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This paper proposes a characteristic time expansion method (CTEM) for estimating nonlinear restoring forces. Because noisy
data and numerical instability are the main causes of numerical developing problems in an inverse field, a polynomial to identify
restoring forces is usually adopted to eliminate these problems. However, results of the way doing are undesirable for a high
order of polynomial. To overcome this difficulty, the characteristic length (CL) is introduced into the power series, and a natural
regularization technique is applied to ensure numerical stability and determine the existence of a solution. As compared to previous
solutions presented in other researches, the proposed method is a desirable and accurate solver for the problem of restoring the
force in the inverse vibration problems.

1. Introduction

Identification of nonlinear dynamical system is a kind of
inverse problems and is usually encountered in engineering
applications. For instance, to specify the parameters of
dynamical systems is necessary in optimal processes. It is
important to analyze and determine the parameters of the
system using experimental testing and numerical methods.
However, uses of these methods might lead to some chal-
lenging problems in the structural mechanic field because a
small measurement error can cause large errors in the results
of parameters’ identification.

To overcome these inverse problems, some solvers in the
literature were proposed by using numerical techniques and
experimental testing. For instance, various publications in [1–
10] recommended uses of the damping coefficient, stiffness,
and external force for solving the inverse problems. Mode
shape, frequency, displacement, and velocity at different
times can also be used to estimate these properties success-
fully [11]. Huang [12] has employed a conjugate gradient
method (CGM) to solve the nonlinear inverse vibration
problem for the estimation of the time-dependent stiffness
coefficient. Recently, Liu [13, 14] has developed a Lie-group
shooting method to study the inverse vibration problem for

estimating the time-dependent damping and stiffness coeffi-
cients and simultaneously derived a closed-form solution to
estimate the parameters.

A complete review on the developments of useful meth-
ods for the realm of nonlinear system identification can be
found in [14]. Reference [15] also proposed the idea of a force
statemappingmethodwhich is a simple procedure and allows
a direct identification of the restoring force for nonlinear
mechanical systems. This idea was further extended in [16–
18]. Recently, Namdeo and Manohar [19] have modified the
force state mapping technique with two alternative schemes
of functional representation: (1) reproducing kernel particle
method and kriging technique and (2) estimating the param-
eters of nonlinear system from measured time histories of
response under known excitations. Although this numerical
method exhibits the capability to reproduce polynomials of
specified order and has been applied to mechanical experi-
ments, yet how to ensure numerical stability and avoid noise
disturbance are not reported.

The aim of this paper is to develop a simple, multistep
regularization algorithm with easy numerical implementa-
tion and versatility. A simple polynomial interpolation can
be considered as a fit for the time history of displacement
response under known excitations. Theoretically, if the order
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Figure 1: For Example 1, showing the error of estimation with different CLs.
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Figure 2: For Example 1, (a) comparing the exact solution and numerical one for velocity and (b) displaying the estimated error of velocity.

of the polynomial interpolation is large enough, the approxi-
mation displacement response can be as accurate as possible.
However, in practical applications, it is not a good method
to easily increase the order to obtain a highly accurate
approximation. In fact, doing so will lead to a highly ill-
posed matrix with a high-order function (the Vandermonde
matrix), which has been described in [20]. To resolve the ill-
posed linear problems for the Vandermonde system, Beck-
ermann [21] and Li [22] claimed that the optimal condition
number of the Vandermonde matrix could be expected.
Nevertheless, the results of Beckermann [21] and Li [22] show
that in the best possible cases, the condition numbers of
the Vandermonde matrices still grow exponentially with the
order of the interplant polynomial. Because of this, no one is
interpolating the data by the high-order polynomials in the
usual bases but rather in the Chebyshev polynomials. Hence,

how to alleviate the ill-poseness owing to high-order function
becomes one of the main tasks in this paper. First of all,
we introduce the characteristic length (CL) of computational
time into the high-order polynomial expansion to relieve
the ill-conditioning of the resulting coefficient matrix of the
polynomial expansion and then ensure numerical stability.
This concept was first proposed to deal with the Laplace equa-
tion using a physical quantity [13, 14, 23, 24]. Recently, the
CL has been successfully extended to deal with the Laplace
equation and sloshing wave problems [25–27]. Although the
CL can enhance the numerical accuracy for solving ill-posed
linear matrix, it cannot avoid the effect of measured errors
for parameters identification problems. Therefore, how to
overcome the instability of the mathematical procedure is
quite important. In addition, a small disturbance ofmeasured
data has to be considered in the numerical algorithm because
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Figure 3: For Example 1, (a) comparing the exact solution and numerical one for acceleration and (b) displaying the estimated error of
acceleration.
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Figure 4: For Example 1, (a) comparing the exact solution and numerical one for restoring force and (b) displaying the estimated error of
restoring force.

