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We generalized the existence theorems and the continuous dependence of a solution on parameters for initial problems of fuzzy
discontinuous differential equation by the strong fuzzy Henstock integral and its controlled convergence theorem.

1. Introduction

The Cauchy problems for fuzzy differential equations have
been studied by several authors [1–6] on the metric space
(𝐸

𝑛, 𝐷) of normal fuzzy convex set with the distance𝐷 given
by the maximum of the Hausdorff distance between the
corresponding level sets. In [4], Nieto proved that the Cauchy
problem has a uniqueness result if 𝑓 is continuous and
bounded. In [1, 3, 7–9], the authors presented a uniqueness
result when 𝑓 satisfies a Lipschitz condition. For a general
reference to fuzzy differential equations, see a recent book
by Lakshmikantham and Mohapatra [10] and references
therein. In 2002, Xue and Fu [11] established the solutions
to fuzzy differential equations with right-hand side functions
satisfying Carathéodory conditions on a class of Lipschitz
fuzzy sets.However, there are discontinuous systems inwhich
the right-hand side functions 𝑓 : [𝑎, 𝑏] × 𝐸

𝑛 → 𝐸𝑛 are
not integrable in the sense of Kaleva [1] on certain intervals,
and their solutions are not absolute continuous functions. To
illustrate, we consider the following example.

Example 1. Consider the following discontinuous system:

𝑥


(𝑡) = ℎ (𝑡) , 𝑥 (0) = 𝐴,

𝑔 (𝑡) =
{

{

{

2𝑡 sin 1

𝑡2
−
2

𝑡
cos 1

𝑡2
, 𝑡 ̸= 0,

0, 𝑡 = 0,

𝐴 (𝑠) =

{{

{{

{

𝑠, 0 ≤ 𝑠 ≤ 1,

2 − 𝑠, 1 < 𝑠 ≤ 2,

0, others,

ℎ (𝑡) = 𝜒
|𝑔(𝑡)|

+ 𝐴.

(1)

Then, ℎ(𝑡) = 𝜒
|𝑔(𝑡)|

+𝐴 is not integrable in the sense of Kaleva.
However, the above system has the following solution:

𝑥 (𝑡) = 𝜒
|𝐺(𝑡)|

+ 𝐴𝑡, (2)

where

𝐺 (𝑡) =
{

{

{

𝑡2 sin 1

𝑡2
, 𝑡 ̸= 0,

0, 𝑡 = 0.
(3)

It is well known that the Henstock integral is designed
to integrate highly oscillatory functions which the Lebesgue
integral fails to do. It is known as nonabsolute integration
and is a powerful tool. It is well known that the Henstock
integral includes the Riemann, improper Riemann, Lebesgue,
and Newton integrals [12, 13]. Though such an integral was
defined by Denjoy in 1912 and also by Perron in 1914, it
was difficult to handle using their definitions. But with
the Riemann-type definition introduced more recently by
Henstock [12] in 1963 and also independently by Kurzweil
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[13], the definition is now simple, and furthermore the proof
involving the integral also turns out to be easy. For more
detailed results about the Henstock integral, we refer to
[14]. Recently, Wu and Gong [15, 16] have combined the
fuzzy set theory and nonabsolute integration theory, and
they discussed the fuzzyHenstock integrals of fuzzy-number-
valued functions which extended Kaleva [1] integration. In
order to complete the theory of fuzzy calculus and tomeet the
solving need of transferring a fuzzy differential equation into
a fuzzy integral equation, Gong and Shao [17, 18] defined the
strong fuzzy Henstock integrals and discussed some of their
properties and the controlled convergence theorem.

In this paper, according to the idea of [19] and using
the concept of generalized differentiability [20], we will
prove other controlled convergence theorems for the strong
fuzzy Henstock integrals, which will be of foundational
significance for studying the existence and uniqueness of
solutions to the fuzzy discontinuous systems. As we know,
we inevitably use the controlled convergence theorems for
solving the numerical solutions of differential equations. As
the main outcomes, we will deal with the Cauchy problem of
discontinuous fuzzy systems as follows:

𝑥


(𝑡) = 𝑓 (𝑡, 𝑥) ,

𝑥 (𝜏) = 𝜉 ∈ 𝐸
𝑛

,
(4)

where 𝑓 : 𝑈 → 𝐸𝑛 is a strong fuzzy Henstock integrable
function and

𝑈 = {(𝑡, 𝑥) : |𝑡 − 𝜏| ≤ 𝑎, 𝑥 ∈ 𝐸
𝑛

, 𝐷 (𝑥, 𝜉) ≤ 𝑏} . (5)

To make our analysis possible, we will first recall some
basic results of fuzzy numbers and give some definitions
of absolutely continuous fuzzy-number-valued function. In
addition, we present the concept of generalized differentia-
bility. In Section 3, we present the concept of strong fuzzy
Henstock integrals, and we prove a controlled convergence
theorem for the strong fuzzyHenstock integrals. In Section 4,
we deal with the Cauchy problem of discontinuous fuzzy
systems. And in Section 5, we present some concluding
remarks.

2. Preliminaries

Let𝑃
𝑘
(𝑅𝑛) denote the family of all nonempty compact convex

subset of𝑅𝑛, and define the addition and scalarmultiplication
in 𝑃

𝑘
(𝑅𝑛) as usual. Let 𝐴 and 𝐵 be two nonempty bounded

subsets of 𝑅𝑛. The distance between𝐴 and 𝐵 is defined by the
Hausdorff metric [21] as follows:

𝑑
𝐻
(𝐴, 𝐵) = max{sup

𝑎∈𝐴

inf
𝑏∈𝐵

‖𝑎 − 𝑏‖ , sup
𝑏∈𝐵

inf
𝑎∈𝐴

‖𝑏 − 𝑎‖} . (6)

Denote that 𝐸𝑛 = {𝑢 : 𝑅𝑛 → [0, 1] | 𝑢 satisfies (1)–(4)
below} is a fuzzy number space, where

(1) 𝑢 is normal; that is, there exists an 𝑥
0
∈ 𝑅𝑛 such that

𝑢(𝑥
0
) = 1;

(2) 𝑢 is fuzzy convex; that is, 𝑢(𝜆𝑥 + (1 − 𝜆)𝑦) ≥

min{𝑢(𝑥), 𝑢(𝑦)} for any 𝑥, 𝑦 ∈ 𝑅𝑛 and 0 ≤ 𝜆 ≤ 1;
(3) 𝑢 is upper semicontinuous;
(4) [𝑢]0 = cl{𝑥 ∈ 𝑅𝑛 | 𝑢(𝑥) > 0} is compact.

For 0 < 𝛼 ≤ 1, denote that [𝑢]𝛼 = {𝑥 ∈ 𝑅𝑛 | 𝑢(𝑥) ≥ 𝛼}.
Then from the above (1)–(4), it follows that the 𝛼-level set
[𝑢]

𝛼

∈ 𝑃
𝑘
(𝑅𝑛) for all 0 ≤ 𝛼 < 1.

