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A method is proposed to smooth the square-order exact penalty function for inequality constrained optimization. It is shown that,
under some conditions, an approximately optimal solution of the original problem can be obtained by searching an approximately
optimal solution of the smoothed penalty problem. An algorithm based on the smoothed penalty functions is given.The algorithm
is shown to be convergent under mild conditions. Two numerical examples show that the algorithm seems efficient.

1. Introduction

Consider the following nonlinear constrained optimization
problem:

min 𝑓 (𝑥)

[𝑃] s.t. 𝑔
𝑖 (𝑥) ≤ 0, 𝑖 = 1, 2, . . . , 𝑚,

𝑥 ∈ 𝑅𝑛,

(1)

where 𝑓 : 𝑅𝑛 → 𝑅 and 𝑔
𝑖
(𝑥) : 𝑅𝑛 → 𝑅, 𝑖 ∈ 𝐼 = {1, 2, . . . , 𝑚}

are twice continuously differentiable functions. Let

𝐺
0
= {𝑥 ∈ 𝑅𝑛 | 𝑔

𝑖 (𝑥) ≤ 0, 𝑖 = 1, 2, . . . , 𝑚} . (2)

To solve [𝑃], many penalty function methods have been
proposed in numerous pieces of literature. One of the popular
penalty functions is given by

𝐹 (𝑥, 𝑞) = 𝑓 (𝑥) + 𝑞
𝑚

∑
𝑖=1

(𝑔+
𝑖
(𝑥))
2

, (3)

where 𝑔+
𝑖
(𝑥) = max{0, 𝑔

𝑖
(𝑥)}, 𝑖 = 1, 2, . . . , 𝑚. Obviously, it is

a continuously differentiable function, but it is not an exact
penalty function. If each minimum of the penalty problem is
a minimum of the original problem or each minimum of the
original problem is a minimum of the penalty problem when
the penalty parameter 𝑞 is large enough, the corresponding
penalty function is called exact penalty function.

In Zangwill [1], the classical 𝑙
1
exact penalty function is

defined as follows:

𝑓 (𝑥, 𝑞) = 𝑓 (𝑥) + 𝑞
𝑚

∑
𝑖=1

𝑔+
𝑖
(𝑥) . (4)

After Zangwill’s development, exact penalty functions have
attracted most of the attention (see, e.g., [2–6]). It is known
from the theory of ordinary constrained optimization that
the 𝑙
1
penalty function is a better candidate for penalization.

However, it is not a smooth function and causes some numer-
ical instability problems in its implementationwhen the value
of the penalty parameter 𝑞 becomes larger. Somemethods for
smoothing the exact penalty function are developed (see, e.g.,
[7–14]).

In [15, 16], the square-order penalty function

𝜑
𝑞 (𝑥) = 𝑓 (𝑥) + 𝑞

𝑚

∑
𝑖=1

√𝑔+
𝑖
(𝑥) (5)

has been introduced and investigated. The penalty function
𝜑
𝑞
(𝑥) is exact but not smooth. Its smoothing has been inves-

tigated in [15, 16]. So, it can been applied to solve the problem
[𝑃] via a gradient-type or a Newton-type method.

In this paper, a new smoothing function to the square-
order penalty function of the form (5) is investigated. The
rest of this paper is organized as follows. In Section 2, a new
smoothing function to the square-order penalty function
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is introduced, and some fundamental properties of the
smoothing function are discussed. In Section 3, an algorithm
is presented to compute an approximate solution to [𝑃]
based on the smooth penalty function and is shown to be
convergent. In Section 4, two numerical examples are given
to show the applicability of the algorithm. In Section 5, we
conclude the paper with some remarks.

2. Smoothing Exact Lower Order
Penalty Function

Consider the following lower order penalty problem:

[𝐿𝑂𝑃] min
𝑥∈𝑅
𝑛

𝜑
𝑞 (𝑥) . (6)

In this paper, we say that the pair (𝑥∗, 𝜆∗) satisfies the KKT
condition if

∇𝑓 (𝑥∗) = −∑
𝑖∈𝐼

𝜆∗
𝑖
∇𝑔
𝑖
(𝑥∗) ,

𝜆∗
𝑖
𝑔
𝑖
(𝑥∗) = 0, 𝜆∗

𝑖
≥ 0, 𝑔

𝑖
(𝑥∗) ≤ 0, 𝑖 ∈ 𝐼

(7)

and that the pair (𝑥∗, 𝜆∗) satisfies the second-order suffi-
ciency condition [17, page 169] if