they could cause an error identification of the parameter.
In order to identify an accurate and stable solution for
longer time scales, some special techniques have been used,
including of the singular value decomposition (SVD), the
SVD with a regularization parameter determined by the L-
curve method, and sensitivity analysis. Despite these efforts,
the stability problem remains unresolved. To thoroughly
overcome these difficulties, this paper further adopts the

CL combined with the natural regularization technique [28]
to track ill-posed linear problems in numerical procedures.
One advantage of this regularization method is that it can
determine whether a solution exists for a linear system with
the noisy level.

Apart from the current section, Section 2 describes the
mathematical formulation of the characteristic time expan-
sion method and introduces the numerical procedure of the
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Figure 5: For Example 1, (a) comparing estimated and exact restoring forces under different noise level and (b) displaying the error of
estimation with 𝜎 = 1%, 3%, 5%, and 10%, respectively.
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Figure 6: For Example 2, (a) comparing exact solution and numerical one for restoring force with 𝑇
0
= 101 and 𝑚 = 100 under 4 seconds

and (b) displaying the estimated error of restoring force.

matrix CGM. Section 3 gives several numerical examples,
including of Duffing’s oscillator, Duffing’s oscillator with
negative linear stiffness, Van der Pol’s oscillator, Bouc-Wen
class model, and the seat model, to compare results of our
method with the analytical solutions. Finally, some concrete
conclusions are drawn in Section 4.

2. Basic Formulation

A second-order ordinary differential equation (ODE) for the
equation of motion is expressed as

�̈� + 𝐻 (𝑥, �̇�) = 𝑃 (𝑡) , (1)
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Figure 7: For Example 2, (a) comparing exact solution and numerical one for restoring force with 𝑇
0
= 2×105 and𝑚 = 500 under 4 seconds

and (b) displaying the estimated error of restoring force.

where 𝑥 represents the displacement of a system response;
𝑃(𝑡) and 𝐻(𝑥, �̇�) are the external excitation and restoring
force, respectively. In order to obtain 𝐻, a trivial rearrange-
ment of (1) gives

𝐻(𝑥, �̇�) = 𝑃 (𝑡) − �̈�. (2)

Here, 𝐻 can be obtained if the quantities, 𝑃(𝑡) and �̈�,
on the right-hand side of (2) are known. In general, it is
easier to measure the displacement at some discrete sampling
times than to directly measure velocities and accelerations.
Therefore, if 𝑥

1
(𝑡) = 𝑔(𝑡) is denoted as the measured

displacement, the differentiation of displacements can be
expressed as follows:

𝑥
1
(𝑡) = 𝑔 (𝑡) , (3)

�̇�
1
(𝑡) = 𝑥

2
(𝑡) , (4)

�̇�
2
(𝑡) = 𝑥

3
(𝑡) . (5)

This is however a set of index-three differential algebraic
equations (DAEs) [29], which is hard to solve because
the amplification of small errors and perturbations in the
displacement cause severe numerically ill-posed condition.

2.1. The Characteristic Time Expansion Method. The polyno-
mial interpolation is defined as the interpolation of a given
set of data by a polynomial. In other words, given some data
points, the aim is to find a polynomial which exactly goes
through these points of data.

According to (3), the displacement can be expressed as a
polynomial expansion:

𝑥 (𝑡
𝑘
) =

𝑛

∑
𝑘=1

𝑎
𝑘
(𝑡
𝑘
)
𝑛−1

, 0 ≤ 𝑡
𝑘
≤ 𝑡
𝑓
, (6)

where 𝑡
𝑘
denotes each discrete time, 𝑥(𝑡

𝑘
) denotes the

displacement at each time, 𝑡
𝑓
denotes the final time, and

𝑎
𝑘
denotes the unknown coefficient. In many engineering

applications, one wants to interpolate the data as accurate
as possible. But this is limited by the interpolation of 𝑛 data
with (𝑛 − 1)-order polynomials, where the resultant Vander-
mondematrices are highly ill-conditioned asmeasured by the
Lebesgue constant 2𝑛/[𝑒(𝑛 − 1) ln 𝑛].