According to Zadeh’s extension principle, we have addi-
tion and scalar multiplication in fuzzy number space 𝐸𝑛 as
follows [21]:

[𝑢 + V]𝛼 = [𝑢]𝛼 + [V]𝛼, [𝑘𝑢]
𝛼

= 𝑘[𝑢]
𝛼

, (7)

where 𝑢, V ∈ 𝐸𝑛 and 0 ≤ 𝛼 ≤ 1.
Define𝐷 : 𝐸𝑛 × 𝐸𝑛 → [0,∞)

𝐷 (𝑢, V) = sup {𝑑
𝐻
([𝑢]

𝛼

, [V]𝛼) : 𝛼 ∈ [0, 1]} , (8)

where 𝑑 is the Hausdorff metric defined in 𝑃
𝑘
(𝑅𝑛). Then it is

easy to see that𝐷 is a metric in 𝐸𝑛. Using the results [22], we
know that

(1) (𝐸𝑛, 𝐷) is a complete metric space,
(2) 𝐷(𝑢 + 𝑤, V + 𝑤) = 𝐷(𝑢, V) for all 𝑢, V, 𝑤 ∈ 𝐸𝑛,
(3) 𝐷(𝜆𝑢, 𝜆V) = |𝜆|𝐷(𝑢, V) for all 𝑢, V, 𝑤 ∈ 𝐸𝑛 and 𝜆 ∈ 𝑅.

Let 𝑥, 𝑦 ∈ 𝐸𝑛. If there exist 𝑧 ∈ 𝐸𝑛 such that 𝑥 = 𝑦 + 𝑧,
then 𝑧 is called the 𝐻-difference of 𝑥 and 𝑦 and is denoted
by 𝑥 −

𝐻

𝑦. As mentioned above which always is called the
condition (𝐻). It is well known that the 𝐻-derivative for
fuzzy-number-functions was initially introduced by Puri et
al. [5, 23] and it is based on the condition (𝐻) of sets. We
note that this definition is fairly strong, because the family
of fuzzy-number-valued functions 𝐻-differentiable is very
restrictive. For example, the fuzzy-number-valued function
𝑓 : [𝑎, 𝑏] → 𝑅F defined by 𝑓(𝑥) = 𝐶 ⋅ 𝑔(𝑥), where 𝐶 is
a fuzzy number, ⋅ is the scalar multiplication (in the fuzzy
context) and 𝑔 : [𝑎, 𝑏] → 𝑅

+, with 𝑔(𝑡
0
) < 0, is not 𝐻-

differentiable in 𝑡
0
(see [20, 24]). To avoid the above difficulty,

in this paper we consider a more general definition of a
derivative for fuzzy-number-valued functions enlarging the
class of differentiable fuzzy-number-valued functions, which
has been introduced in [20].

Definition 2 (see [20]). Let 𝑓 : (𝑎, 𝑏) → 𝐸
𝑛 and 𝑥

0
∈

(𝑎, 𝑏). One says that 𝑓 is differentiable at 𝑥
0
, if there exists

an element 𝑓(𝑡
0
) ∈ 𝐸𝑛, such that

(1) for all ℎ > 0 sufficiently small, there exists 𝑓(𝑥
0
+

ℎ) −
𝐻
𝑓(𝑥

0
), 𝑓(𝑥

0
) −

𝐻
𝑓(𝑥

0
− ℎ) and the limits (in

the metric𝐷)

lim
ℎ→0

𝑓 (𝑥
0
+ ℎ) −

𝐻
𝑓 (𝑥

0
)

ℎ
= lim

ℎ→0

𝑓 (𝑥
0
) −

𝐻
𝑓 (𝑥

0
− ℎ)

ℎ

= 𝑓


(𝑥
0
)

(9)

or
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(2) for all ℎ > 0 sufficiently small, there exists 𝑓(𝑥
0
) −

𝐻
𝑓(𝑥

0
+ ℎ), 𝑓(𝑥

0
− ℎ) −

𝐻
𝑓(𝑥

0
) and the limits

lim
ℎ→0

𝑓 (𝑥
0
) −

𝐻
𝑓 (𝑥

0
+ ℎ)

−ℎ
= lim

ℎ→0

𝑓 (𝑥
0
− ℎ) −

𝐻
𝑓 (𝑥

0
)

−ℎ

= 𝑓


(𝑥
0
)

(10)

or

(3) for all ℎ > 0 sufficiently small, there exists 𝑓(𝑥
0
+ℎ) −

𝐻
𝑓(𝑥

0
), 𝑓(𝑥

0
− ℎ) −

𝐻
𝑓(𝑥

0
) and the limits

lim
ℎ→0

𝑓 (𝑥
0
+ ℎ) −

𝐻
𝑓 (𝑥

0
)

ℎ
= lim

ℎ→0

𝑓 (𝑥
0
− ℎ) −

𝐻
𝑓 (𝑥

0
)

−ℎ

= 𝑓


(𝑥
0
)

(11)

or

(4) for all ℎ > 0 sufficiently small, there exists 𝑓(𝑥
0
) −

𝐻
𝑓(𝑥

0
+ ℎ), 𝑓(𝑥

0
) −

𝐻
𝑓(𝑥

0
− ℎ) and the limits

lim
ℎ→0

𝑓 (𝑥
0
) −

𝐻
𝑓 (𝑥

0
+ ℎ)

−ℎ
= lim

ℎ→0

𝑓 (𝑥
0
) −

𝐻
𝑓 (𝑥

0
− ℎ)

ℎ

= 𝑓


(𝑥
0
)

(12)

(ℎ and −ℎ at denominators mean (1/ℎ)⋅ and −(1/ℎ)⋅,
resp.).

3. The Convergence Theorem of Strong Fuzzy
Henstock Integral

In this section, we define the strong Henstock integrals of
fuzzy-number-valued functions in fuzzy number space 𝐸𝑛,
and we give some properties and controlled convergence
theorem of this integral by using new conditions.

Definition 3 (see [18]). A fuzzy-number-valued function 𝑓

is said to be termed additive on [𝑎, 𝑏] if, for any division
𝑇 : 𝑎 ≤ 𝑥

1
≤ 𝑥

2
≤ ⋅ ⋅ ⋅ ≤ 𝑥

𝑛
≤ 𝑏, one has 𝑓([𝑥

𝑖
, 𝑥

𝑗
]) (1 ≤

𝑖 < 𝑗 ≤ 𝑛) that exists and 𝑓([𝑥
𝑖
, 𝑥

𝑗
]) = ∑

𝑗−1

𝑘=𝑖
𝑓([𝑥

𝑘
, 𝑥

𝑘+1
]) or

𝑓([𝑥
𝑗
, 𝑥

𝑖
])(1 ≤ 𝑖 < 𝑗 ≤ 𝑛) that exists and (−1) ⋅ 𝑓([𝑥

𝑗
, 𝑥

𝑖
]) =

(−1) ⋅ ∑
𝑗−1

𝑘=𝑖
𝑓([𝑥

𝑘+1
, 𝑥

𝑘
]). For convenience, 𝑓([𝑠, 𝑡]) denotes

𝑓(𝑡) −
𝐻
𝑓(𝑠).