∇
𝑥
𝐿 (𝑥∗, 𝜆∗) = 0,

𝑔
𝑖
(𝑥∗) ≤ 0, 𝑖 ∈ 𝐼,

𝜆∗
𝑖
≥ 0, 𝑖 ∈ 𝐼,

𝜆∗
𝑖
𝑔
𝑖
(𝑥∗) = 0, 𝑖 ∈ 𝐼,

𝑦𝑇∇2𝐿 (𝑥∗, 𝜆∗) 𝑦 > 0, for any 𝑦 ∈ 𝑉 (𝑥∗) ,

(8)

where 𝐿(𝑥, 𝜆) = 𝑓(𝑥) + ∑
𝑚

𝑖=1
𝜆
𝑖
𝑔
𝑖
(𝑥) and

𝑉 (𝑥∗) = {𝑦 ∈ 𝑅𝑛 | ∇𝑇𝑔
𝑖
(𝑥∗) 𝑦 = 0, 𝑖 ∈ 𝐴 (𝑥∗) ,

∇𝑇𝑔
𝑖
(𝑥∗) 𝑦 ≤ 0, 𝑖 ∈ 𝐵 (𝑥∗)} ,

𝐴 (𝑥∗) = {𝑖 ∈ 𝐼 | 𝑔
𝑖
(𝑥∗) = 0, 𝜆∗

𝑖
> 0} ,

𝐵 (𝑥∗) = {𝑖 ∈ 𝐼 | 𝑔
𝑖
(𝑥∗) = 0, 𝜆∗

𝑖
= 0} .

(9)

In order to establish the exact penalization, we need the
following assumptions.

Assumption 1. 𝑓(𝑥) satisfies the following coercive condition:

lim
‖𝑥‖→+∞

𝑓 (𝑥) = +∞. (10)

Under Assumption 1, there exists a box 𝑋 such that
𝐺([𝑃]) ⊂ int(𝑋), where 𝐺([𝑃]) is the set of global minima
of problem [𝑃] and int(𝑋) denotes the interior of the set 𝑋.
Consider the following problem:

min 𝑓 (𝑥)

[𝑃󸀠] s.t. 𝑔
𝑖 (𝑥) ≤ 0, 𝑖 = 1, . . . , 𝑚,

𝑥 ∈ 𝑋.

(11)

Let 𝐺([𝑃󸀠]) denote the set of global minima of problem [𝑃󸀠].
Then 𝐺([𝑃󸀠]) = 𝐺([𝑃]).
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Figure 1: The behavior of 𝑝
𝜖
(𝑢) and 𝑝(𝑢).

Assumption 2. The set 𝐺([𝑃]) is a finite set.

Then we consider the penalty problem of the form

[𝐿𝑂𝑃󸀠] min
𝑥∈𝑋

𝜑
𝑞 (𝑥) . (12)

Let 𝑝(𝑢) = (max{0, 𝑢})1/2; that is,

𝑝 (𝑢) = {
𝑢1/2 if 𝑢 > 0,

0 otherwise,
(13)

then

𝜑
𝑞 (𝑥) = 𝑓 (𝑥) + 𝑞

𝑚

∑
𝑖=1

𝑝 (𝑔
𝑖 (𝑥)) . (14)

For any 𝜖 > 0, let

𝑝
𝜖 (𝑢) =

{{{{
{{{{
{

0 if 𝑢 ≤ 0,
2

3
𝜖−2𝑢5/2 −

1

3
𝜖−3𝑢7/2 if 0 < 𝑢 ≤ 𝜖,

𝑢1/2 −
2

3
𝜖1/2 if 𝑢 > 𝜖.

(15)

It follows that

𝑝󸀠
𝜖
(𝑢) =

{{{{{
{{{{{
{

0 if 𝑢 ≤ 0,
5

3
𝜖−2𝑢3/2 −

7

6
𝜖−3𝑢5/2 if 0 < 𝑢 ≤ 𝜖,

1

2
𝑢−1/2 if 𝑢 > 𝜖.

(16)

It is easy to see that 𝑝
𝜖
(𝑢) is continuously differentiable on 𝑅.

Furthermore, we can obtain that 𝑝
𝜖
(𝑢) → 𝑝(𝑢) as 𝜖 → 0.

Figure 1 shows the behavior of 𝑝(𝑢) (represented by the
real line), 𝑝

0.1
(𝑢) (represented by the real line with plus sign),

𝑝
0.01

(𝑢) (represented by the dash and dot line), and 𝑝
0.001

(𝑢)
(represented by broken line).

