vacation
is given by

𝜋
0,0

+ 𝜑
0

(1, 𝑧)

=
𝑧 (1 − 𝐴 (𝑝)) [𝛾 (𝑧) Γ (𝑧) − 𝜂

3

Ω (𝑧)] + 𝜂
3

Λ (𝑧)

𝜂
3

Λ (𝑧)
𝜋
0,0

.

(39)

(2) The marginal generating function of the number of
customers in the orbit when the server is busy is given
by

𝜑
1

(1, 𝑧) =
1 − 𝑆 (𝜏 (𝛾 (𝑧)))

1 − 𝜏 (𝛾 (𝑧))

Θ (𝑧) 𝜃
1

𝜏 (𝛾 (𝑧))

𝑝𝜂
3

Λ (𝑧)
𝜋
0,0

. (40)
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(3) The marginal generating function of the number of
customers in the orbit when the server is under the first
type of repair

𝜑
2

(1, 𝑧) =
1 − 𝑅
1

(𝛾 (𝑧))

1 − 𝑧

Θ (𝑧) 𝜃
1

𝑧𝛾 (𝑧)

𝑝𝜂
3

Λ (𝑧)
𝜋
0,0

. (41)

(4) The marginal generating function of the number of
customers in the orbit when the server is under the
second type of repair

𝜑
3

(1, 1, 𝑧) =
1 − 𝑆 (𝜏 (𝛾 (𝑧)))

1 − 𝜏 (𝛾 (𝑧))

1 − 𝑅
2

(𝛾 (𝑧))

1 − 𝑧

×
Θ (𝑧) 𝜃

1

𝜏 (𝛾 (𝑧))

𝑝𝜂
3

Λ (𝑧)
𝜋
0,0

.

(42)

(5) The marginal generating function of the number of
customers in the orbit when the server is on vacation
is given by

𝜑
4

(1, 𝑧) =
𝜂
2

𝛾 (𝑧) [1 − 𝑉 (𝛾 (𝑧))]

𝑝𝜂
3

(1 − 𝑧)
𝜋
0,0

. (43)

(6) The generating function of the number of customers in
the orbit is given by

Ψ (𝑧) = 𝜋
0,0

+ 𝜑
0

(1, 𝑧) + 𝜑
1

(1, 𝑧)

+ 𝜑
2

(1, 𝑧) + 𝜑
3

(1, 1, 𝑧) + 𝜑
4

(1, 𝑧)

=
Θ (𝑧) 𝜃

1

𝛾 (𝑧)

𝑝𝜂
3

Λ (𝑧)
𝜋
0,0

.

(44)

(7) The probability generating function of the number of
customers in the system is given by

Φ (𝑧) = 𝜋
0,0

+ 𝜑
0

(1, 𝑧) + 𝑧𝜑
1

(1, 𝑧)

+ 𝜑
2

(1, 𝑧) + 𝑧𝜑
3

(1, 1, 𝑧) + 𝜑
4

(1, 𝑧)

=
Θ (𝑧) 𝜃

1

𝛾 (𝑧) 𝑆 (𝜏 (𝛾 (𝑧)))

𝑝𝜂
3

Λ (𝑧)
𝜋
0,0

.

(45)

Corollary 5.

(1) The system is idle with probability

𝜋
0,0

=

𝑝𝜂
3

[𝑝 + 𝑝𝐴 (𝑝) − 𝜃
1

𝜌
1

− 𝜃
1

− 𝜃
1

𝜌
2

]

𝜃
1

[𝑝𝑉
1

𝜂
2

+ 𝑝𝐴 (𝑝) 𝜂
3

]

. (46)

(2) The probability that the server is free is

𝜋
0,0

+ 𝜑
0

(1, 1) + 𝜑
4

(1, 1) = 1 − 𝜌
1

−
𝜃
1

𝜃
1

𝜌
2

. (47)

(3) The probability that the server is busy is

𝜑
1

(1, 1) = 𝑝𝑆
1

. (48)

(4) The probability that the server is under the first type of
repair is

𝜑
2

(1, 1) = 𝑝𝑅
1,1

𝜃
1

𝜃
1

. (49)

(5) The probability that the server is under the second type
of repair is

𝜑
3

(1, 1, 1) = 𝑝𝑆
1

𝑅
2,1

𝜃
2

𝜃
2

. (50)

