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We study the configuration formed by two squares in two parallel layers separated by a distance. We picture the two layers
horizontally with the z-axis passing through the centers of the two squares. The masses located on the vertices of each square
are equal, but we do not assume that the masses of the top square are equal to the masses of the bottom square. We prove that the
above configuration of two squares forms a central configuration if and only if the twist angle is equal to kn/2 or (/4 + km/2)

(k=1,2,3,4).

1. Introduction and Main Results

This paper uses the same notations as [1]. The Newtonian N-
body problems [2, 3] concern the motions of N particles with
masses 711; € R" and positions q; € R’ (j=1,2,...,N). The
motion is governed by Newton’s second law and the Universal
law:

U (q)
midg; = =L, ®
4] 9q;
where g = (9;, 4,5 - - - »qn) With the Newtonian potential:
m
Ulg= ) ———. @)
1<j<k<N'qJ‘ - CIk|
Consider the space
SR
X=19=019%---qy) €R: Z’”ﬂj =0r; (3
=

that is, suppose that the center of mass is fixed at the origin
of the origin of the coordinate axis, because the potential
is singular when two particles have the same position. It is

natural to assume that the configuration avoids the collision
set A ={q: q; = q) for some k # j}. The set X'\ A is called the
configuration space.

Definition 1 (see [2, 3]). A configuration ¢ = (g;,93--->
qn) € X \ Ais called a central configuration if there exists
a constant A such that

N m;my
: (4 - ) = -dmq 1<k<N. (4)

3
~hitk|a; - a

The value of constant A in (4) is uniquely determined by

U
- = 5
A T (5)
where
al 2
I = kalqk| . (6)
k=1

Consider the configuration in R® consisting of two layer
regular N-gons (N > 2) with distance h > 0. It is
assumed that the lower layer regular N-gons lie in horizontal
plane, and the upper regular N-gons parallel the lower



one, and z-axis passes through both centers of two regular
N-gons. Suppose that the lower layer particles have masses
my, m,,...,my and the upper layer particles have masses
iy, My, ..., My, respectively; then these assumptions can be
interpreted more precisely by the following. Let p;, denote for
all N complex roots of unity, that is,

2
Pr =exp<%ki>. (7)
Let
Pr = aPkei¢> (8)

wherea > 0,i = V=1,0 < ¢ < 27, and ¢ is called twist
angle. It is assumed that m1;, (1 < k < N) locates at the vertex
g of the lower layer regular N-gons; 77, (1 < k < N) locates
on the vertex g, of the upper layer regular N-gons:

9k = (P 0)
B N 9
dr = (Pk’h)’

where i > 0 is the distance between the two layers. Then the
center of masses is

N (mq +m Q)
j45 T4
2= , (10)
A M
where
N
M = Z (m + M, ) 11)
j=1
Let
Py = qy = zp»
N (12)
P =qy —
If my,m,,...,my and i, Mm,, ...,y form a central config-

uration, then there is A € R* such that

N p Pk N

Z +Zm =-AP, 1<k<N,
TR | kl
N i S ff_~"3 AB, 1<k<N
e -BP AR
(13)

Under the case that twist angle ¢ = 0, Moeckel-Simo proved.

Theorem 2 (see [4]). If N < 473, there is a unique pair
of spatial central configurations of parallel regular N-gons. If
N > 473, there is no such central configuration for b < by(N),
where b is the mass ratio. At a unique pair bifurcates from the
planar central configuration with the smaller masses on the
inner polygon. This remains the unique pair of spatial central
configurations until b = 1/b,, where a similar bifurcation
occurs in reverse, so that b > 1/b,, and only the planar central
configurations remain.
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Xie et al. [5] studied the necessary conditions for the
masses of two layer regular polygon central configurations in
R®, and they proved the following theorems.

Theorem 3. Under the assumptions of (9), if m,m,,...,my
and iy, M,, . .., My form a central configuration, then

(@)

MY 1
A=l (14)
j=1 |‘1j - qu
(ii) for N 2 2 (p #1/2, when N = 2),
my=m, = - =My, my=m,=---=iny. (15)

Without loss of generality, suppose that fii; = bm; and N > 2
(p#m/2, when N = 2), under the above assumptions, there
are four parameters, and ratio b of masses ratio, a of radius of
two regular N-gons, the distance h between two layers, and the

phase difference @. As for these parameters, Xie et al. [5] proved.