Definition 4 (see [17, 18]). A fuzzy-number-valued function
𝑓 is said to be strong Henstock integrable on [𝑎, 𝑏] if there
exists a piecewise additive fuzzy-number-valued function 𝐹

on [𝑎, 𝑏] such that for every 𝜀 > 0 there is a function 𝛿(𝜉) > 0
and for any 𝛿-fine division 𝑃 = {([𝑢, V], 𝜉)} of [𝑎, 𝑏] one has

∑
𝑖∈𝐾
𝑛

𝐷(𝑓 (𝜉
𝑖
) (V

𝑖
− 𝑢

𝑖
) , 𝐹 ([𝑢

𝑖
, V

𝑖
]))

+ ∑
𝑗∈𝐼
𝑛

𝐷(𝑓 (𝜉
𝑗
) (V

𝑗
− 𝑢

𝑗
) , (−1) ⋅ 𝐹 ([𝑢

𝑗
, V

𝑗−1
])) < 𝜀,

(13)

where 𝐾
𝑛
= {𝑖 ∈ {1, 2, . . . , 𝑛} such that 𝐹([𝑥

𝑖−1
, 𝑥

𝑖
]) is a fuzzy

number and 𝐼
𝑛
= {𝑗 ∈ {1, 2, . . . , 𝑛} such that 𝐹([𝑥

𝑗
, 𝑥

𝑗−1
]) is a

fuzzy number. One writes 𝑓 ∈ SFH[𝑎, 𝑏].

Definition 5. A fuzzy-number-valued function 𝐹 defined on
𝑋 ⊂ [𝑎, 𝑏] is said to be 𝐴𝐶∗

𝛿
(𝑋) if for every 𝜀 > 0 there exists

𝜂 > 0 and 𝛿(𝜉) > 0 such that for any 𝛿-fine partial division
𝑃 = {([𝑢, V], 𝜉)} with 𝜉 ∈ 𝑋

𝑖
satisfying∑𝑛

𝑖=1
|V − 𝑢| < 𝜂 one has

∑𝐷(𝐹[𝑢, V]) < 𝜀.

Definition 6. A fuzzy-number-valued function 𝐹 is said to be
𝐴𝐶𝐺∗

𝛿
on𝑋 ⊂ [𝑎, 𝑏] if𝑋 is the union of a sequence of closed

sets {𝑋
𝑖
} such that on each𝑋

𝑖
, 𝐹 is 𝐴𝐶∗

𝛿
(𝑋

𝑖
).

Definition 7. The sequence of fuzzy-number-function {𝐹
𝑛
} is

𝑈𝐴𝐶𝐺∗

𝛿
on𝑋 ⊂ [𝑎, 𝑏] if𝑋 is the sequence of subsets𝑋

𝑖
such

that {𝐹
𝑛
} is 𝑈𝐴𝐶∗

𝛿
for each 𝑖, independent of 𝑛.

Definition 8. Let {𝐹
𝑛
} be a sequence of fuzzy-number-

function defined on [𝑎, 𝑏], and let 𝑥 ⊂ [𝑎, 𝑏] be measurable.

(i) The sequence of fuzzy-number-function {𝐹
𝑛
} is P-

Cauchy on 𝐸𝑛 if {𝐹
𝑛
} converges pointwise on 𝑋 and

if for each 𝜀 > 0 there exist 𝛿(𝜉) > 0 on 𝑋 and a
positive integer 𝑁 such that 𝐷(𝐹

𝑚
(𝑃), 𝐹

𝑛
(𝑃)) < 𝜀 for

all𝑚, 𝑛 ≥ 𝑁 whenever 𝑃 is𝑋-subordinate to 𝛿(𝜉).
(ii) The sequence of fuzzy-number-function {𝐹

𝑛
} is gen-

eralized P-Cauchy on 𝑋 if 𝑋 can be written as a
countable union of measurable sets on each of which
{𝐹

𝑛
} isP-Cauchy.

Theorem 9. Let the following conditions be satisfied:

(i) 𝑓
𝑛,𝑋
(𝑥) → 𝑓

𝑥
a.e. on [𝑎, 𝑏] as 𝑛 → ∞ where each

𝑓
𝑛,𝑋

is strong Fuzzy Henstock integrable on [𝑎, 𝑏];

(ii) the primitives 𝐹
𝑛,𝑋

of 𝑓
𝑛,𝑋

are 𝑈𝐴𝐶∗

𝛿
with closed set𝑋

in [𝑎, 𝑏].

Then 𝑓
𝑋
(𝑥) is strong fuzzy Henstock integrable on [𝑎, 𝑏] with

the primitive 𝐹
𝑋
(𝑥).

Proof. By (ii), for every 𝜀 > 0 there exist a 𝛿(𝜉) > 0 and 𝜂 > 0,
such that for any 𝛿-fine partial division𝑃of𝑋 satisfying∑ |V−
𝑢| < 𝜂 we have ∑𝐷(𝐹

𝑛,𝑋
(V, 𝑢), 0̃) < 𝜀. By Egoroff ’s theorem

[18, Theorem 3.4], there is an open set 𝐺 with |𝐺| < 𝜂 such
that 𝐷(𝑓

𝑛
(𝜉), 𝑓

𝑚
(𝜉)) < 𝜀 for 𝑛,𝑚 ≥ 𝑁 and 𝜉 ∉ 𝐺. Consider

the following, in which 𝑃 is a 𝛿-fine division of [𝑥, 𝑦] and
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𝑃 = 𝑃
1
∪𝑃

2
so that𝑃

1
contains the intervalswith the associated

points 𝜉 ∉ 𝐺 and 𝑃
2
otherwise:

𝐷(𝐹
𝑛,𝑋

(𝑥, 𝑦) , 𝐹
𝑚,𝑋

(𝑥, 𝑦))

= (𝑃
2
)∑𝐷(𝐹

𝑛,𝑋
(𝑢, V) , 𝐹

𝑚,𝑋
(𝑢, V))

≤ ∑𝐷(𝐹
𝑛,𝑋

(𝑢, V) , 𝑓
𝑛,𝑋

(𝜉) (V − 𝑢))

+∑𝐷(𝐹
𝑚,𝑋

(𝑢, V) , 𝑓
𝑚,𝑋

(𝜉) (V − 𝑢))

+∑𝐷(𝑓
𝑚,𝑋

(𝜉) (V − 𝑢) , 𝑓
𝑚,𝑋

(𝜉) (V − 𝑢))

+∑𝐷(𝐹
𝑛,𝑋

(V) , 𝐹
𝑛,𝑋

(𝑢)) +∑𝐷(𝐹
𝑚,𝑋

(V) , 𝐹
𝑚,𝑋

(𝑢))

< 𝜀 (4 + 𝑏 − 𝑎) .