(6) The probability that the server is on vacation is

𝜑
4

(1, 1) =

𝑝𝜂
2

𝑉
1

[𝑝 + 𝑝𝐴 (𝑝) − 𝜃
1

𝜌
1

− 𝜃
1

− 𝜃
1

𝜌
2

]

𝜃
1

[𝑝𝑉
1

𝜂
2

+ 𝑝𝐴 (𝑝) 𝜂
3

]

. (51)

(7) The mean number of customers in the orbit is

𝐸 (𝑁) = Ψ
󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨𝑧=1

=

Ω
󸀠󸀠

(1) + 2𝑝 (1 − 𝐴 (𝑝)) [Ω
󸀠

(1) − 𝑝]

2 [𝑝 + 𝑝𝐴 (𝑝) − Ω󸀠 (1)]

+

𝜂
2

[2𝑝𝑉
1

(1 − 𝑝𝐴 (𝑝)) + 𝑝
2

𝑉
2

]

2 [𝑝𝑉
1

𝜂
2

+ 𝑝𝐴 (𝑝) 𝜂
3

]
,

(52)

where

Ω
󸀠

(1) = 𝜃
1

𝜌
1

+ 𝜃
1

+ 𝜃
1

𝜌
2

, (53)

Ω
󸀠󸀠

(1) = 𝜃
1

{𝑝
2

𝑆
2

(1 +
𝜃
2

𝜃
2

)

2

+ 𝑝
2

𝑆
1

× [
𝜃
2

𝜃
2

𝑅
2,2

+ 2
𝜃
2

𝜃
2

𝑅
2,1

(1 +
𝜃
2

𝜃
2

)]}

+ 2𝜃
1

𝑝𝑅
1,1

+ 𝜃
1

𝑝
2

𝑅
1,2

.

(54)

(8) The mean number of customers in the system is

𝐸 (𝐿) = Φ
󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨𝑧=1

= 𝐸 (𝑁) + 𝜌
1

. (55)

Remark 6. Consider some special cases as follows.

(i) When 𝐽 = 0, 𝜃
1

= 𝜃
2

= 0, our model becomes
a discrete-time 𝐺𝑒𝑜/𝐺/1 queue with general retrial
times. In this case, Φ(𝑧) reduces to

Φ (𝑧) =
(1 − 𝑧) 𝛾 (𝑧) [𝑝 + 𝑝𝐴 (𝑝) − 𝑝𝑆

1

] 𝑆 [𝛾 (𝑧)]

[𝑧 + 𝑝𝐴 (𝑝) (1 − 𝑧)] 𝑆 (𝛾 (𝑧)) − 𝑧𝛾 (𝑧)
, (56)

which coincides with results of the model studied by
Atencia and Moreno [5].
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(ii) When 𝐽 = 0, 𝜃
2

= 0, the present model becomes
a discrete-time 𝐺𝑒𝑜/𝐺/1 queue with general retrial
times and starting failure. In this case Φ(𝑧) reduces
to

Φ (𝑧) = ( (1 − 𝑧) 𝛾 (𝑧) 𝑆 (𝛾 (𝑧))

× [𝑝 + 𝑝𝐴 (𝑝) − 𝜃
1

𝑝𝑆
1

− 𝜃
1

− 𝜃
1

𝑝𝑅
2,1

] )

× ( [𝑧 + 𝑝𝐴 (𝑝) (1 − 𝑧)]

× [𝜃
1

𝑆 (𝛾 (𝑧)) + 𝑧𝜃
1

𝑅
1

(𝛾 (𝑧))] − 𝑧𝛾 (𝑧))
−1

.