In this study, we introduce the characteristic length (CL)
into (6) and express as follows

𝑥 (𝑡
𝑘
) = 𝑎
0
+

𝑚

∑
𝑘=1

𝑎
𝑘
(
𝑡
𝑘

𝑇
0

)

𝑘

, 0 ≤ 𝑡
𝑘
≤ 𝑡
𝑓
, 𝑡
𝑓
< 𝑇
0
, (7)

where𝑇
0
denotes the CL. Differentiation of (7) yields velocity

and acceleration and they are expressed as follows:

�̇� (𝑡
𝑘
) =

𝑚

∑
𝑘=1

𝑘

𝑇
0

𝑎
𝑘
(
𝑡
𝑘

𝑇
0

)

𝑘−1

,

�̈� (𝑡
𝑘
) =

𝑚

∑
𝑘=1

𝑘 (𝑘 − 1)

𝑇2
0

𝑎
𝑘
(
𝑡
𝑘

𝑇
0

)

𝑘−2

.

(8)
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Figure 8: For Example 2, (a) comparing exact solution and numerical one for restoring force with 𝑇
0
= 120 and 𝑚 = 100 under 10 seconds

and (b) displaying the estimated error of restoring force.

The polynomial expansion in (7) can be used to describe the
displacement of a system. Hence, (7) can be expressed as a
linear equation system with 𝑛 = 𝑚 + 1:

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

1
𝑡
1

𝑇
0

(
𝑡
1

𝑇
0

)

2

⋅ ⋅ ⋅ (
𝑡
1

𝑇
0

)

𝑚

1
𝑡
2

𝑇
0

(
𝑡
2

𝑇
0

)

2

⋅ ⋅ ⋅ (
𝑡
2

𝑇
0

)

𝑚

1
𝑡
3

𝑇
0

(
𝑡
3

𝑇
0

)

2

⋅ ⋅ ⋅ (
𝑡
3

𝑇
0

)

𝑚

...
...

... d
...

1
𝑡
𝑚

𝑇
0

(
𝑡
𝑚

𝑇
0

)

2

⋅ ⋅ ⋅ (
𝑡
𝑚

𝑇
0

)

𝑚

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

[
[
[
[
[
[

[

𝑎
0

𝑎
1

𝑎
2

...
𝑎
𝑚

]
]
]
]
]
]

]

=

[
[
[
[
[
[
[
[
[

[

𝑥 (𝑡
1
)

𝑥 (𝑡
2
)

𝑥 (𝑡
3
)

...
𝑥 (𝑡
𝑚
)

]
]
]
]
]
]
]
]
]

]

. (9)

We denote the above equation by

Rc = b
1
, (10)

where c = [𝑎
0
, 𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑚
]
T is the vector of unknown

coefficients.

2.2. The Matrix CGM for Ill-Posed Linear System. When
a matrix is ill-posed and measured data contains noisy
disturbances, it is difficult to ensure the stability of the system
using the conventional regularization techniques. Therefore,
Liu et al. [28] proposed a natural regularization method,
which proves that a solution exists when ill-posedmatrix and
noisy disturbances occur. This method can be described by
the following matrix equation:

RTUT
= I
𝑚
, that is, (UR)T = I

𝑚
. (11)

If U is the inversion of R, numerically, U becomes a left-
inversion of R. Then we have

(RRT
)UT

= R. (12)

Let

RX
0
= y
0
. (13)

GivenX
0
, sayX

0
= Ι = [1,. . .,1]T, y

0
can be directly obtained

because R is a given matrix. Hence, we have

yT
0
UT

= XT
0
, that is, X

0
= Uy
0
. (14)

When (11) and (14) are combined together, they create
an over-determined system to calculate UT. The over-
determined system can be written as

BUT
= [

[

I
𝑚

XT
0

]

]

, (15)

where

B := [
RT

yT
0

] (16)

is an 𝑛 × 𝑚 matrix with 𝑛 = 𝑚 + 1. Multiplying (14) by BT

yields an𝑚 × 𝑚matrix equation:

[RRT
+ y
0
yT
0
]UT

= R + y
0
XT
0
. (17)

Besides the primal system shown in (10), we need to solve the
dual system with

RTy = b
1
. (18)
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Figure 9: For Example 2, (a) comparing exact solution and numerical one for restoring force with 𝑇
0
= 4×105 and𝑚 = 500 under 10 seconds

and (b) displaying the estimated error of restoring force.
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Figure 10: For Example 2, (a) comparing estimated and exact restoring forces and (b) displaying the error of estimation with 𝜎 = 1%, 3%,
5%, and 10%, respectively.

