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We find exact solutions of the Generalized Modified Boussinesq (GMB) equation, the Kuromoto-Sivashinsky (KS) equation the
and, Camassa-Holm (CH) equation by utilizing the double reduction theory related to conserved vectors. The fourth order GMB
equation involves the arbitrary function and mixed derivative terms in highest derivative. The partial Noether’s approach yields
seven conserved vectors for GMB equation and one conserved for vector KS equation. Due to presence of mixed derivative term
the conserved vectors for GMB equation derived by the Noether like theorem do not satisfy the divergence relationship. The extra
terms that constitute the trivial part of conserved vectors are adjusted and the resulting conserved vectors satisfy the divergence
property. The double reduction theory yields two independent solutions and one reduction for GMB equation and one solution
for KS equation. For CH equation two independent solutions are obtained elsewhere by double reduction theory with the help of

conserved Vectors.

1. Introduction

Nonlinear differential equations have many significant impli-
cations for the mathematical models and have been of great
interest in the last few decades. In the literature various tech-
niques are used to construct exact and numerical solutions
of differential equations [1-6]. Different approximations and
numerical methods can be implemented to reduce nonlinear
partial differential equations (PDEs) to ordinary differential
equations (ODEs) but the problem occurs in the convergence
of the solutions. Symmetry analysis and conservation laws
play a vital role in the analysis of differential equations
and have many important applications in numerical meth-
ods, linearization, and integrability. For variational type
differential equations standard Lagrangian always exists and
conservation laws can be computed from the well-known
Noether’s formula [7]. The standard Lagrangian does not exist
for nonvariational differential equations. Kara and Mahomed

[8] introduced the notion of partial Lagrangians for such
differential equations. A Noether like theorem was invoked
for the derivation of conservation laws associated with a
partial Lagrangian. This technique is referred as to Noether’s
like approach or partial Lagrangian approach. There are some
approaches for the construction of conservation laws which
do not use the knowledge of standard or pariah Lagrangians.
The different methods to compute the conservation laws and
the comparison of approaches were studied in [9] (also see
references therein).

The relationship between Noether symmetries and con-
servation laws is well known and is useful to reduce the
numbers of variables and order of differential equations. In
[10], a conserved vector is associated with the Lie-Backlund
symmetries. Sjoberg and Mahomed [11, 12] have generalized
association of a conserved vector to nonlocal symmetries.
The association of Lie-Backlund symmetries or nonlocal
symmetries with a conserved vector led to the development of



the double reduction theory for the nonvariational type PDEs
or system of PDEs with two independent variables [13, 14].
Bokhari et al. [15] generalized the theory of double reduction
to find the invariant solutions for a nonlinear system of PDEs
with several independent variables. This theory is helpful
in finding invariant solution of PDEs having a nontrivial
conserved vector and at least one symmetry associated with
it. Recently, Narain and Kara [16] redefine the variational and
nonvariational approaches for a class of PDE involving mixed
derivative terms. Due to the presence of mixed derivative
term a conserved vector computed by Noether’s theorem does
not satisty the divergence relationship. A number of extra
terms contributing to the trivial part of conserved vector arise
and need to be adjusted to satisty the divergence relationship.

The objective of this paper is to find the exact solutions
of GMB, KS, and CH equations using the double reduction
theory. The conservation laws of GMB and KS equations
are constructed via partial lagrangian approach. For GMB
equation the derived conserved vector failed to satisfy the
divergence property. The extra terms which constitute the
trivial part of the conserved vectors are adjusted to satisfy the
divergence relationship. After construction of conservation
laws the theory of double reduction is applied to compute the
solutions of GMB and KS equations. The conserved vectors
of Camassa-Holm equation are derived in [17]. Two exact
solutions are computed for the Camassa-Holm equation by
utilization of double reduction theory.

This paper is arranged in the following manner. In
Section 2, basic definitions, fundamental operators, and the-
orem for double reduction theory are invoked. In Section 3,
the conservation laws and exact solutions for GMB equation
are presented. The conservation laws and solution for KS
equation are derived in Section 4. Section 5 deals with the
exact solutions of CH equation using double reduction
theory. Concluding remarks are summarized in Section 6.