Theorem 4. Under the assumptions of (9) and m; = bmj,
then my,m,,...,my andin,,m,, ...,iMy form a central con-
figuration if and only if the parameters b, a, h, and ¢ satisfy the
following relationships:

A 1 1-p; b(1-ap;e”)
. + ,
M N(1+b) J';N|qj _ qN'a Z |67j ~ qN'a

DR B |

M N] 1|q] qN|
A o iP ae'® — P b (a - apjei"’)
= = +
M  Na(l+b) ;|qj_qN|3 thZN |qj_qN|

(16)

Zhang and Zhu [1] proved the sufficient conditions for special
casesa=1,b=1,and ¢ = /N.

Theorem 5. Under the assumptions of (9) and (15) and m; =
bmjifa=1,b=1,and ¢ = m/N, then for every N there exists
a unique central configuration.

When h = 0, Bang and Elmabsout [6] study the twist angle.

Theorem 6. Let I, (resp., I1,) be a regular N-gon centred
around a mass my, at O, m, being at each of its vertices (resp.,
m,). Then my, I1,, and I1, are relative equilibriums if and only
if they are homothetic or cursed with an angle equal to (7/N)
(and suitable ratio of radii).

A natural interesting problem is that whether (9) form a
central configuration for h > 0 if and only if twist angle ¢ = 0
or t/N. In this paper, one will prove the necessary condition of
twisted angle ¢ for a special case N = 4.

Theorem 7. Under the assumptions of (9) and (15) and m
bm; if N = 4, then ¢ = 1[4+ (n/2)k or ¢ = (7/2)k, (k
0, 1, 2,3).

‘N
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2. The Proof of Theorem 7

2.1. Some Lemmas. We need three lemmas.

Lemma 1 (see [7]). For N > 3 and im, = im, = --- = iy,
if iy, m,, ..., My locate on vertices of a regular polygon, then
they form a central configuration.

One has m; = m, =m; = my. Also m], m;, m;, and m,
are located on vertices of a square S; q; is the position m; (i =
1,2,3,4) and q" is the position of m*. Plane P contains the
square S. One has F, = Y+ m:m*(qF —q")/la; —q"I.

Lemma 2. F, s projection on P is directed toward the center of
the square if and only if the point m* is on a vertical plane of
symmetry.

2.2. 'The Proof of Lemma 2. Without loss of generality, sup-
pose that m; = m; = m; = my; = 1,q; = (1,0,0),q, =
(0,1,0), g; = (-1,0,0), q; = (0,-1,0), and g* = (pcos0,
psin 0, h), where p > 0. Consider the following:

m* (1 - pcos,—psin6, —h)
32

|1+ p? +h?—2pcosb)

. m* (—pcosO,1 - psin6, —h)
[1+p2+h*-2p sin0|3/2
17)

. m* (-1 - pcos@,—psin6,—h)

|L+p%+h+ 2pcos€|3/2

. m* (—pcosf,—1 - psin6,—h)
1+ p? + 2 +2psin 6]

If F,’s projection on P is directed toward the center of the
square, there exists A* > 0 such that

m” (1 - pcos6) m”* (—p cos )
|1+p2+hz—2pc059|3/2 |1+p2+hz—2psin6|3/2
m* (-1 - pcos)

|1+ p? + h? + 2p cos 6|3/2

m"* (—p cos )
|L+p%+h?+ 2psin9|3/2
=-1"pcosb,

+

(18)
- m”* (—psin6)
B |L+p?+h? - 2pc050|3/2
m* (1 - psin6)

1+ p? + W2 - 2psin 6

m* (—psin6) (19)

+
1+ p? + 12 +2pcos 6

m* (-1 - psin0)
|1+ p2+h?+2p sin9|3/2
=-A"psin6.