Applying the operators in (17) to b
1
and utilizing the above

equation, that is, y = RTb
1
, we can obtain

[RRT
+ y
0
yT
0
] y = Rb

1
+ (X
0
⋅ b
1
) y
0
, (19)

where y
0
= RX
0
.

Replacing the R in (19) by RT, we have a similar equation
for the primal system in (10)

[RTR + y
0
yT
0
] c = RTb

1
+ (X
0
⋅ b
1
) y
0
, (20)

where y
0
= RTX

0
.
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Figure 12: For Example 3, (a) comparing estimated and exact restoring forces and (b) displaying the estimation error of restoring force.

Finally, when c of (20) is calculated by the CGM, the
restoring force, velocity and acceleration can be obtained
from (2) and (8).

3. Numerical Examples

Example 1. In this case, we consider a Duffing oscillator [29]
and a second-order ODE to describe the forced vibration of a
nonlinear structure by

�̈� + 𝛾�̇� + 𝛽𝑥 + 𝛼𝑥
3
= 𝑃 (𝑡) , (21)

where the parameters are fixed as 𝛼 = 1, 𝛽 = −1, and 𝛾 = 0.3.
The restoring force can be expressed as follows:

𝐻(𝑥) = 𝑥
3
− 𝑥. (22)

In order to identify the restoring force 𝐻 as a function of 𝑥,
a monotonic function of 𝑡 is required. In this example, 𝑥(𝑡) =
𝑡
2 − 8 is used to obtain the external force and is given by

𝑃 (𝑡) = (𝑡
2
− 8)
3

− 𝑡
2
+ 0.6𝑡 + 10. (23)

To test the stability of the numerical method, the order of
the polynomial and computational time are increased. The
restoring force in the initial and final time changed very
rapidly. To understand the CL effect, 𝑚 = 201, X

0
= I, and

𝜀 = 1 × 10−16 are fixed. The maximum estimation error of𝐻
with different CLs, shown in Figure 1, is smaller than 10−6.

It can be seen that including the CL into this case is
efficient to overcome an ill-posed matrix. Furthermore, by
fixing 𝑇

0
= 1200, the exact solutions for velocity and

acceleration can be determined. The numerical results are
shown in Figures 2, 3, and 4. According to the numerical
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Figure 13: For Example 3, (a) comparing estimated and exact restoring forces with 𝜎 = 5%and (b) displaying the estimation error of restoring
force.
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results, the maximum estimation errors of 𝐻 are found to
be smaller than 6 × 10−10. We can find that applying the CL
andmatrix regularizationmethodwith the CGM can provide
highly stable and accurate solutions. In order to further test
the stability of the present method under different noise
levels, we also consider

𝑥
𝑖
= 𝑥
𝑖
+ 𝜎𝑅 (𝑖) (24)

as an input into the estimation equations, where 𝑅(𝑖) is a
random number in [−1, 1], and 𝜎 is a noise level. With
different noise levels 𝜎 = 1%, 3%, 5%, and 10%, the computed
profile of restoring forces is shown in Figure 5. Figure 5 also
shows that the maximum estimated errors of 𝐻 are smaller
than 10−1 with noisy disturbances. We can find that the
CL can effectively overcome numerical instability under the
effect of the high-order function and large noise disturbances.
Hence, we can see that the present method has a highly

numerical accuracy and stability under the effect of the high-
order function and large noise.

Example 2. In this case, the Van der Pol oscillator is one of
the nonlinear benchmark problem, and𝐻(𝑥, �̇�) is given by

𝐻(𝑥, �̇�) = 𝑥 + (𝑥
2
− 1) �̇�. (25)

In this equation, 𝑥 is given by 𝑥(𝑡) = 𝑡3/3 − 8, and then, the
external force can be obtained as

𝑃 (𝑡) = (
𝑡3

3
− 8𝑡) + [(

𝑡
3

3
− 8𝑡)

2

− 1] (𝑡
2
− 8) + 2𝑡. (26)

In this calculation, by fixing 𝜀 = 1×10−16,X
0
= I, and𝑇

𝑓
= 4,

the numerical accuracy and stability of different parameters
can be tested, including 𝑇

0
= 101,𝑚 = 100 and 𝑇

0
= 2 × 105,

𝑚 = 500, respectively. The maximum estimation error of 𝐻
shown in Figures 6 and 7 are smaller than 10−8.