(14)

Hence, for any 𝛿-fine partial division 𝑃 of [𝑎, 𝑏] we have


∑𝐷(𝐹

𝑛,𝑋
(𝑢, V) , 𝐹

𝑚,𝑋
(𝑢, V))


< 𝜀, (15)

for 𝑚, 𝑛 ≥ 𝑁. Therefore the fuzzy sequence {𝐹
𝑛,𝑋
} is gen-

eralized P-Cauchy on [𝑎, 𝑏]. Then, by (i), we have that 𝑓
𝑋

is strong fuzzy Henstock integrable on [𝑎, 𝑏] with primitive
𝐹
𝑋
.

Definition 10. (a) A sequence {𝐹
𝑛
} of fuzzy-number-valued

function is uniformly𝐴𝐶∇ on𝑋whenever to each 𝜀 > 0 there
exist 𝜂 > 0 and 𝛿(𝑥) > 0 such that

(1) sup
𝑛
𝐷(∑

𝐽
𝑘
∈𝑃
1

𝐹
𝑛
(𝐽
𝑘
), ∑

𝐿
ℎ
∈𝑃
2

𝐹
𝑛
(𝐿

ℎ
)) < 𝜀, for each 𝑃

1
,

𝑃
2
∈ ∏(𝑋, 𝛿),

(2) with |(∪𝑃
1
)Δ(∩𝑃

2
)| < 𝜂.

(b) A sequence {𝐹
𝑛
} of fuzzy-number-valued function is

uniformly 𝐴𝐶𝐺∇ on [𝑎, 𝑏] if [𝑎, 𝑏] = ∪
𝑖
𝑋
𝑖
, where 𝑋

𝑖
are

measurable sets and {𝐹} is uniformly 𝐴𝐶∇ on each𝑋
𝑖
.

Theorem 11. If {𝐹} is uniformly 𝐴𝐶𝐺∇, then {𝐹} is uniformly
𝐴𝐶𝐺∗

𝛿
.

Proof. Let [𝑎, 𝑏] = ∪
𝑖
𝑋
𝑖
be such that {𝐹} is uniformly 𝐴𝐶𝐺∇

on each 𝑋
𝑖
. So, for each 𝜀 > 0 there exist 𝜂 > 0 and 𝛿(𝑥) > 0

such that (1) holds in Definition 10 for each 𝑃
1
, 𝑃

2
∈ ∏(𝑋, 𝛿)

satisfying condition (2). We take 𝑃 = {([𝑐
𝑘
, 𝑑

𝑘
], 𝑥

𝑘
)}
𝑝

𝑖=1
with

∑
𝑘
|𝑑

𝑘
− 𝑐

𝑘
| < 𝜂 and put 𝑃

1
= {([𝑐

𝑘
, 𝑑

𝑘
], 𝑥

𝑘
) : 𝐹

𝑛
(𝐶

𝑘
, 𝑑

𝑘
≥

0)} and 𝑃
2
= {([𝑐

𝑘
, 𝑑

𝑘
], 𝑥

𝑘
) : 𝐹

𝑛
(𝑐
𝑘
, 𝑑

𝑘
< 0)}. So, we have

|(∪𝑃
1
)Δ(∩𝑃

2
)| = ∑

𝑝

𝑘=1
|𝑑

𝑘
− 𝑐

𝑘
| < 𝜂. Then by condition (1)

in Definition 10, we have

sup
𝑛

𝑝

∑
𝑘=1

𝐷(𝐹
𝑛
(𝑐
𝑘
) , 𝐹

𝑛
(𝑑

𝑘
))

= sup𝐷( ∑

(𝑐𝑘 ,𝑑𝑘)∈𝑃1

𝐹
𝑛
(𝑐
𝑘
, 𝑑

𝑘
) ,

∑
(𝑐
𝑘
,𝑑
𝑘
)∈𝑃
2

𝐹
𝑛
(𝑐
𝑘
, 𝑑

𝑘
)) < 𝜀.

(16)

Hence, we have that {𝐹} is uniformly 𝐴𝐶𝐺∗

𝛿
.

We get the following theorem byTheorems 9 and 11.

Theorem 12. Let the following conditions be satisfied:

(i) 𝑓
𝑛,𝑋

→ 𝑓
𝑋
a.e. in [𝑎, 𝑏]where each𝑓

𝑛,𝑋
is strong fuzzy

Henstock integrable on [𝑎, 𝑏];
(ii) the primitives 𝐹

𝑛,𝑋
of 𝑓

𝑛,𝑋
are𝑈𝐴𝐶∇(𝑋)with closed set

𝑋 in [𝑎, 𝑏].

Then 𝑓
𝑋

is strong fuzzy Henstock integrable on [𝑎, 𝑏] with
primitive 𝐹

𝑋
.

Next, we give the controlled convergence theorem for
the strong fuzzy Henstock integrals by the definition of the
𝑈𝐴𝐶𝐺

𝛿
for a fuzzy-number-valued function.

Definition 13. Let 𝐹 : [𝑎, 𝑏] → 𝐸𝑛, and let 𝑋 ⊂ [𝑎, 𝑏].
A fuzzy-number-valued function 𝐹 is 𝐴𝐶

𝛿
on 𝑋 if for each

𝜀 > 0 there exist 𝜂 > 0 and 𝛿(𝑥) > 0 on 𝑋 such that
∑
𝑁

𝑖=1
𝐷(𝐹(𝑐

𝑖
), 𝐹(𝑑

𝑖
)) < 𝜀 for∑𝑁

𝑖=1
(𝑑

𝑖
−𝑐

𝑖
) < 𝜂. A fuzzy-number-

valued function 𝐹 is 𝐴𝐶𝐺
𝛿
on [𝑎, 𝑏] if [𝑎, 𝑏] is the union of a

sequence of set {𝑋
𝑖
} such that the function 𝐹 is 𝐴𝐶

𝛿
(𝑋

𝑖
) for

each 𝑖.

Definition 14 (see [18]). A fuzzy-number-valued function 𝐹
defined on 𝑋 ⊂ [𝑎, 𝑏] is said to be 𝐴𝐶∗(𝑋) if for every 𝜀 > 0

there exists 𝜂 > 0 such that for every finite sequence of non-
overlapping intervals {[𝑎

𝑖
, 𝑏
𝑖
]}, satisfying ∑𝑛

𝑖=1
|𝑏
𝑖
− 𝑎

𝑖
| < 𝜂

where 𝑎
𝑖
, 𝑏
𝑖
∈ 𝑋 for all 𝑖, one has ∑𝜔(𝐹, [𝑎

𝑖
, 𝑏
𝑖
]) < 𝜀, where 𝜔

denotes the oscillation of 𝐹 over [𝑎
𝑖
, 𝑏
𝑖
]; that is, 𝜔(𝐹, [𝑎

𝑖
, 𝑏
𝑖
]) =

sup{𝐷(𝐹(𝑦), 𝐹(𝑥)); 𝑥, 𝑦 ∈ [𝑎
𝑖
, 𝑏
𝑖
]}. A fuzzy-number-valued

function 𝐹 is said to be 𝐴𝐶𝐺∗ on 𝑋 if 𝑋 is the union of
a sequence of closed sets {𝑋

𝑖
} such that, on each 𝑋

𝑖
, 𝐹 is

𝐴𝐶∗(𝑋
𝑖
).