If 0 = (7r/2)k, m" is on a vertical plane of symmetry.
When 0 # (7/2)k, multiplying both sides of (18) and (19),
respectively, by sin 8 and cos 0, we have

sin® — pcosOsind

—p cosOsin 0
2 12 izt 2 12 32
|1+ p? +h?—2pcosb) |1+ p? +h? - 2psin0)|

—sinf — pcosOsinf
3/2

|1+ p? + h? +2pcos0)

—pcosfsin

+
|L+p?+h?+ 2psin9|3/2

=-A"pcosBsinb,

—pcosOsin0
1+ p? + h2 - 2p cos O

cos0 — p cosOsin 0

[L+p2+h-2p sin9|3/2

—pcos0Osind

+
|1+ p? +h? +2pc059|3/2

—cosf — pcosOsin0

|1+ p? +h? +2psin9|3/2

=-\1"pcosBsin0.
(20)

By (20) we have

sin @ —cos@

|1+ p2+ 12— nt 272 :
p? +h? = 2pcos0)| |1+ p? +h? - 2psin0)|

3/2

—sin6
+

1+ p? + h? + 2p cos O

cos 0

32

+
|1+ p? + h? +2psin0)|
(1)

Then

1 1
sin 6 < |1+ p>+ 02— 2psin6|3/2

1
|L+p%+h%+ 2psin9|3/2>
(22)

1 1
cos <|1 +pr+h? - 2pc059|3/2

1
|1+ p%+h? +2pc059|3/2)'



Let

1 1
o
x |1+p2+hz—2px|3/2

1

(23)

_|1 +p?+h? +2px|3/2 ’

then the system (22) is equivalent to f(sin8) = f(cos0). It is

obvious that f(x) is even and f(x) > 0 when x > 0. We will

prove that f(x) is a strictly increasing function when x > 0.
When 0 < x < 1 we compute

df (x) 1( 1
Tdx X2

- |1+p2+hz—2px|3/2

dx

1
|1+ p%+h? +2px|3/2>

1( 3p
X 2,12 5/2
|1+ p? + h? - 2px|

)
|L+p?+h?+ 2px|5/2

(1+p°+1W +2px) (1+p* + 1 - pr)s/2

- X1+ p? +h*+ 2px|5/2|1 +p2+h - 2px|5/2

(1 +p* + h —2px) (1 +pr+ W 2px)5/2

) X1+ p? +h?+ 2px|5/2|1 +p*+h? - 2px|5/2

3px(1 +pt+ I sz)s/z

21+ p2+h?+ 2px|5/2|1 +p2+h?- 2px|5/2

3px(1 +pt+H - pr)s/z

21+ p*+h?+ 2px|5/2|1 +p2+h?- 2px|5/2.

(24)
Let
g(x) = (1 +p +h2+2px)
X (1 +pl+H - pr)s/z
—(1+p2+h2—2px)
(25)

X (1 +p v h 2px)5/2

+ 3px(1 +pl+h 4 2px)5/2

+ 3px(1 +p+h - 2px)5/2.
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Then
df (x) _ g(x)

dx X1+ p? +h?+ 2px|5/2|1 +pr+h?- 2px|5/2,

g(0) = (1 +p’ +hz)7/2 - (1 +pl+ h2)7/2 =0,

diix) = 2p(1+p* + W —2px)""

—5p(1+p* +H* +2px)
x(1+p" +H - 2px)3/2
+2p(1+p? + 1 +2px) "
~5p(1+p*+h* —2px)
x (1+p? + 1 +2px) "
+3p(1+p> + 1+ 2px)5/2
+15p°x(1+p* + 1 + 2px)3/2
+3p(1+ p> + W = 2px)”"”
—15p°x(1+ p* + h* - 2px)3/2,

dz(;) - 10p(1+p> + 1)

—10p(1+p" + hz)s/2 =0,
d?x(zx) =-10p*(1+p" + 1’ - 2px)3/2

—10p*(1+p* + h* - 2px)3/2
+15p (1+ p* + 1 + 2px)
x(1+p* + 1 —2px)1/2
+10p2(1+ 7+ 1 + 2px) ™
+10p2(1+ p? + W2 + 2px) ™
—15p> (1+p* + > = 2px)
x(1+p* + 1 +2px)1/2
+15p°(1+ p" + 1 + 2px)3/2
#1503 (1+ p? 4 2+ 2px) ™

+ 45p3x(1 +p v h 2px)1/2

(26)

(27)

(28)

(29)
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~15p°(1+p" + 1 - 2px)3/2
~15p*(1+p" + 0’ - 2px)3/2
+ 45p3x(1 +p +H - 2px)1/2
3 2 g2 1/2
> 45p x(1+p +h +2px)

+ 45p3x(1 +p +H - pr)l/2

>0, VO<x<1.
(30)

Hence by (26), (27), (29), and (30) we have

gx)>0, VO<x<I1. (31)

Hence df (x)/dx > 0, when 0 < x < 1. From f(sin0) =
f(cos6) we obtain |sinf| = |cos|; that is, 0 = (n/4) +
(7r/2)k, som”™ is on a vertical plane of symmetry.