Let

𝜑
𝑞,𝜖 (𝑥) = 𝑓 (𝑥) + 𝑞

𝑚

∑
𝑖=1

𝑝
𝜖
(𝑔
𝑖 (𝑥)) . (17)
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Then 𝜑
𝑞,𝜖
(𝑥) is continuously differentiable on 𝑅𝑛. Consider

the following smoothed optimization problem:
[𝑆𝑃] min

𝑥∈𝑋

𝜑
𝑞,𝜖 (𝑥) . (18)

Lemma 3. For any 𝑥 ∈ 𝑋, 𝜖 > 0,

−
2

3
𝑚𝑞𝜖1/2 ≤ 𝜑

𝑞,𝜖 (𝑥) − 𝜑
𝑞 (𝑥) ≤

4

3
𝑚𝑞𝜖1/2. (19)

Proof. Note that
𝑝 (𝑔
𝑖 (𝑥)) − 𝑝

𝜖
(𝑔
𝑖 (𝑥))

=

{{{{{{{{{{
{{{{{{{{{{
{

0 if 𝑔
𝑖 (𝑥) ≤ 0,

(𝑔
𝑖 (𝑥))
1/2

−
2

3
𝜖−2(𝑔
𝑖 (𝑥))
5/2

+
1

3
𝜖−3(𝑔
𝑖 (𝑥))
7/2 if 0 < 𝑔

𝑖 (𝑥) ≤ 𝜖,

2

3
𝜖1/2 if 𝑔

𝑖 (𝑥) > 𝜖.

(20)
When 𝑔

𝑖
(𝑥) ∈ (0, 𝜖], we have

−
2

3
𝜖1/2 ≤ 𝑝 (𝑔

𝑖 (𝑥)) − 𝑝
𝜖
(𝑔
𝑖 (𝑥)) ≤

4

3
𝜖1/2. (21)

Then

−
2

3
𝑚𝑞𝜖1/2 ≤ 𝜑

𝑞,𝜖 (𝑥) − 𝜑
𝑞 (𝑥) ≤

4

3
𝑚𝑞𝜖1/2. (22)

As a direct result of Lemma 3, we have the following
result.

Theorem 4. Let {𝜖
𝑗
} → 0 be a sequence of positive numbers,

and assume that 𝑥𝑗 is a solution to min
𝑥∈𝑋

𝜑
𝑞,𝜖
𝑗

(𝑥) for some
𝑞 > 0. Let 𝑥 be an accumulating point of the sequence {𝑥𝑗}.
Then 𝑥 is an optimal solution tomin

𝑥∈𝑋
𝜑
𝑞
(𝑥).

Proof. Because 𝑥𝑗 is a solution to min
𝑥∈𝑋

𝜑
𝑞,𝜖
𝑗

(𝑥), we have

𝜑
𝑞,𝜖
𝑗

(𝑥𝑗) ≤ 𝜑
𝑞,𝜖
𝑗

(𝑥) . (23)

By Lemma 3, we have

𝜑
𝑞
(𝑥𝑗) ≤ 𝜑

𝑞,𝜖
𝑗

(𝑥𝑗) +
2

3
𝑚𝑞𝜖1/2
𝑗

,

𝜑
𝑞,𝜖
𝑗

(𝑥) ≤ 𝜑
𝑞 (𝑥) +

4

3
𝑚𝑞𝜖1/2
𝑗

.

(24)

It follows that
𝜑
𝑞
(𝑥𝑗) ≤ 𝜑

𝑞,𝜖
𝑗

(𝑥𝑗) +
2

3
𝑚𝑞𝜖1/2
𝑗

≤ 𝜑
𝑞,𝜖
𝑗

(𝑥) +
2

3
𝑚𝑞𝜖1/2
𝑗

≤ 𝜑
𝑞 (𝑥) +

4

3
𝑚𝑞𝜖1/2
𝑗

+
2

3
𝑚𝑞𝜖1/2
𝑗

= 𝜑
𝑞 (𝑥) + 2𝑚𝑞𝜖1/2

𝑗
.

(25)

Let 𝑗 → 0; we have
𝜑
𝑞 (𝑥) ≤ 𝜑

𝑞 (𝑥) . (26)
We complete the proof.