2. Fundamental Operators

Assume an nth-order system of m partial differential equa-

tions of p independent variables x = (x', %%, %%, ..., xP) and
q dependent variables u = Wt u?, .. ud):
EY = (%1, 1), Ugys -5 lgy) @ =1,2,3,...,m, (1)

where u;),up, ..., U, symbolize the set of all first,
second, . .., nth-order partial derivatives; that is, u;" = D;(u"),

ui”; = D;D;(u"),..., in which D;, the total differential

operator corresponding to X, is given by

0 0 0
D=2 4w v v i=12,...,p
T o i gy T i ous P

The summation convention is used whenever appropriate.
Definition 1. The nth-order system (1) can be expressed as

E*=E;+E{ =0, a=12,...,m. 3)
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Suppose there exists a function L = L(x, u, t(y), . . ., ) such
that (1) can be expressed as

oL o B

5u“:Fﬁ E], a=12,...,m. (4)

In (4) Fg is the invertible matrix and 8/8u® is the Euler

operator defined by
)

Su” 6u"‘

S YUD, D ()

s>1 (PR

If Ef #0in (4), then L is said to be a partial Lagrangian of (1);
otherwise, it is known as a standard Lagrangian.

Definition 2. A Lie-Backlund or generalized operator is

0
X = E_ ﬂa“ C‘za_oc Czlzzaoc T (6)
where &, #* € o (space of differential function) and the

additional coefficients can be determined from the formula
G = Dy (W) + Euf,
D; (W*) + Eju?il--- i>

where W is the Lie characteristic function described by

. (7)
“ =D, ...

iy g i s> 1,

w“:f—ﬂﬁ. (8)

Definition 3. A vector T = (T',T?,...,T"), T e o,i=
1,2,...,n, is called a conserved vector if D,T* = 0 holds for
all solutions of (1).

Definition 4. A Lie-Bicklund operator X defined in (6) is
said to be a Noether symmetry generator corresponding to
a Lagrangian L = L(x,u, Uy, ..., U,) of (1) if it satisfies

X (L) + LD, (&) = D;B,, ©)

where D is the total derivative operator defined in (2) and B;
are the guage terms.

The generator X in (6) is said to be a partial Noether
operator corresponding to a partial Lagrangian L =
L(x, U, ugyy, - . o Uyy) of (1) if

XUJ+LDJ?):WWEE+LH%

> .B; (10)
Definition 5. If X in (6) is a Noether symmetry with respect
to a Lagrangian or partial Noether operator with respect
to a partial Lagrangian, then the conserved vector can be
constructed from

o 0
E+M7——+ZD DJW)5a

1 s>1 idy g

T =B - L,

(11)
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in which
1) 0 0
= +Y(1)'D; D, —,
uf  ouf szzl o (12)
i=1,2,...,n, « =1,2,...,m.

Definition 6. Assume that X is a symmetry of the system (1)
and T is a conserved vector of (1). If X and T satisfy

X(1)+1'D; (&) -1'D; (§) =0, i=12...,n (13)
Then X is associated with T.

The following theorem illustrates the construction of new
conservation laws from symmetries and known conservation
laws [18,19].

Theorem 7. Let X be any Lie-Bicklund symmetry of (1) and
T',i=1,2,..., ncomprise the components of a conserved vector

of (1); then
= X (1) + T'D, (§) - T'D, (£) (4
forms a conserved vector of (1).

We now describe some results which are used in our work
(see [13, 14]).

Consider a scalar partial differential equation E = 0 with
a = 2, (x'x*) = (tx) such that it has conserved vector
(T*, T*) and admits symmetry generator X associated with
conserved vectors. In terms of canonical variables r, s with the
symmetry X = 0/0s the conservation laws can be expressed
as D,T" + D,T® = 0. The vectors T" and T* in terms of (t, x)
are

- TtDt (r) + T"Dx (r) (15)
" D, (r) D, (s) - D, (r) D, (s)’
s TtDt () +T*D, (s) (16)

" D,(r) D, (s)- D, (r) D, (s)°

Theorem 8. A PDE of order n with two independent variables,
which admits a symmetry X that is associated with a conserved
vector T, is reduced to an ODE of order n — 1; namely, T" = k,
where T" is defined in (15) for solutions invariant under X.

3. Conservation Laws and Exact Solutions of
GMB Equation

The generalized modified Boussinesq (GMB) equation is

U — Oy — (f (”))xx =0, (17)

where 6 is a constant and f(u) is an arbitrary function. GMB
equation describes nonlinear model of wave propagation of
elastic rods and also arises in nonlinear lattice waves, iron
sound waves, and vibrations in a nonlinear string and is thus
important to study.