Theorem 15. A fuzzy-number-valued function 𝐹 is 𝐴𝐶𝐺
𝛿
if

and only if it is 𝐴𝐶𝐺∗ on [𝑎, 𝑏].

Theorem 16 (controlled convergence theorem). Let the fol-
lowing conditions be satisfied:

(1) 𝑓
𝑛
(𝑥) → 𝑓(𝑥) almost everywhere in [𝑎, 𝑏] as 𝑛 → ∞

where each 𝑓
𝑛
is strong fuzzy Henstock integrable on

[𝑎, 𝑏];
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(2) the primitives 𝐹
𝑛
(𝑥) = (SFH) ∫𝑥

𝑎

𝑓
𝑛
(𝑠)d𝑥 of 𝑓

𝑛
are

𝑈𝐴𝐶𝐺
𝛿
uniformly in 𝑛;

(3) the sequence {𝐹
𝑛
(𝑥)} converges uniformly to a con-

tinuous function on [𝑎, 𝑏]. Then 𝑓(𝑥) is strong fuzzy
Henstock integrable on [𝑎, 𝑏] and one has

lim
𝑛→∞

(SFH) ∫
𝑏

𝑎

𝑓
𝑛
(𝑥) d𝑥 = (SFH) ∫

𝑏

𝑎

𝑓 (𝑥) d𝑥. (17)

If conditions (1) and (2) are replaced by condition (4):
(4) 𝑔(𝑥) ≤ 𝑓(𝑥) ≤ ℎ̃(𝑥) almost everywhere on [𝑎, 𝑏],

where 𝑔(𝑥) and ℎ̃(𝑥) are strong fuzzy Henstock inte-
grable.

Proof. By condition (2) there exists a sequence {𝑋
𝑖
} such that

𝐹
𝑛
∈ 𝑈𝐴𝐶

𝛿
in 𝑋

𝑖
a bounded, closed set with bounds 𝑎 and

𝑏, and put 𝑋 = 𝑋
𝑖
. We note that 𝐹

𝑛
(𝑥) → 𝐹(𝑥); we have

𝐹 ∈ 𝐴𝐶
𝛿
on𝑋, and hence𝐹 ∈ 𝐴𝐶𝐺

𝛿
on [𝑎, 𝑏]. ByTheorem 15,

𝐹 ∈ 𝐴𝐶∗ on 𝑋 and hence 𝐹 ∈ 𝐴𝐶𝐺∗ on [𝑎, 𝑏] and also 𝐹 ∈

𝐴𝐶 on𝑋 and hence 𝐹 ∈ 𝐴𝐶𝐺 on [𝑎, 𝑏].
Now we prove that 𝐹(𝑥) = 𝑓(𝑥) a.e. on [𝑎, 𝑏]. In fact,

let 𝐺 : [𝑎, 𝑏] → 𝐸𝑛 equal 𝐹
𝑛
on 𝑋, and extend 𝐺

𝑛
linearly

to the closed interval contiguous to𝑋. Likewise, we define 𝐺
from 𝐹. We see that𝐺

𝑛
and𝐺 are𝑈𝐴𝐶 on [𝑎, 𝑏]. By condition

(3), we have 𝐺
𝑛
→ 𝐺 on [𝑎, 𝑏]. Let [𝑐

𝑘
, 𝑑

𝑘
] be the intervals

contiguous to 𝑋. Then we have 𝐷(𝐺

𝑛
) ≤ 𝑀

𝑘
. We define a

fuzzy-number-valued function as follows:

𝐺


(𝑥) =
𝐺
𝑛
(𝑑

𝑘
) −

𝐻
𝐺
𝑛
(𝑐
𝑘
)

𝑑
𝑘
− 𝑐

𝑘

, 𝑥 ∈ (𝑐
𝑘
, 𝑑

𝑘
) . (18)

Consequently, 𝐺

𝑛
(𝑥) converges on (𝑐

𝑘
, 𝑑

𝑘
). Hence 𝐺

𝑛
con-

verges on [𝑎, 𝑏] a.e. Since {𝐺
𝑛
} ∈ 𝐴𝐶 on [𝑎, 𝑏], then 𝐺

𝑛
(𝑥) =

𝑓
𝑛

→ 𝑓 on 𝑋. Therefore, we have 𝐺

𝑛
(𝑥) = 𝑔(𝑥) =

𝑓(𝑥) = 𝐹(𝑥) a.e. on 𝑋. Thus 𝐹(𝑥) = 𝑓(𝑥) a.e. on [𝑎, 𝑏]

by Theorem 15. Therefore, there exists an 𝐴𝐶𝐺
𝛿
function on

[a, 𝑏] such that 𝐹(𝑥) = 𝑓(𝑥) a.e. on [𝑎, 𝑏]. Hence 𝑓 is strong
fuzzy Henstock integrable on [𝑎, 𝑏], and we have

lim
𝑛→∞

(SFH) ∫
𝑏

𝑎

𝑓
𝑛
(𝑥) d𝑥 = (SFH) ∫

𝑏

𝑎

𝑓 (𝑥) d𝑥. (19)

4. The Generalized Solutions of Discontinuous
Fuzzy Differential Equations

In this section, a generalized fuzzy differential equation of
form (4) is defined by using strong fuzzy Henstock integral.
Themain results of this section are existence theorems for the
generalized solution to the discontinuous fuzzy differential
equation.

Definition 17 (see [11]). Let 𝜏 and 𝜉 be fixed, and let a fuzzy-
number-valued function 𝑓(𝑡, 𝑥) be a Carathéodory function
defined on a rectangle𝑈 : |𝑡−𝜏| ≤ 𝑎, 𝐷(𝑥, 𝜉) ≤ 𝑏; that is,𝑓 is
continuous in 𝑥 for almost all 𝑡 and measurable in 𝑡 for each
fixed 𝑥.

Theorem 18. Let a fuzzy-number-valued function 𝑓 be a
function as given in Definition 17; then there exist two strong
fuzzy Henstock integrable functions ℎ̃ and 𝑔 defined on |𝑡−𝜏| ≤
𝑎 such that 𝑔(𝑡) ≤ 𝑓(𝑡, 𝑥) ≤ ℎ̃(𝑡) for all (𝑡, 𝑥) ∈ 𝑈.

Proof. Note that 𝑓 is a Carathéodory function. Thus, there
exist two measurable functions 𝑢(𝑡) and V(𝑡) defined on |𝑡 −
𝜏| ≤ 𝑎 with values in 𝐷(𝑥, 𝜉) ≤ 𝑏 such that 𝑓(𝑡, 𝑢(𝑡)) ≤

𝑓(𝑡, 𝑥) ≤ 𝑓(𝑡, V(𝑡)) for all (𝑡, 𝑥) ∈ 𝑈. Next, we will show
that 𝑓(𝑡, 𝑢(𝑡)) and 𝑓(𝑡, V(𝑡)) are fuzzy Henstock integrable by
using controlled convergence Theorem 16. First, there exists
a sequence {𝑘

𝑛
(𝑡)} of step functions defined on |𝑡 − 𝜏| ≤

𝑎 with values in 𝐷(𝑥, 𝜉) ≤ 𝑏 such that 𝑘
𝑛
(𝑡) → 𝑢(𝑡)

almost everywhere as 𝑛 → ∞. Let 𝐹
𝑛
(𝑡) = ∫

𝑡

𝜏

𝑓(𝑠, 𝑘
𝑛
(𝑠))d𝑠.