(57)

(iii) When 𝜃
1

= 𝜃
2

= 0, our model becomes a discrete-
time 𝐺𝑒𝑜/𝐺/1 queue with 𝐽 vacations. In this case,
Φ(𝑧) reduces to

Φ (𝑧)

=
𝑧𝜂
2

(1 − 𝑉 (𝛾 (𝑧))) + 𝑝𝐴 (𝑝) (1 − 𝑧) Γ (𝑧)

[𝑧 + 𝑝𝐴 (𝑝) (1 − 𝑧)] 𝑆 (𝛾 (𝑧)) − 𝑧𝛾 (𝑧)
𝑆 [𝛾 (𝑧)] 𝜋

0,0

,

(58)

where

𝜋
0,0

=
𝑝𝜂
3

[𝑝 + 𝑝𝐴 (𝑝) − 𝑝𝑆
1

]

𝑝𝑉
1

𝜂
2

+ 𝑝𝐴 (𝑝) 𝜂
3

. (59)

4. Stochastic Decomposition

The property of stochastic decomposition was proposed
firstly in queueing system with vacations. This property has
also been studied for retrial queues with vacations byArtalejo
[17]. The property of stochastic decomposition shows that
the steady-state system size at an arbitrary point can be
represented as the sum of two independent random variable,
one of which is the system size of the corresponding queueing
system without server vacations and the other is the orbit
size given that the server is on vacations. In this section, we
present two different stochastic decompositions of the system
size distribution in our model.

Theorem 7. The total number of customers (𝐿) in the system
can be represented as the sum of two independent random
variables 𝐿 = 𝐿

1

+ 𝑀
1

. 𝐿
1

is the number of customers in
the 𝐺𝑒𝑜/𝐺/1/ queue with server breakdowns and 𝑀

1

is the
number of repeated customers given that the server is idle,
under the first type of repair or on vacation.

Proof. After some algebra operation, Φ(𝑧) can be expressed
by

Φ (𝑧) = Φ
1

(𝑧)Φ
2

(𝑧) , (60)

where

Φ
1

(𝑧) =
(1 − 𝜌

1

) 𝑆 (𝜏 (𝛾 (𝑧))) (1 − 𝑧)

𝑆 (𝜏 (𝛾 (𝑧))) − 𝑧
(61)

is the generating function of the 𝐺𝑒𝑜/𝐺/1 queue server with
breakdowns, and

Φ
2

(𝑧) =
𝑆 (𝜏 (𝛾 (𝑧))) − 𝑧

1 − 𝑧

×
𝑧𝜂
2

[1 − 𝑉 (𝛾 (𝑧))] + 𝑝𝐴 (𝑝) (1 − 𝑧) Γ (𝑧)

(1 − 𝜌
1

) Λ (𝑧)

×
𝑝 + 𝑝𝐴 (𝑝) − 𝜃

1

𝜌
1

− 𝜃
1

− 𝜃
1

𝜌
2

p𝑉
1

𝜂
2

+ 𝑝𝐴 (𝑝) 𝜂
3

=
𝜋
0,0

+ 𝜑
0

(1, 𝑧) + 𝜑
2

(1, 𝑧) + 𝜑
4

(1, 𝑧)

𝜋
0,0

+ 𝜑
0

(1, 1) + 𝜑
2

(1, 1) + 𝜑
4

(1, 1)

(62)

is the generating function given that the server is idle, under
first type of repair or on vacations. This completes the proof.

Theorem 8. The total number of customers (𝐿) in the system
can be expressed as the sum of two independent random
variables 𝐿 = 𝐿

2

+ 𝑀
2

. 𝐿
2

is the number of customers in the
𝐺𝑒𝑜/𝐺/1/ queue with two types of breakdowns and 𝑀

2

is the
number of repeated customers given that the server is idle or on
vacation.

Proof. After some algebra operation, Φ(𝑧) can be expressed
by

Φ (𝑧) = Φ
1

(𝑧)Φ
2

(𝑧) , (63)

where

Φ
1

(𝑧) =

(1 − 𝜃
1

𝜌
1

− 𝜃
1

− 𝜃
1

𝜌
2

) 𝑆 (𝜏 (𝛾 (𝑧))) (1 − 𝑧)

𝜃
1

𝑆 (𝜏 (𝛾 (𝑧))) + 𝑧𝜃
1

𝑅
1

(𝛾 (𝑧)) − 𝑧

(64)

is the generating function of the unreliable 𝐺𝑒𝑜/𝐺/1 queue,
and

Φ
2

(𝑧) =
𝜃
1

𝑆 (𝜏 (𝛾 (𝑧))) + 𝑧𝜃
1

𝑅
1

(𝛾 (𝑧)) − 𝑧

1 − 𝑧

×
𝑧𝜂
2

[1 − 𝑉 (𝛾 (𝑧))] + 𝑝𝐴 (𝑝) (1 − 𝑧) Γ (𝑧)