Theorem 5. Let 𝑥∗
𝑞

∈ 𝑋 be an optimal solution of problem
[𝐿𝑂𝑃󸀠] and 𝑥

𝑞,𝜖
∈ 𝑋 an optimal solution of problem [𝑆𝑃] for

some 𝑞 > 0 and 𝜖 > 0. Then

−
2

3
𝑚𝑞𝜖1/2 ≤ 𝜑

𝑞
(𝑥∗
𝑞
) − 𝜑
𝑞,𝜖

(𝑥
𝑞,𝜖
) ≤

4

3
𝑚𝑞𝜖1/2. (27)

If both 𝑥∗
𝑞
and 𝑥

𝑞,𝜖
are feasible, then

0 ≤ 𝑓 (𝑥
𝑞,𝜖
) − 𝑓 (𝑥∗

𝑞
) ≤

2

3
𝑚𝑞𝜖1/2. (28)

Proof. By Lemma 3, we have

−
2

3
𝑚𝑞𝜖1/2 ≤ 𝜑

𝑞
(𝑥∗
𝑞
) − 𝜑
𝑞,𝜖

(𝑥∗
𝑞
)

≤ 𝜑
𝑞
(𝑥∗
𝑞
) − 𝜑
𝑞,𝜖

(𝑥
𝑞,𝜖
)

≤ 𝜑
𝑞
(𝑥
𝑞,𝜖
) − 𝜑
𝑞,𝜖

(𝑥
𝑞,𝜖
)

≤
4

3
𝑚𝑞𝜖1/2.

(29)

Specially, if both 𝑥∗
𝑞
and 𝑥

𝑞,𝜖
are feasible, we have

𝑓 (𝑥∗
𝑞
) ≤ 𝑓 (𝑥

𝑞,𝜖
) (30)

by 𝜑
𝑞
(𝑥∗
𝑞
) ≤ 𝜑
𝑞
(𝑥
𝑞,𝜖
).

It follows that

0 ≤ 𝑓 (𝑥
𝑞,𝜖
) − 𝑓 (𝑥∗

𝑞
) . (31)

On the other hand, by (14), (15), (17), and (19), we have

𝑓 (𝑥
𝑞,𝜖
) − 𝑓 (𝑥∗

𝑞
) = 𝜑
𝑞,𝜖

(𝑥
𝑞,𝜖
) − 𝜑
𝑞
(𝑥∗
𝑞
) ≤

2

3
𝑚𝑞𝜖1/2.

(32)

We complete the proof.

Theorem 6. Supposing that Assumptions 1 and 2 hold, and
that, for any 𝑥∗ ∈ 𝐺([𝑃]), there exists a 𝜆 ∈ 𝑅𝑚

+
such that

the pair (𝑥∗, 𝜆∗) satisfies the second-order sufficiency condition
(8). Let𝑥∗ ∈ 𝑋 be a global solution of problem [𝑃] and𝑥

𝑞,𝜖
∈ 𝑋

a global solution of problem [𝑆𝑃] for 𝜖 > 0. Then there exists
𝑞∗ > 0 such that for any 𝑞 > 𝑞∗,

−
2

3
𝑚𝑞𝜖1/2 ≤ 𝑓 (𝑥∗) − 𝜑

𝑞,𝜖
(𝑥
𝑞,𝜖
) ≤

4

3
𝑚𝑞𝜖1/2, (33)

where 𝑞∗ is defined in Corollary 2.3 in [16].

Proof. By Corollary 2.3 in [16], we have that 𝑥∗ is a global
solution of problem [𝐿𝑂𝑃󸀠]. Then, byTheorem 5, we have

−
2

3
𝑚𝑞𝜖1/2 ≤ 𝜑

𝑞
(𝑥∗
𝑞
) − 𝜑
𝑞,𝜖

(𝑥
𝑞,𝜖
) ≤

4

3
𝑚𝑞𝜖1/2. (34)

Since ∑𝑚
𝑖=1

𝑝(𝑔
𝑖
(𝑥∗)) = 0, we have

𝜑
𝑞
(𝑥∗) = 𝑓 (𝑥∗) + 𝑞

𝑚

∑
𝑖=1

𝑝 (𝑔
𝑖
(𝑥∗)) = 𝑓 (𝑥∗) . (35)

We complete the proof.



4 Journal of Applied Mathematics

Table 1: Numerical results for Example 1 by Algorithm 7.