3
Equation (17) admits a partial Lagrangian
”t2 6 5 1, ,
L= - Tt Efuux’ (18)
and the corresponding partial Euler-Lagrange equation is
e = 3 fu 19

Substituting these values in (10) and comparing the coeffi-
cients of like monomials of 1 we obtain

Tfuu_Tufuzo’ Tt_gx_

fu (ZT]u T Ex) =0,

2n, =0, (20)

1
Bu =N
2
Bu = fur]x’
B} + B2 =0.

In order to solve the system (20), we discuss the following
cases.

Casel f,, =0.

In this case we obtain f(u) = au+b,7 = d,, & = d,,
n=dt+ds, B = —ud, and B* = 0.

Substituting the above values of 7, £, , B!, and B® in (11)

we obtain
I 5
- Eaux

+(dyt +ds = dyu, — dyu,) (u, — Suyyy)

2
u, 0
Tt= —ud1+d2<7t+5ufx

- (dzutx + d4uxx) (8utx) >

2
u 6., 1 5
T" = d4 (7 + Eutx - Eaux

= (dyt +dy = dyu, — dyu,) (au, + Suy,)

(1)

+(dy = dyuy, — dyuy,) (Suy,),



where d,,...,d, are arbitrary constants. The choice of con-
stants one by one equal to one and the rest to zero yields the
following conserved vectors:

t
T, = —u + tu, — Stu,,

T = —atu, — 8tuy,, + u,,,

2
u 1) 1

t W 2 2

T, = -5 Eutx - zaux + OUy Uy
X
T, = augu, + Suguy,, — Suyuy,, (22)
Ty=u, -6 Ty = —au, -8

3 = Up = Ol 3 = —aU, = OlUyy,

t j—
T4 = Uy + auxutxx - autxuxx’

2
u, 0
t 2
TY ==+ -—-u

I 5
5 Tyl + Eaux + Oty Uy

The divergence of (22) becomes
D,T} + D, T = ~t8uyy»
t
D,T, + Dngc = Ouyhyy — Oy Uy
. (23)
X
D,T; + D, Ty = =0ty
t
DtT4 + DijLc = 8uxuttxx - 6utxutxx'

The conserved vectors in (22) fail to satisfy the divergence
properties. Narain and Kara [16] prove that T® can be adjusted
to T' such that D,T" = 0.

Following the same line we find that the modified con-
served vectors T; (i=1,2,j=1,2,3,4) are

Tt
T] = —u + tu, — t8uyyy,

X
T] = —atu, + Ou,,,

2
— u 1) 1
t_ W 2 2
T, = -5 Eutx - Eaux + OuyUyyys
—
Ty = auu, — Suyu,,, (24)
it X
T3 = Uy TS = —au, — 8uttx’

_
T, = —uu, + Oty s

Case 2. f,, #0.

In this case after some simple but lengthy manipulations
resultint = 0, £ = 0, = a,x + a, + ast, B' = —ua, and
B = (u);. Substitutig 7, &, 7, B!, and B? in (11), we arrive at

T' = —uay + (ayx + a, + ast) (u, — Su,, ) + Sau,,,

T* = a, f (u) — (ayx + ay + ast) (fuy + Ouyy,) + Sazu,,.
(25)
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The choice of constants gives rise to
Tt = xu, — Oxulyy, + Oty
T5 = f (1) = xf,thy — Oxthyyy,
Th= =St T =~ fuhy Oty (26)
T = —u + tu, — Stu,,,,
T; = —tf,u, — Otu,, + Ou,,.

The conserved vectors in (26) do not satisfy the relation
D;T" = 0; that is,

D, Tt + D,TY = —0xttyys,
D,Tg + D, T; = —8uy,,, (27)
D,T; + D, T = ~Otuy,,,.
The new conserved vectors T' after adjustment result in
Tt = xu, + Ou,y,
TS = f (W) — xf,uy — Oxuy,,
Tg =, Tg = ~futty = Sty (28)
Th = —u+ tu, — Stu,,,,
TS = ~tf,u, + Ouyy.
Now, we apply the double reduction theory to associate the
Lie point symmetries with the conservation laws. Equation

(17) admits the following Lie point symmetries when f,,, = 0;
thatis, f(u) = au + b. Consider

0 0
= —, X = -,
7 ox 27 ot
0 0 (29)
X3:u$, X4:f(t’x) a)

where f(t, x) satisfies (17).

The symmetries X, and X, in (29) are associated with the
conservation laws of GMB equation given below when f,,, =

1 5
S T ptx T Mt QU Uy, AU, — 8uttutx) ,
T, = (up, —au, — Suy,).