Then {𝐹
𝑛
(𝑡)} is 𝑈𝐴𝐶𝐺

𝛿
uniformly in 𝑛 and equicontinuous.

By controlled convergence Theorem 16, 𝑓(𝑡, 𝑢(𝑡)) is strong
fuzzy Henstock integrable. Similarly, 𝑓(𝑡, V(𝑡)) is strong fuzzy
Henstock integrable.

Definition 19. A fuzzy-number-valued function 𝑥(𝑡) : 𝐼 →

𝐸𝑛 is said to be a solution of the discontinuous fuzzy differ-
ential equation (4) if 𝑥(𝑡) satisfies the following conditions:

(i) 𝑥(𝑡) is 𝐴𝐶𝐺
𝛿
on each compact subinterval of 𝐼;

(ii) (𝑡, 𝑥) ∈ 𝑈 for 𝑡 ∈ 𝐼;
(iii) 𝑥(𝑡) for almost everywhere 𝑡 ∈ 𝐼.

Now we will state the existence theorem for the general-
ized solution of discontinuous fuzzy differential equation (4).

Theorem 20. Suppose that 𝑓 satisfies the condition of
Theorem 18; then there exists a generalized solution Φ of the
discontinuous fuzzy differential equation (4) on some interval
|𝑡 − 𝜏| ≤ 𝑎 which satisfies Φ(𝜏) = 𝜉.

Proof. Given 𝑔(t) ≤ 𝑓(𝑡, 𝑥) ≤ ℎ̃(𝑡) for all 𝑥 and almost all 𝑡
with (𝑡, 𝑥) ∈ 𝑈, we get 0̃ ≤ 𝑓(𝑡, 𝑥)−

𝐻
𝑔(𝑡) ≤ ℎ̃(𝑡)−

𝐻
𝑔(𝑡). Let

𝐹 (𝑡, 𝑥) = 𝑓(𝑡, 𝑥 + ∫
𝑡

𝜏

𝑔 (𝑠) d𝑠) −
𝐻
𝑔 (𝑡) , (20)

or

𝐹 (𝑡, 𝑥) = 𝑓(𝑡, 𝑥 + (−1) ⋅ ∫
𝑡

𝜏

𝑔 (𝑠) d𝑠) −
𝐻
𝑔 (𝑡) . (21)

Then 𝐹 is a Carathéodory function. Furthermore, 0̃ ≤

𝐹(𝑡, 𝑥) ≤ ℎ̃(𝑡) −
𝐻
𝑔(𝑡) for all (𝑡, 𝑥) ∈ 𝑈

0
, where 𝑈

0
⊂ 𝑈,

such that

𝐷(𝑥 + ∫
𝑡

𝜏

𝑔 (𝑠) d𝑠, 𝜉) ≤ 𝑏 ∀ (𝑡, 𝑥) ∈ 𝑈
0
. (22)

By Carathéodory existence theorem (see Theorem 7 in [11]),
there is a fuzzy-number-valued function 𝜓 on some interval
|𝑡 − 𝜏| ≤ 𝑎 such that 𝜓(𝑡) = 𝐹(𝑡, 𝜓(𝑡)) almost everywhere in
this interval and 𝜓(𝜏) = 𝜉. Let

𝜙 (𝑡)=𝜓 (𝑡)+∫
𝑡

𝜏

𝑔 (𝑠) d𝑠 or 𝜙 (𝑡)=𝜓 (𝑡)+(−1) ⋅ ∫
𝑡

𝜏

𝑔 (𝑠) d𝑠.

(23)
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Then, for almost all 𝑡, we have the following.

Case 1. Consider

𝜙


(𝑡) = 𝜓


(𝑡) + 𝑔 (𝑡) = 𝐹 (𝑡, 𝜓 (𝑡)) + 𝑔 (𝑡)

= 𝑓(𝑡, 𝜓 (𝑡) + ∫
𝑡

𝜏

𝑔 (𝑠) d𝑠) −
𝐻
𝑔 (𝑡) + 𝑔 (𝑡)

= 𝑓 (𝑡, 𝜙 (𝑡)) ,

𝜙 (𝑡) = 𝜓 (𝜏) + ∫
𝑡

𝜏

𝑔 (𝑠) d𝑠 = 𝜉.

(24)

Case 2. Consider

𝜙


(𝑡) = 𝜓


(𝑡) + 𝑔 (𝑡) = 𝐹 (𝑡, 𝜓 (𝑡)) + 𝑔 (𝑡)

= 𝑓(𝑡, 𝜓 (𝑡) + (−1) ⋅ ∫
𝑡

𝜏

𝑔 (𝑠) d𝑠) −
𝐻
𝑔 (𝑡) + 𝑔 (𝑡)

= 𝑓 (𝑡, 𝜙 (𝑡)) ,

𝜙 (𝑡) = 𝜓 (𝜏) + (−1) ⋅ ∫
𝑡

𝜏

𝑔 (𝑠) d𝑠 = 𝜉.

(25)

The proof is complete.

Example 21. Consider fuzzy differential equation 𝑥 =

𝑓(𝑡, 𝑥) = 𝑔(𝑡, 𝑥) + ℎ̃(𝑡), where 𝐷(𝑔(𝑡, 𝑥), 0̃) ≤ 𝐷(𝑔
1
(𝑡), 0̃) for

all |𝑡| ≤ 1, 𝐷(𝑥, 0̃) ≤ 1 and 𝑔
1
(𝑡) is Kaleva integrable on |𝑡| ≤ 1

and ℎ̃(𝑡) = 𝐴 ⋅ (𝑑/𝑑𝑡)(𝑡2 sin 𝑡−2) if 𝑡 ̸= 0 and ℎ̃(0) = 0̃. Here 𝐴
is defined in Example 1. Note that ℎ̃ is strong fuzzy Henstock
integrable but not Kaleva integrable, and

ℎ̃ (𝑡) −
𝐻
𝑔
1
(𝑡) ≤ 𝑓 (𝑡, 𝑥) ≤ ℎ̃ (𝑡) + 𝑔

1
(𝑡) ,

for |𝑡| ≤ 1, 𝐷 (𝑥, 0̃) ≤ 1.

(26)

Thus, by Theorem 20, there exists a solution of 𝑥 = 𝑓(𝑡, 𝑥)

with 𝑥(0) = 0̃. For instance, if 𝑔(𝑡, 𝑥) = 𝑡2𝑥, then

𝜙 (𝑡) = 𝑒
𝑡
3

/3

⋅ ∫
𝑡

0

𝑒
−𝑠
3

/3

ℎ̃ (𝑠) d𝑠 (27)

is a solution by using integrating factor.

We get the following existence theorem by Theorems 18
and 20.