(1 − 𝜃
1

𝜌
1

− 𝜃
1

− 𝜃
1

𝜌
2

)Λ (𝑧)

×
𝑝 + 𝑝𝐴 (𝑝) − 𝜃

1

𝜌
1

− 𝜃
1

− 𝜃
1

𝜌
2

𝑝𝑉
1

𝜂
2

+ 𝑝𝐴 (𝑝) 𝜂
3

=
𝜋
0,0

+ 𝜑
0

(1, 𝑧) + 𝜑
4

(1, 𝑧)

𝜋
0,0

+ 𝜑
0

(1, 1) + 𝜑
4

(1, 1)

(65)

is the generating function given that the server is idle or on
vacations. This completes the proof.

5. Relationship to the Corresponding
Continuous-Time Model

In this section, we investigate the relationship between our
discrete-time model and the corresponding continuous-time
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counterpart. We consider a continuous-time 𝑀/𝐺/1 general
retrial queue with 𝐽 vacations and two types of breakdowns.
The customers arrive according to a Poisson process with rate
𝜆. If an arriving customer finds that the server is busy, under
repair or on vacations, the customer joins the orbit and only
the first customer in the orbit is permitted to retry for service.
The server is subject to two types of different breakdowns.
As soon as the server fails, it is repaired immediately. The
first type of breakdown is starting failure, that is, an arriving
customer must start the server, which takes negligible time
and the server is started successfully with a probability 𝜃

1

. In
addition to starting failure, the servermay break down during
serving an customer and the lifetime of the server follows
exponential distribution with rate 𝜃

2

.
Once the system becomes empty, the server takes vaca-

tions immediately according to 𝐽 vacation policy. The retail
times, the service times, the repair times for the two types of
breakdowns and the vacation times are all assumed to follow
general continuous-time distributions denoted by𝐴(𝑥), 𝑆(𝑥),
𝑅
1

(𝑥), 𝑅
2

(𝑥), and 𝑉(𝑥), respectively, and their Laplace-
Stieltjes transforms denoted by 𝐴(𝑠), 𝑆(𝑠), 𝑅

1

(𝑠), 𝑅
2

(𝑠), and
𝑉̃(𝑠), respectively, and their finite means are denoted by 𝐴

1

,
𝑆
1

and 𝑅
1,1

, 𝑅
2,1

, and 𝑉
1

respectively.
We suppose that the time is divided into sufficiently

small intervals of equal length Δ. Then, the continuous-time
𝑀/𝐺/1 general retrial queue with 𝐽 vacations and two types
of breakdowns can be approximated by the following:

𝑝 = 𝜆Δ, 𝑎
𝑖

= ∫

(𝑖+1)Δ

𝑖Δ

𝑑𝐴 (𝑥) , 𝑠
𝑖

= ∫

𝑖Δ

(𝑖−1)Δ

𝑑𝑆 (𝑥) ,

𝑅
𝑙,𝑖

= ∫

𝑖Δ

(𝑖−1)Δ

𝑑𝑅
𝑙

(𝑥) , 𝑙 = 1, 2, V
𝑖

= ∫

𝑖Δ

(𝑖−1)Δ

𝑑𝑉 (𝑥) .

(66)

By using the definition of Lebesgue integration, we can get
the following equalities:

lim
Δ→0

𝜌
2

= 𝜆𝑅
2,1

= 𝜌
2

, lim
Δ→0

𝑝𝑉
𝑖

= 𝜆𝑉
1

,

lim
Δ→0

𝜌
1

= 𝜆𝑆
1

(1 +
𝜃
2

𝜃
2

𝑅
2,1

) = 𝜌
1

lim
Δ→0

𝑆 (𝜏 (𝛾 (𝑧))) = 𝑆 [𝜆 (1 − 𝑧) + 𝜃
2

̃
𝑅
2

(𝜆 (1 − 𝑧))]

= 𝑆 (𝜏 (𝛾 (𝑧))) ,

lim
Δ→0

𝑉
2

(𝑝) = 𝑉
2

(𝜆) , lim
Δ→0

𝑅
1

(𝛾 (𝑧)) = 𝑅̃
1

[𝜆 (1 − 𝑧)] ,

lim
Δ→0

𝐴 (𝑝) = 𝐴 (𝜆) , lim
Δ→0

𝑉 (𝛾 (𝑧)) = 𝑉̃ [𝜆 (1 − 𝑧)] ,

lim
Δ→0

𝜂
𝑖

= 𝜂
𝑖

, 𝑖 = 1, 2, 3.