(30)

The combination of these symmetries X = X, + aX, yields
the generator, X in canonical form X = 0/0q if

dx _di_du_dr_ds

31
1 lo4 0 0 1 31
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or

s=x, r=ax—t, u=u(r). (32)
Using relation (15), we determine T} and T, corresponding to

T, and T), given in (30):

r ”3 da’ 5 a ;5 2 (33)
T] = TS Ty Ut Ut da’u,u,,,,
2 2
T, = —u, + 8a’u,,, + an"u,. (34)

Since T' = (T, Ty) is associated with X, so T] = k in (33)
implies

2 2
—% - %uir + gazuf +8a’u,u,,, = k. (35)
The solution of (35) is
u(r)=c¢ +mr+ sin<m>
1 G 06\/5
(36)
t e cos (_Wa-lf )
“ A
where
m = ( (ocza - l)
x 0 (622 + c32 +20ka’* — 20¢2a¢:22
(37)

1/2
+ oc4a2(;52 - 20¢2ac32 + oc4a2cz2))
-1
X (((xza - 1)80c)
and ¢, ¢,, and ¢; are arbitrary constants. Hence

u(t,x)=¢ +m(“x—t)+czsin<@)
Vo

(\/ocza—l(ocx—t))
+geos| ——=

aVs
(38)

is a solution of (17) invariant under X.
Similarly from (34), one can easily find that

Vaa T (ax -
u(t,x) = ((cm@sin(%)

—czoc\/gcos< Vata -1 (ocx—t)))
39)

Vo
X ( o’a - 1>1>

k(ax —t)
+—+
o?a—1
is also a solution of (17).

Equation (17) admits the trivial symmetry generators
X, = 0/0x and X, = 0/0t in Case 2 when f(u) is an arbitrary

function. In this case the symmetry generators X, = 0/0x
and X, = /0t are associated with the conserved vectors

T3 = (ut> _fuux - 6uttx) (40)

of GMB equation. The similarity variables are defined in (32)
and with the help of conserved vectors (40), (17) reduces to

dalu,, —u, + oczf (u(r)) = kr — ¢,0a°. (41)

Equation (41) cannot be reduced further due to an
arbitrary function f(u).

4. Conservation Laws and Exact Solution of
the Kuramoto-Sivashinsky Equation

The Kuramoto-Sivashinsky (KS) equation plays a dominant
role in stability of flame fronts, reaction diffusion, and other
physical phenomena. The KS equation is

u, +auu, +bu,, +ku, ... =0, (42)

where g, b, and k are constants.
Equation (42) does not admit a standard Lagrangian but

the partial Lagrangian is
kil b,

= xx 2

2 2" )

and the corresponding partial Euler-Lagrange equation is

g—i = —u, — auu,. (44)
Substituting these values in (10) and after some lengthy
manipulation results in 7 = 0,& = 0, # = ¢, B' = cu, and
B® = acu. Setting c = 1, weobtaint =0,£ =0, =1, B'=u,
and B® = au.

Equation (11) with the substitution of 7, £, 5, B', and B
gives rise to

2

T'=u, T'= a% +bu, + ku (45)

XxXx?

which satisfies
D,T' + DT = 0. (46)

We reduce (42) using the double reduction theory, that is,
association of symmetries with the conserved vectors.
Equation (42) possesses three Lie point symmetry gener-
ators:
0 0

X, = — +at£. (47)

0
X1 = ox’ X2 = ot’ 7 ou ox

Using (13) one can easily verify that X;, X, in (47) are
associated with the conserved vector

u2
T = (u,a? +bu, + k”xxx> (48)



of KS equation. We set X = aX; + X,; then, the canonical
coordinates of X are s = t,r = af — x, and u = u(r). Using
(15) and with the use of the above canonical coordinates, we
find that

2

T =au- a% +bu, + ku,,,. (49)
Replacing T" = m (arbitrary constant), (49) becomes
2
au - a% +bu, +ku,,, =m. (50)

Equation (50) admits the symmetry generator X = 0/0r and
the similarity variables are v = u, w = u,. After using the
similarity variables, (50) reduces to

e dw

k=av—a— +bw+kw'w” + kww'z, w === (5D
2 dv
The solution of (51) gives rise to

w (v) = Root Of[ —1In (Zcxv —av’ — 26)

4 J !

(=1 +2bv + 8ka?v?) b
X [koczv [ —2bv
b3
HRoot Of“ ke b5

+J [- 2b ]dv
-1+ 2bv + 8ka?v?