Theorem 22. Let a fuzzy-number-valued function 𝑓 be a
Carathéodory function defined on a rectangle 𝑈 : |𝑡 −

𝜏| ≤ 𝑎,𝐷(𝑥, 𝜉) ≤ 𝑏. Let 𝑓(𝑡, 𝑢(𝑡)) be strong fuzzy Henstock
integrable on |𝑡 − 𝜏| ≤ 𝑎 for any step function 𝑢(𝑡) defined
on |𝑡 − 𝜏| ≤ 𝑎 with values in 𝐷(𝑥, 𝜉) ≤ 𝑏. Denote that
𝐹
𝑢
(𝑡) = ∫

𝑡

𝜏

𝑓(𝑠, 𝑢(𝑠))d𝑠. If {𝐹
𝑢
: 𝑢 is a step function} is 𝑈𝐴𝐶𝐺

𝛿

uniformly in 𝑢 and equicontinuous on |𝑡 − 𝜏| ≤ 𝑎, then there
exists a solution 𝜙 of 𝑥 = 𝑓(𝑡, 𝑥) on some interval |𝑡 − 𝜏| ≤ 𝛽
with 𝜙(𝜏) = 𝜉.

Finally, in this paper, we will show the continuous
dependence of a solution on parameters by using Theorems
16, 18, and 22.

Let 𝑈
𝑝
be a connected set in 𝑈. Let 𝑐 > 0 and let 𝜇

0
be

fixed:
𝐼
𝜇
= {𝜇;

𝜇 − 𝜇0
 < 𝑐} ,

𝑈
𝜇
= {(𝑡, 𝑥, 𝜇) ; (𝑡, 𝑥) ∈ 𝑈

𝑝
, 𝜇 ∈ 𝐼

𝜇
} .

(28)

Let 𝑓(𝑡, 𝑥, 𝜇) be a fuzzy-number-valued function defined
on 𝑈

𝜇
such that, for each fixed 𝜇, the function 𝑓 is a

Carathéodory function defined on 𝑈
𝑝
for each fixed 𝑡 and

continuous at (𝑥, 𝜇
0
) for every 𝑥. For 𝜇 = 𝜇

0
, let

𝑥


(𝑡) = 𝑓 (𝑡, 𝑥, 𝜇) ,

𝑥 (𝜏) = 𝜉 ∈ 𝐸
𝑛

(29)

have a solution 𝜙
0
on [𝑎, 𝑏], where 𝜏 ∈ [𝑎, 𝑏]. Let 𝑓(𝑡, 𝑢(𝑡), 𝜇)

be strong fuzzy Henstock integrable on [𝑎, 𝑏] for any step
function 𝑢(𝑡) with (𝑡, 𝑢(𝑡)) ∈ 𝑈

𝑝
for 𝑡 ∈ [𝑎, 𝑏].

Definition 23. Denote

𝐹
𝜇,𝑢
(𝑡) = ∫

𝑡

𝑎

𝑓 (𝑠, 𝑢 (𝑠) , 𝜇) d𝑠. (30)

The family {𝐹
𝜇,𝑢
} is said to be equicontinuous in 𝑢 and near

𝜇
0
if, for each 𝑡

0
∈ [𝑎, 𝑏], there exists an interval |𝜇 − 𝜇

0
| < 𝑟

0

such that the family {𝐹
𝜇,𝑢
(𝑡) : 𝑢 and 𝜇 with |𝜇 − 𝜇

0
| < 𝑟

0
} is

equicontinuous at 𝑡
0
.

Theorem 24. Let 𝑓 be a fuzzy-number-valued function as
given above. If the primitive 𝐹

𝜇,𝑢
(𝑡) of 𝑓(𝑡, 𝑥, 𝜇) is 𝐴𝐶𝐺

𝛿

uniformly in𝑢 and𝜇 and equicontinuous in𝑢 and near𝜇
0
, then

there exists 𝛿 > 0 such that, for any fixed 𝜇 with |𝜇 − 𝜇
0
| < 𝛿,

a solution 𝜙
𝜇
of discontinuous fuzzy differential equation (29)

exists over [𝑎, 𝑏] and as 𝜇 → 𝜇
0
, 𝜙

𝜇
→ 𝜙

0
uniformly over

[𝑎, 𝑏].

Proof. Firstly, we will consider the case 𝜏 ∈ (𝑎, 𝑏). By
Theorem 22 and the equicontinuity of 𝐹

𝜇,𝑢
(𝑡), all solutions

𝜙
𝜇
of problem (29) with |𝜇 − 𝜇

0
| ≤ 𝛿

1
for some 𝛿

1
> 0

exist over some interval |𝑡 − 𝜏| ≤ 𝛼 with 𝛼 > 0. Then
𝐺 = {𝜙

𝜇
: |𝜇 − 𝜇

0
| ≤ 𝛿

1
} is equicontinuous on |𝑡 − 𝜏| ≤ 𝛼.

Because 𝜙
𝜇
(𝜏) = 𝜉, 𝐺 is uniformly bounded. Hence, for all

sequence of𝐺with𝜇 → 𝜇
0
, there exists a subsequencewhich

converges uniformly. That is to say, 𝜙
𝜇(𝑘)

→ 𝜓 uniformly on
|𝑡 − 𝜏| ≤ 𝛼 as 𝜇(𝑘) → 𝜇

0
. Since we have

𝜙
𝜇(𝑘)

(𝑡) = 𝜉 + ∫
𝑡

𝜏

𝑓 (𝑠, 𝜙
𝜇(𝑘)

, 𝜇 (𝑘)) d𝑠 (31)

or

𝜙
𝜇(𝑘)

(𝑡) = 𝜉 + (−1) ⋅ ∫
𝑡

𝜏

𝑓 (𝑠, 𝜙
𝜇(𝑘)

, 𝜇 (𝑘)) d𝑠, (32)

byTheorem 16 we get

𝜓 (𝑡) = 𝜉 + ∫
𝑡

𝜏

𝑓 (𝑠, 𝜓 (𝑠) , 𝜇
0
) d𝑠 (33)
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or

𝜓 (𝑡) = 𝜉 + (−1) ⋅ ∫
𝑡

𝜏

𝑓 (𝑠, 𝜓 (𝑠) , 𝜇
0
) d𝑠. (34)

Thus, 𝜓 is a solution of (29) for 𝜇 = 𝜇
0
. Hence, 𝜓 = 𝜙

0
on

|𝑡 − 𝜏| ≤ 𝛼 because the solution 𝜙
0
is unique. Consequently,

𝜙
𝑢(𝑘)

→ 𝜙
0
uniformly on |𝑡 − 𝜏| ≤ 𝛼 as 𝜇(𝑘) → 𝜇

0
. By

Reductio ad absurdum, 𝜙
𝜇
→ 𝜙

0
uniformly there as 𝜇 →

𝜇
0
.
Secondly, we will extend the result over [𝑎, 𝑏]. We con-

sider the case [𝜏, 𝑏]. Assume that there exists 𝑡
0
∈ [𝜏, 𝑏) such

that the result is valid over [𝜏, 𝑡
0
− ℎ] but not [𝜏, 𝑡

0
+ ℎ].