(67)
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Figure 1: The curve of 𝑃
𝑉

with 𝐽.

From the above relations, we obtain the generating function
of the system size for the corresponding continuous-time
model by

lim
Δ→0

Φ (𝑧) = (𝑧𝜂
2

(1 − 𝑉̃ [𝜆 (1 − 𝑧)])

+ 𝐴 (𝜆) (1 − 𝑧) (𝜂
1

− 𝜂
2

𝑉̃ [𝜆 (1 − 𝑧)]))

× ([𝜃
1

𝑆 (𝜏 (𝛾 (𝑧))) + 𝑧𝜃
1

𝑅
1

[𝜆 (1 − 𝑧)] − 𝑧]

× [𝑧 + 𝐴 (𝜆) (1 − 𝑧)] − 𝑧)
−1

×
𝐴 (𝜆) − 𝜃

1

𝜌
1

− 𝜃
1

− 𝜃
1

𝜌
2

𝜆𝑉
1

𝜂
2

+ 𝐴 (𝜆) 𝜂
3

𝑆 (𝜏 (𝛾 (𝑧))) .

(68)

6. Numerical Examples

In this section, we present some numerical examples to
illustrate the effect of the parameters on the main perfor-
mance measures of the system. We consider two important
performance measures: the probability that server is on
vacation 𝑃

𝑉

and the mean orbit size 𝐸(𝑁). It is assumed
that the retrial time is geometric distribution with generating
function 𝐴(𝑥) = (1 − 𝑟)/(1 − 𝑟𝑥). The service time, the
repair times of the server for the two types of breakdowns,
and the vacation time are also assumed to follow geometric
distribution with generating functions 𝑆(𝑥) = (1 − 𝜇)𝑥/(1 −

𝜇𝑥), 𝑅
𝑙

(𝑥) = (1 − 𝑟
𝑙

)𝑥/(1 − 𝑟
𝑙

𝑥), 𝑙 = 1, 2, and 𝑉(𝑥) =

(1 − V)𝑥/(1 − V𝑥), respectively. In general, we have chosen
the arrival rate 𝑝 = 0.1, the retrial rate 𝑟 = 0.25, the service
rate 𝜇 = 0.5, and the vacation rate V = 0.5, and we have
presented three curves which correspond to 𝜃

1

= 0.1, 0.3 and
0.5, respectively, in Figures 1–4, where 𝜃

1

is the probability
that the server experience the first type of breakdown.

Figure 1 describes 𝑃
𝑉

with varying values of the maxi-
mum number of the server’s vacations 𝐽. As illustrated in
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Figure 3: The curve of 𝐸(𝑁) with 𝐽.

Figure 1, 𝑃
𝑉

is increasing as a function of 𝐽. For different
values of 𝜃

1

, we observe that 𝑃
𝑉

decreases with increasing
values of 𝜃

1

. That is because the mean service time of a
customer is getting longer with increasing values of 𝜃

1

and
𝑃
𝑉

decreases accordingly. Figure 2 describes the effect of 𝜃
2

on 𝑃
𝑉

. The curve in Figure 2 shows that 𝑃
𝑉

is decreasing as a
function of 𝜃

2

which agrees with intuitive expectations.
Figures 3 and 4 describe the influence of the parameter

𝐽 and 𝜃
2

on the mean orbit size 𝐸(𝑁), respectively. As to be
expected, 𝐸(𝑁) increases with increasing value of 𝐽 and 𝜃

2

,
that is, there are more customers in the orbit as 𝐽 and 𝜃

2

increase.
As we can observe in Figures 3 and 4, the mean orbit

size 𝐸(𝑁) increases with increasing values of 𝜃
1

. As the the
value of 𝜃

1

increases, the mean sojourn time time for an
customer increases, and therefore the number of customers
in the system increases. Moreover, the parameter 𝜃

1

affects
𝐸(𝑁)more apparently, when the value of the parameter 𝜃

1

is
getting greater.
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Figure 4: The curve of 𝐸(𝑁) with 𝜃
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