𝑗 𝑥∗
𝑗

𝑞
𝑗

𝜖
𝑗

𝑔
1
(𝑥∗
𝑗
) 𝑔

2
(𝑥∗
𝑗
) 𝑓(𝑥∗

𝑗
)

0 (
0.7811047

1.057024
) 5 0.1 0.0430043 −2.904718 3.333603

1 (
0.7260887

0.3992826
) 50 0.05 −0.7777236 0.000935 1.836004

2 (
0.7244794

0.3991450
) 500 0.025 −0.7737306 −0.000683 1.838842

3 (
0.7245065

0.3990242
) 5000 0.0175 −0.7738962 −0.000016 1.837684

Theorems 4 and 5 mean that an approximate solution to
[𝑆𝑃] is also an approximate solution to [𝐿𝑂𝑃󸀠]. Furthermore,
byTheorem 6, an optimal solution to [𝑆𝑃] is an approximately
optimal solution to [𝑃]. Now we present a penalty function
algorithm to solve [𝑃].

3. A Smoothing Method

We propose the following algorithm to solve [𝑃].

Algorithm 7. Consider the following.

Step 1. Choose a point 𝑥0. Given 𝜖
0
> 0, 𝑞

0
> 0, 0 < 𝜂 < 1,

and𝑁 > 1, let 𝑗 = 0, and go to Step 2.

Step 2. Use 𝑥𝑗 as the starting point to solve min
𝑥∈𝑅
𝑛𝜑
𝑞
𝑗
,𝜖
𝑗

(𝑥).
Let 𝑥∗
𝑗
be the optimal solution obtained (𝑥∗

𝑗
is obtained by a

quasi-Newtonmethod and a finite difference gradient). Go to
Step 3.

Step 3. Let 𝑞
𝑗+1

= 𝑁𝑞
𝑗
, 𝜖
𝑗+1

= 𝜂𝜖
𝑗
, 𝑥𝑗+1 = 𝑥∗

𝑗
and 𝑗 = 𝑗 + 1;

then go to Step 2.

Remark 8. From 0 < 𝜂 < 1 and 𝑁 > 1, we can easily obtain
that the sequence {𝜖

𝑗
} is decreasing to 0 and the sequence {𝑞

𝑗
}

is increasing to +∞ as 𝑗 → +∞.
Now we prove the convergence of the algorithm under

mild conditions.

Theorem 9. Suppose that, for any 𝑞 ∈ [𝑞
0
, +∞), 𝜖 ∈ (0, 𝜖

0
],

the set
argmin
𝑥∈𝑅
𝑛

𝜑
𝑞,𝜖 (𝑥) ̸= 0. (36)

Let {𝑥∗
𝑗
} be the sequence generated by Algorithm 7. If {𝑥∗

𝑗
} has

limit point, then any limit point of {𝑥∗
𝑗
} is the solution of [𝑃].

Proof. Let 𝑥 be any limit point of {𝑥∗
𝑗
}. Then there exists a

natural number set 𝐽 ∈ 𝑁, such that 𝑥∗
𝑗

→ 𝑥, 𝑗 ∈ 𝐽. If we can
prove that (i) 𝑥 ∈ 𝐺

0
and (ii) 𝑓(𝑥) ≤ inf

𝑥∈𝐺
0

𝑓(𝑥) hold, then
𝑥 is the optimal solution of [𝑃].

(i) Suppose, to the contrary, that 𝑥 ∉ 𝐺
0
; then there exist

𝛿
0
> 0, 𝑖
0
∈ 𝐼, and the subset 𝐽

1
⊂ 𝐽 such that

𝑔
𝑖
0

(𝑥∗
𝑗
) ≥ 𝛿
0 (37)

for any 𝑗 ∈ 𝐽
1
.

If 𝜖
𝑗
≥ 𝑔
𝑖
0

(𝑥∗
𝑗
) ≥ 𝛿
0
, it follows from Step 2 in Algorithm 7

and (15) that

𝑓 (𝑥∗
𝑗
) +

2

3
𝑞
𝑗
𝜖−2
𝑗
𝛿5/2
0

−
1

3
𝑞
𝑗
𝜖−3
𝑗
𝛿7/2
0

≤ 𝜑
𝑞
𝑗
,𝜖
𝑗

(𝑥∗
𝑗
) ≤ 𝜑
𝑞
𝑗
,𝜖
𝑗

(𝑥) = 𝑓 (𝑥)