To test the numerical stability of increasing the computa-
tional time by 10 seconds, the parameters are fixed as 𝑇

0
=

120, 𝑚 = 100 and 𝑇
0
= 4 × 105, 𝑚 = 500, respectively.

The maximum estimation errors of 𝐻, shown in Figures 8
and 9, are smaller than 10−8. From the numerical solutions
in Figures 6–9, it shows that the present method can keep the
same numerical accuracy with the increase of the CL when
the computational time increases.

This example demonstrates the results of fixing the
parameters 𝑇

𝑓
= 10, 𝑇

0
= 1.2 × 104, and 𝑚 = 201

under different noise levels with 𝜎 = 1%, 3%, 5%, and
10%. The computed profile of 𝐻 is plotted in Figure 10.
Figure 10(a) compares the restoring force with exact one, and
the maximum estimation error of 𝐻 shown in Figure 10(b)
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Figure 15: For Example 4, (a) comparing estimated and exact restoring forces and (b) displaying the estimation error of restoring force.
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Figure 16: For Example 4, (a) comparing estimated and exact restoring forces with 𝜎 = 5%and (b) displaying the estimation error of restoring
force.

is smaller than 10−1. From numerical result, we can find that
the maximum error occurs because the displacement is equal
to zero. That is, this present method can overcome the effect
of the high-order function and large noise simultaneously.
Therefore, it is found that the proposed method is accurate
especially when noisy disturbances are encountered.

Example 3. The Bouc-Wen class model is one of the most
widely used to efficiently describe smooth hysteretic behavior
in engineering application. For a structural element described

by the Bouc-Wen classical model, the restoring force is
written as

𝐻(𝑥, �̇�) = 𝛼𝑤
2

𝑛
𝑥 + (1 − 𝛼)𝑤

2

𝑛
𝑧, (27)

where 𝛼 is a post- and preyield stiffness ratio,𝑤
𝑛
denotes nat-

ural frequency, and 𝑧 is an auxiliary variable that represents
inelastic behavior. The evolution of 𝑧 is determined by an
auxiliary ordinary differential equation, which can be written
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Figure 17: For Example 5, seat-person model of single-degree of freedom system [31].

in the form of

�̇� = 𝐴�̇� − 𝛽�̇�|𝑧|
𝑛
− 𝛾 |�̇�| |𝑧|

𝑛−1
𝑧, (28)

where ż denotes the derivative of 𝑧 with respect to time and
𝐴 and 𝑛 are parameters that control the scale and sharpness
of the hysteresis loops, respectively. Parameters, 𝛽 and 𝛾, are
used to control the shape of the hysteresis loop. In order to
estimate the velocity and the restoring force of the Bouc-
Wen model, the group preserving scheme (GPS), which was
proposed by Liu [30], is adopted.The restoring force obtained
by the GPS is referred to as the exact restoring force. We
consider a system that has the parameter values as 𝐴 = 0.5,
𝛽 = −5.0, 𝛾 = 5.0, 𝑛 = 1.4, 𝛼 = 0.4, 𝑤

𝑛
= 3.0, 𝑡

0
= 0.0,

𝑡
𝑓
= 50.0,Δ𝑡 = 0.01, and𝑃(𝑡) = sin(𝑡); the initial condition of

(𝑥, �̇�, �̇�) is given as (0.0, 0.0, 0.1).The exactly computed profile
of 𝐻 is plotted in Figure 11.

To obtain 𝐻 using the present method, the parameters
𝑇
0
= 8, X

0
= I, 𝑚 = 201, and 𝜀 = 1 × 10−14 are fixed.

The computed profile of 𝐻 at 40 to 42 seconds is plotted in
Figure 12(a), and the maximum estimated error of𝐻, shown
in Figure 12(b), is smaller than 1.4 × 10−2. Further, under a
noise of𝜎 = 5%, the computed profile of𝐻 at 40 to 42 seconds
is plotted in Figure 13(a).Themaximumestimated error of𝐻,
shown in Figure 13(b), is smaller than 2.5×10−2. We see from
Figures 12 and 13 that the maximum estimated error of𝐻 still
keep in the order of 10−2 under a noise of 𝜎 = 5%.That is, we
can use the present method to achieve a more accurate and
stable solution under a large noisy level.