It is obvious that if the point m" is on a vertical plane of
symmetry, F,’s projection on P is directed toward the center
of the square.

The proof of Lemma 2 is completed.

2.3. The Proof of Theorem 7. Without loss of generality,

suppose that i, = m, = My = M, = m,m; = m, = M, =
m, = 1. We can let

q] = (1) 07 0) >

q3 = (_17030))

qz = (0) 1’0))
q4 = (03_1)0))

g1 = (pcosg, psing, h),
%=<Pcos(2—” +<p),psin<2—n+¢),h), (32)
4 4
_ 27 . (2n
qs = <pcos<z ><2+<p>,ps1n<I ><2+go>,h>,

q4=<pcos<%r><3+(p>,psin<%[><3+(/)>,h>,

. . 4 _
where ph > 0.1t is obvious that zy = Y (m;q; + m; +
g)/M = (0,0,4mh/(4 + 4m)) = (0,0,mh/(1 + m)). By
Lemma 1, since #1,, i,, i3, and 7, locate on vertices of a
regular polygon, so they form a central configuration; then

there exists a constant A (notice that it can be different from
A in(16)), such that

4 SO
_ 49~ 49k ~

E j =-A(Gk — %) 33
j¢km]|Qj—qk| (qk 0) ( )

N

where 2, = (Y., 3;;)/4m = (0,0, h).

5
By (1) and (33) we have
4 s -
_/\mpk_zm q] ka me 51] qk3
A lg-al A g -a
4 Pp.-p 4 P,-P
=Ym——  + Ym j X
le P, - B’ ,;c P, - B’
4 s
=Ym 9 qk3—/\m(qk—z0) (k=1,2,3,4).
j=1 |Qj“7k
(34)
Then
Sm(q; -4
Z (J~ 1;)
g - a
= —Am (g z0)+7tm(qk Z)
_ Amh _
=m(/\—)t)qk+m<0,0,%)—m(0,0,)Lh).
(35)

generated by the m,, m,, ms, and my,.

Letting F, = Z;,l m(q; — q1)/lq; - ., F, is the force

By (19), F’s projection on the plane P, is (1 —
A)(p cos g, psing,0), where P, is the plane containing m,,
m,, ms, and m,. It is obvious that the projection is directed
toward the center of the lower layer regular 4-gons. By
Lemma 2, we have ¢ = 7/4 + (n/2)k or ¢ = (7/2)k (k =
0,1,2,3).

The proof of Theorem 7 is completed.

Acknowledgments

The authors express their gratitude to Professor Zhang
Shiqing for his discussions and helpful suggestions. This work
is Supported by NSF of China and Youth Fund of Mianyang
Normal University.

References

[1] S. Zhang and C. Zhu, “Central configurations consist of two
layer twisted regular polygons,” Science in China A, vol. 45, no.
11, pp. 1428-1438, 2002.

[2] D. G. Saari, Collisions, Rings and Other Newtonian N-body
Problems, vol. 104, AMS, Providence, RI, USA, 2005.

[3] A. Wintner, The Analytical Foundations of Celestial Mechanics,
Princeton University Press, Princeton, NJ, USA, 1941.

[4] R. Moeckel and C. Simo, “Bifurcation of spatial central con-
figurations from planar ones,” SIAM Journal on Mathematical
Analysis, vol. 26, no. 4, pp. 978-998, 1995.

[5] Z. E Xie, S. Q. Zhang, and Q. Zhou, “Two layer regular
polygonal centralconfigurations in R*,” Preprint, 2000.

[6] D. Bang and B. Elmabsout, “Representations of complex
functions, means on the regular n-gon and applications to
gravitational potential,” Journal of Physics A, vol. 36, no. 45, pp.
11435-11450, 2003.



6 Journal of Applied Mathematics

[7] L. M. Perko and E. L. Walter, “Regular polygon solutions of the
N-body problem,” Proceedings of the American Mathematical
Society, vol. 94, no. 2, pp- 301-309, 1985.