(38)

for any 𝑥 ∈ 𝐺
0
, which contradicts with 𝜖

𝑗
→ 0 and 𝑞

𝑗
→

+∞.
If 𝑔
𝑖
0

(𝑥∗
𝑗
) ≥ 𝛿
0
> 𝜖
𝑗
or 𝑔
𝑖
0

(𝑥∗
𝑗
) > 𝜖
𝑗
≥ 𝛿
0
, it follows from

Step 2 in Algorithm 7 and (15) that

𝑓 (𝑥∗
𝑗
) + 𝑞
𝑗
(𝛿1/2
0

−
2

3
𝜖1/2
𝑗

) ≤ 𝜑
𝑞
𝑗
,𝜖
𝑗

(𝑥∗
𝑗
) ≤ 𝜑
𝑞
𝑗
,𝜖
𝑗

(𝑥) = 𝑓 (𝑥)

(39)

for any 𝑥 ∈ 𝐺
0
, which contradicts with 𝜖

𝑗
→ 0 and 𝑞

𝑗
→

+∞.
Then we have 𝑥 ∈ 𝐺

0
.

(ii) For any 𝑥 ∈ 𝐺
0
, it holds that

𝑓 (𝑥∗
𝑗
) ≤ 𝜑
𝑞
𝑗
,𝜖
𝑗

(𝑥∗
𝑗
) ≤ 𝜑
𝑞
𝑗
,𝜖
𝑗

(𝑥) = 𝑓 (𝑥) ; (40)

then 𝑓(𝑥) ≤ inf
𝑥∈𝐺
0

𝑓(𝑥) holds.
This completes the proof.

4. Numerical Examples

In this section, we solve two numerical examples to show the
applicability of Algorithm 7 on Fortran.

Example 1 (see [18, Example 4.1]). We can see the following:

min 𝑓 (𝑥) = 𝑥2
1
+ 𝑥2
2
− cos (17𝑥

1
) − cos (17𝑥

2
) + 3

s.t. 𝑔
1 (𝑥) = (𝑥

1
− 2)
2
+ 𝑥2
2
− 1.62 ≤ 0

𝑔
2 (𝑥) = 𝑥2

1
+ (𝑥
2
− 3)
2
− 2.72 ≤ 0

0 ≤ 𝑥
1
≤ 2

0 ≤ 𝑥
2
≤ 2.

(41)

Starting point 𝑥0 = (0, 0), 𝑞
0
= 5.0, 𝜖

0
= 0.1, 𝜂 = 0.5,

and 𝑁 = 10, we obtain the results by Algorithm 7 shown in
Table 1.

Furthermore, the algorithms based on the penalty func-
tion (3) or the exact penalty function (4) are described as
follows.
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Table 2: Numerical results for Example 1 by Algorithm 10.

𝑗 𝑥∗
𝑗

𝑞
𝑗

𝜖
𝑗

𝑔
1
(𝑥∗
𝑗
) 𝑔

2
(𝑥∗
𝑗
) 𝑓(𝑥∗

𝑗
)

0 (
0.003902

0.006869
) 0.1 10−1 1.424453 1.668849 1.009072

1 (
0.3739730

0.7309830
) 0.1 × 5 10−2 0.6182998 −2.001706 1.686692

2 (
0.3971605

0.7207292
) 0.1 × 52 10−3 0.5285448 −1.937189 1.833846

3 (
0.7277128

0.3901970
) 0.1 × 53 10−4 −0.7890318 0.050637 1.761504

4 (
0.7259367

0.3969422
) 0.1 × 54 10−5 −0.7791997 0.012894 1.815956

5 (
0.7254778

0.3987666
) 0.1 × 55 10−6 −0.7765785 0.002733 1.832846

6 (
0.7271451

0.3997456
) 0.1 × 56 10−7 −0.7800440 0.000062 1.837930

7 (
0.7271337

0.3997256
) 0.1 × 57 10−8 −0.7800310 0.000150 1.837770

8 (
0.7260696

0.3994698
) 0.1 × 58 10−9 −0.7775255 −0.000066 1.837740

Table 3: Numerical results for Example 1 by Algorithm 11.

𝑗 𝑥∗
𝑗

𝑞
𝑗

𝜖
𝑗

𝑔
1
(𝑥∗
𝑗
) 𝑔

2
(𝑥∗
𝑗
) 𝑓(𝑥∗

𝑗
)

0 (
0.001377

0.002065
) 0.1 10−1 1.434500 1.697615 1.000896

1 (
0.7513676

1.085665
) 2 10−2 0.1777513 −3.060769 2.840876

2 (
0.7188042

0.3974435
) 40 10−3 −0.7605761 −0.000021 1.844097

Algorithm 10. Consider the following.