Obviously, 𝑡
0
≥ 𝜏 + 𝛼. Let 𝛾, 𝛽 be such that

𝐻 = {(𝑡, 𝑥) :
𝑡 − 𝑡0

 ≤ 𝛼,𝐷 (𝑥, 𝜙
0
(𝑡 − 𝛾) ≤ 𝛽)} (35)

is contained in 𝑈. Since {𝐹
𝜇,𝑢
(𝑡)} is equicontinuous in 𝑢 and

near 𝜇
0
, we may choose 𝛾 > 0 small enough such that

𝐷(∫
𝑡

𝑡
0

𝑓 (𝑠, 𝑢 (𝑠) , 𝜇) d𝑠, 0̃) <
𝛽

3
(36)

for all step functions 𝑢whenever |𝑡− 𝑡
0
| ≤ 𝛾 and |𝜇−𝜇

0
| < 𝛿

2
.

Since 𝜙
𝜇
→ 𝜙

0
uniformly on [𝜏, 𝑡

0
− ℎ], there exists a 𝛿 such

that

𝐷(𝜙
𝜇
(𝑡
0
− 𝛾) , 𝜙

0
(𝑡
0
− 𝛾)) <

𝛽

3
(37)

for |𝜇 − 𝜇
0
| < 𝛿. Hence, we have

𝐷(∫
𝑡

𝑡
0
−𝛾

𝑓 (𝑠, 𝑢 (𝑠) , 𝜇) d𝑠, 𝜙
𝑚𝑢
(𝑡
0
− 𝛾) −

𝐻
𝜙
0
(𝑡
0
− 𝛾))

≤ 𝐷(∫
𝑡
0

𝑡
0
−𝛾

𝑓 (𝑠, 𝑢 (𝑠) , 𝜇) d𝑠, 0̃)

+ 𝐷(∫
𝑡

𝑡
0

𝑓 (𝑠, 𝑢 (𝑠) , 𝜇) d𝑠, 0̃)

+ 𝐷 (𝜙
𝑚𝑢
(𝑡
0
− 𝛾) , 𝜙

0
(𝑡
0
− 𝛾)) < 3 ⋅

𝛽

3
.

(38)

Thus, for each 𝑢 with |𝜇 − 𝜇
0
| < 𝛿, a solution of (29) with

𝑥(𝑡
0
− 𝛾) = 𝜙

𝜇
(𝑡
0
− 𝛾) exists on |𝑡 − 𝑡

0
| ≤ 𝛾. Hence, 𝜙

𝜇
can be

continued to 𝑡
0
+ 𝛾. So, in the case [𝜏 − 𝛼, 𝜏 + 𝛼], 𝜙

𝜇
→ 𝜙

0

uniformly on [𝜏, 𝑡
0
+ 𝛾]. It leads to a contradiction, similarly,

for the cases 𝑡
0
= 𝑏 and [𝑎, 𝜏]. Therefore, the theorem holds

over [𝑎, 𝑏].

Example 25. Let

�̃� (𝑡) = {
𝐴 ⋅ 𝑡

2 sin 𝑡−2 𝑡 ̸= 0,

0̃, 𝑡 = 0,
(39)

where fuzzy number 𝐴 is defined in Example 1. Let ℎ̃(𝑡) =
�̃�(𝑡). We define

ℎ̃
𝜇
(𝑡) =

{

{

{

ℎ̃ (𝑡) 𝜇 ∈ [0, 1) , 𝑡 ∈
(−2, 2)

(−𝜇, 𝜇)
,

0̃, otherwise,
(40)

and ℎ̃
𝜇
(𝑡) = ℎ̃

−𝜇
(𝑡) for 𝜇 ∈ (−1, 0]. Let 𝑓(𝑡, 𝑥, 𝜇) = 𝑡2𝑥 + ℎ̃

𝜇
(𝑡)

defined on (−2, 2) × (−1, 1). Then, we have

𝐷(𝐹
𝜇,𝑢
(𝑡
1
) , 𝐹

𝜇,𝑢
(𝑡
2
)) = 𝐷(∫

𝑡
2

𝑡
1

𝑓 (𝑠, 𝑢 (𝑠) , 𝜇) d𝑠, 0̃)

≤ ∫
𝑡
2

𝑡
1

𝑠
2d𝑠 + 𝐷(∫

𝑡
2

𝑡
1

ℎ̃
𝜇
d𝑠, 0̃) ,

𝐷(∫
𝑡
2

𝑡
1

ℎ̃
𝜇
d𝑠, 0̃) ≤ ∫

𝑡
2

𝑡
1

𝐷(ℎ̃ (𝑠) d𝑠, 0̃) ,

(41)

where 𝑡
1
, 𝑡
2
∈ (0, 1] or 𝑡

1
, 𝑡
2
∈ [−1, 0), and

𝐷(∫
𝑡

0

ℎ̃
𝜇
(𝑠) d𝑠, 0̃)

=
{

{

{

𝐷(𝐴 ⋅ 𝑡2 sin 𝑡−2, 𝐴 ⋅ 𝜇2 sin 𝜇−2) , 𝜇 ̸= 0,

𝐷 (𝐴 ⋅ 𝑡2 sin 𝑡−2, 0̃) , 𝜇 = 0.

(42)

Note that ℎ̃ is Kaleva integrable on every subinterval of [−1, 0)
and (0, 1]. Therefore, we have that 𝐹

𝜇,𝑢
(𝑡) is equicontinuous

on [−1, 1] in 𝑢 and near 𝜇
0
= 0. Furthermore, 𝐹

𝜇,𝑢
(𝑡) is

𝐴𝐶
𝛿
(𝑋

𝑛
) uniformly in 𝜇 and 𝑢, where 𝑋

𝑛
= [1/𝑛, 1], 𝑛 =

1, 2, . . .. On the other hand, by using integrating factor, for
𝑡 ∈ [−1, 1], we have

𝜙
𝜇
(𝑡) = 𝑒

𝑡
2

/3

∫
𝑡

0

𝑒
−𝑠
3

/3

𝐴 ⋅ ℎ̃
𝜇
(𝑠) d𝑠, (43)

with 𝜙
𝜇
(0) = 0̃. Obviously, 𝜙

0
is unique.Thus, byTheorem 24,

𝜙
𝜇
→ 𝜙

0
uniformly on [−1, 1].

5. Conclusion

In this paper, we give the definition of the𝑈𝐴𝐶𝐺
𝛿
for a fuzzy-

number-valued function and the nonabsolute fuzzy integral
and its controlled convergence theorem. In addition, we deal
with the Cauchy problem and the continuous dependence of
a solution on parameters of discontinuous fuzzy differential
equations involving the strong fuzzy Henstock integral in
fuzzy number space. The function governing the equations
is supposed to be discontinuous with respect to some vari-
ables and satisfy nonabsolute fuzzy integrability. Our result
improves the result given in [1, 11, 19, 20] (where uniform
continuity was required), as well as those referred therein.
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