el

X (—Zow +av? + 2c) .
(52)

Equation (52) in terms of w = u, and v = u yields

u, = Root Of[ —In (Z(xu —au® - 2c)

1
4
! [J (-1 + 2bu + 8ka*u?) b
X [koczu [ - 2bu

b3
+Root Of“ el

+J [— 2b ] du
-1 + 2bu + 8ka*u?

o]

X (—20cu +au® + ZC) N
(53)
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which in turn results in

r— [Jlx [Root Of[ —ln(2(xu—au2—2c)

1
4
! “ (—1 + 2bu + 8ka?u) b
X [koczu [ —2bu

b3
+ Root Of“ o

. J [- 2b ]du
-1+ 2bu + 8ko*u?

-+

-1
X (—2¢xu rau’ + 2c) ] du] +6,7 =at - X,

(54)

which is a solution of (42).

5. Exact Solutions of the
Camassa-Holm Equation

The Camassa Holm (CH) equation is described by Camassa
and Holm as a bi-Hamiltonian model for waves in shallow
water. It is prominent for turbulent flows and waves in a
hyperelastic rod. The CH equation is

u, + 20u, +3un, — o (., +2uu,, +uu,, ) =0, (55)

where « and w are constants.
Conservation laws of CH equation are derived in [17]:

t 2
T, =u, —a'u,,
2 2

u 2 & 2
Ty =3— +2wu—a U, — —u
2

x?

(56)
T; = u_Z - oczuuxx - a—zui,
2 2
Ty = o’ + v’ — ol u, + g,
Equation (55) admits the following symmetries:
0 0
Xl = -, X2 = -
ot 0x
(57)
X —If2 —wti—(u+w)—
ot ox ou’

From (13) it can be easily shown that the conserved flow
(T", T?) for CH equation are associated with only X, X,. We
define the combination of these symmetries X = X, + aX,.
The generator X has the canonical form X = d/0q if

dt_dx_du_dr_ds_dw

58
1 fot 0 0 1 0 8)



Journal of Applied Mathematics

or

s=t, r=at-x, u=u(r). (59)

Equation (15) with the use of similarity variables defined
above reduces (56) to

2 2
Tlr:(oc—2w)u+oc2(u—oc)u,r—3u?+oc27r, (60)

2 MZ
T = ae —Pun +oPiPu, + & — i —u®. (61
2 2 rr rr 2

Setting T] = k in (60), we obtain

2 2
u,

(oc—2w)u+oc2(u—cx)u”—3u? +cx2?:k. (62)

The solution of (62) yields

+ J W-wa du=r+
) (u- @) 2vtw - v+ ud + 2ku + ¢ a?) >
r=ol—Xx,
(63)

which is a solution of (55).
Similarly from (61), applying the same procedure, we have

iJ’ (u-o)a

d
(u - ) 2ou? — au? + u® - 2k + ;a’u) “ (64)

=at—-x+¢

which constitutes the solution of (55).

6. Conclusions

Exact solutions of the GMB equation, the KS equation,
and the CH equation were constructed by utilizing the
conservation laws. Firstly GMB equation was considered
and conservation laws were computed by partial Noether’s
approach. Two cases arise; namely, Case 1: f,, = 0 and
Case 2: f,,, #0. In Case 1, when f(u) was a linear function
four conserved vectors were obtained, whereas in Case 2
for arbitrary f(u) three conserved vectors were reported.
The derived conserved vectors failed to satisfy divergence
condition. The extra terms arising in conserved vectors
were absorbed and the new forms of conserved vectors
satisfying the divergence property were found. When f(u)
is linear only two conserved vectors (30) satisty the sym-
metry conservation laws relationship. The double reduction
theory was applied to these two conserved vectors and two
independent solutions were constructed. The symmetry was
associated with only one conserved vector (40) when f(u)
is arbitrary. For this case GMB equation was reduced to a
second order ODE. The partial Noether approach for KS
equation yielded one conserved vector which satisfies the
symmetry conservation laws relation. The conserved vector
reduced the KS equation to a third order ODE (50) which
further reduced to a second order ODE (51) which in turn
results in the exact solution (54) of KS equation. A similar

procedure is carried out to obtain two exact solutions of
CH equation. These solutions are new and not obtained in
the literature. The derived solutions cannot be interpreted
physically due to deficiency of experimental sources; however
these are important for numerical simulations.
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