Step 1. Choose a point 𝑥0, and a stopping tolerance 𝜖 > 0.
Given 𝜖

0
> 0, 𝑞

0
> 0, 0 < 𝜂 < 1, and 𝑁 > 1, let 𝑗 = 0, and go

to Step 2.

Step 2. Use 𝑥𝑗 as the starting point to solve min
𝑥∈𝑅
𝑛𝐹(𝑥, 𝑞

𝑗
).

Let 𝑥∗
𝑗
be the optimal solution obtained (𝑥∗

𝑗
is obtained by a

quasi-Newtonmethod and a finite difference gradient). Go to
Step 3.

Step 3. Let 𝑞
𝑗+1

= 𝑁𝑞
𝑗
, 𝜖
𝑗+1

= 𝜂𝜖
𝑗
, 𝑥𝑗+1 = 𝑥∗

𝑗
, and 𝑗 = 𝑗 + 1;

then go to Step 2.

Algorithm 11. Consider the following.

Step 1. Choose a point 𝑥0 and a stopping tolerance 𝜖 > 0.
Given 𝜖

0
> 0, 𝑞

0
> 0, 0 < 𝜂 < 1, and 𝑁 > 1, let 𝑗 = 0,

and go to Step 2.

Step 2. Use 𝑥𝑗 as the starting point to solve min
𝑥∈𝑅
𝑛𝑓(𝑥, 𝑞

𝑗
).

Let 𝑥∗
𝑗
be the optimal solution obtained (𝑥∗

𝑗
is obtained by

a quasi-Newton method and a finite difference gradient). Go
to Step 3.

Step 3. Let 𝑞
𝑗+1

= 𝑁𝑞
𝑗
, 𝜖
𝑗+1

= 𝜂𝜖
𝑗
, 𝑥𝑗+1 = 𝑥∗

𝑗
, and 𝑗 = 𝑗 + 1;

then go to Step 2.

Let 𝑥0 = (0, 0), 𝑞
0
= 0.1, 𝜖

0
= 0.1, 𝜂 = 0.1, and 𝑁 = 5;

numerical results by Algorithm 10 are shown in Table 2.
Let 𝑥0 = (0, 0), 𝑞

0
= 0.1, 𝜖

0
= 0.1, 𝜂 = 0.1, and 𝑁 = 20;

numerical results by Algorithm 11 are shown in Table 3.
This example is a nonconvex problem with 22 local

optimal solutions in the interior of the feasible region. By
Sun and Li [18], we know that 𝑥∗ = (0.7255, 0.3993) is a
global minimum with global optimal value 𝑓∗ = 1.8376. It
is clear from Table 1 that the obtained approximately optimal
solution is 𝑥∗ = (0.7245065, 0.3990242) with corresponding
objective function value 1.837684.

From Tables 1–3, one can see that Algorithm 11 converges
faster than Algorithms 7 and 10, but the solution generated
by Algorithm 11 is the worst. Algorithm 10 is the slowest one,
and the solution generated by Algorithm 10 is worse than the
solution generated by Algorithm 7.
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Table 4: Numerical results for Example 2 by Algorithm 7.

𝑗 𝑥∗
𝑗

𝑞
𝑗

𝜖
𝑗

𝑔
1
(𝑥∗
𝑗
) 𝑔

2
(𝑥∗
𝑗
) 𝑔

3
(𝑥∗
𝑗
) 𝑓(𝑥∗

𝑗
)

0 (1.139751, 1.272704,

3.819159, 1.997231)
2 1.0 15.35879 19.17715 17.95990 −70.16554

1 (0.1705428, 0.8361722,

2.011177, −0.9678533)
4 10−1 0.0115902 0.0232417 −1.856925 −44.28859

2 (0.1335792, 0.8091212,

1.995527, −1.008688)
8 10−2 −0.2599155 0.0007742 −1.780662 −44.02616

3 (0.1585001, 0.8339736,

2.014753, −0.959688)
16 10−3 −0.00367924 −0.0003119 −1.881673 −44.22965

Table 5: Numerical results for Example 2 by Algorithm 10.