Example 4. As in Example 3, we consider the viscosity damp-
ing effect into the Bouc-Wen classical model and estimate the
restoring force described as

𝐻(𝑥, �̇�) = 2𝜉𝑤
𝑛
�̇� + 𝛼𝑤

2

𝑛
𝑥 + (1 − 𝛼)𝑤

2

𝑛
𝑧, (29)

where 𝜉 is the viscosity damping ratio. In this example, the
parameter values are fixed as 𝐴 = 0.8, 𝛽 = 4.0, 𝛾 = 2.1, 𝑛 =

1.4, 𝛼 = 0.4, 𝑤
𝑛
= 3.0, 𝜉 = 0.15, 𝑡

0
= 0.0, 𝑡

𝑓
= 10, Δ𝑡 =

0.01, X
0
= I, and 𝑃(𝑡) = 0.4 sin(𝑡); the initial condition of

(𝑥, �̇�, �̇�) is given as (0, 0, 0.1). The exact computed profile of
𝐻 is plotted in Figure 14.

In this case, we use the same solver with the same
parameters of Example 3. The computed profile of 𝐻 at 5 to
7 seconds is plotted in Figure 15(a). The maximum estimated
error of𝐻, shown in Figure 15(b), is smaller than 2.5 × 10

−3.
Again, with a noise of 𝜎 = 5%, the computed profile of 𝐻
at 5 to 7 seconds is plotted in Figure 16(a). The maximum
estimated error of 𝐻, shown in Figure 16(b), is smaller than
1 × 10

−2. It can be seen in Figures 15 and 16 that the
maximum errors are smaller than 10−2 under a noise of 𝜎 =

5%. Therefore, we conclude that for the smooth hysteretic
behavior by the Bouc-Wen classical model, the accurate and
stable solutions in Examples 3 and 4 are available when the
proposed method is adopted.

Example 5. In order to test the numerical stability of the
CTEM used for the restoring force problem of discontinuous
type, the vehicle seat problem is considered. When the seated
human body is exposed to vertical vibration, the single-
degree of freedom model can be used to describe its seat-
person mathematical behavior, as shown in Figure 17, and is
given by [31]

𝑀�̈� + 𝑐
1
�̇� + 𝑐
2 |�̇�| �̇� +

𝑘
1

1 + 𝑘
2 |𝑥|

𝑥 = 𝑃 (𝑡) . (30)

The parameters of the discontinuous typed vehicle seatmodel
are given as 𝑘

1
= 48000Nm−1, 𝑘

2
= 24000Nm−1, 𝑐

1
=

300N sm−1, 𝑐
2
= 1500N sm−1, 𝑀 = 8 kg, and 𝑀

1
= 42 kg.

Here the external force is given by 𝑃(𝑡) = 0.04 cos(𝑡), and
the parameters are given by 𝑇

0
= 11, 𝑡

𝑓
= 10, X

0
= 0.001,

and 𝜀 = 1 × 10
−14, respectively. The computed profile of 𝐻

by 𝑚 = 51 and 201 is shown in Figure 18(a). The maximum
estimated error of 𝐻, shown in Figures 18(b) and 18(c), is
smaller than 5×10−3. Numerical results show that this present
method does not exhibit the numerical oscillation (Gibb’s
phenomenon) when the high-order function is used. Hence,
this example demonstrates that the presentmethod has a high
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Figure 18: For Example 5, (a) comparing estimated and exact restoring forces, (b) displaying the estimation error of restoring force with
𝑚 = 51, and (c) displaying the estimation error of restoring force with𝑚 = 201.

level of accuracy and stability for the restoring force problem
of discontinuous type.

4. Conclusions

In nonlinear mechanical system analysis, the inverse vibra-
tion problem is difficult to solve under the measured data
with noise. This paper has successfully combined the CTEM
with a natural regularization algorithm to determine the
unknown restoring force. Due to inclusion of the CL to
retain high accuracy and stability, the approximationmethod
can avoid the numerical instability caused by a high-order

polynomial function. In addition, when the measured data
is contaminated by a large noise, the errors can be controlled
by utilizing a natural regularization technique and increasing
the CL. In summary, the presentedmethod is an effective and
convenient approach to solve the inverse vibration problems.
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