𝑗 𝑥∗
𝑗

𝑞
𝑗

𝜖
𝑗

𝑔
1
(𝑥∗
𝑗
) 𝑔

2
(𝑥∗
𝑗
) 𝑔

3
(𝑥∗
𝑗
) 𝑓(𝑥∗

𝑗
)

0 (0.4528408, 0.8017877,

2.580122, −1.214387)
0.1 1.0 3.203103 4.425251 1.858834 −53.31968

1 (0.2167079, 0.8595678,

2.192063, −1.159403)
0.1 × 5 10−1 0.7715020 1.643783 −0.039055 −47.79021

2 (0.1782670, 0.8383819,

2.051085, −1.015255)
0.1 × 52 10−2 0.1530515 0.3785772 −1.457033 −45.08350

3 (0.1712600, 0.8356738,

2.017540, −0.9755791)
0.1 × 53 10−3 0.030094 0.078609 −1.795672 −44.41169

4 (0.1696707, 0.8354126,

2.010606, −0.9668932)
0.1 × 54 10−4 0.005887 0.015878 −1.865860 −44.26973

5 (0.1836584, 0.8497245,

1.993892, −0.9809219)
0.1 × 55 10−5 0.001217 0.002323 −1.824922 −44.23592

6 (0.1835818, 0.8496645,

1.993588, −0.9808556)
0.1 × 56 10−6 −0.000298 0.000466 −1.826614 −44.23108

7 (0.1843284, 0.8502323,

1.992886, −0.9814753)
0.1 × 57 10−7 −0.000141 0.000219 −1.824903 −44.23038

8 (0.1843219, 0.8502275,

1.992824, −0.9814662)
0.1 × 58 10−8 −0.000412 −0.000131 −1.825209 −44.22948

Table 6: Numerical results for Example 2 by Algorithm 11.

𝑗 𝑥∗
𝑗

𝑞
𝑗

𝜖
𝑗

𝑔
1
(𝑥∗
𝑗
) 𝑔

2
(𝑥∗
𝑗
) 𝑔

3
(𝑥∗
𝑗
) 𝑓(𝑥∗

𝑗
)

0 (0.1670927, 0.8365505,

2.011684, −0.9752350)
2 1.0 −0.001971 0.043152 −1.815266 −44.31766

1 (0.1692354, 0.8394703,

2.006255, −0.9683554)
4 0.1 −0.003364 0.000497 −1.862336 −44.23219

2 (0.1691869, 0.8394533,

2.006037, −0.9682074)
8 0.01 −0.004265 −0.001105 −1.863955 −44.22833

Example 2 (see the Rosen-Suzki problem in [15]). We can see
the following:
min 𝑓 (𝑥) = 𝑥2

1
+ 𝑥2
2
+ 2𝑥2
3
+ 𝑥2
4
− 5𝑥
1
− 5𝑥
2
− 21𝑥

3
+ 7𝑥
4

s.t. 𝑔
1 (𝑥) = 2𝑥2

1
+ 𝑥2
2
+ 𝑥2
3
+ 2𝑥
1
+ 𝑥
2
+ 𝑥
4
− 5 ≤ 0

𝑔
2 (𝑥) = 𝑥2

1
+ 𝑥2
2
+ 𝑥2
3
+ 𝑥2
4
+ 𝑥
1
− 𝑥
2
+ 𝑥
3
− 𝑥
4
− 8 ≤ 0

𝑔
3 (𝑥) = 𝑥2

1
+ 2𝑥2
2
+ 𝑥2
3
+ 2𝑥2
4
− 𝑥
1
− 𝑥
4
− 10 ≤ 0.

(42)

Let 𝑥0 = (1, 1, 1, 1), 𝑞
0
= 2.0, 𝜖

0
= 1.0, 𝜂 = 0.1, and𝑁 = 2;

the results by Algorithm 7 are shown in Table 4.

Let 𝑥0 = (1, 1, 1, 1), 𝑞
0
= 0.1, 𝜖

0
= 1.0, 𝜂 = 0.1, and𝑁 = 5;

numerical results by Algorithm 10 are shown in Table 5.
Let 𝑥0 = (1, 1, 1, 1), 𝑞

0
= 2.0, 𝜖

0
= 1.0, 𝜂 = 0.1, and𝑁 = 2;

the results by Algorithm 11 are shown in Table 6.
It is clear from Table 4 that the obtained approximately

optimal solution is 𝑥∗ = (0.1585001, 0.8339736, 2.014753,
−0.959688) with corresponding objective function value
−44.22965. From [15], the obtained approximately optimal
solution is 𝑥∗ = (0.169234, 0.835656, 2.008690, −0.964901)
with corresponding objective function value −44.233582.
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FromTables 4–6, one can see that Algorithm 11 converges
faster than Algorithms 7 and 10, but the solution generated
by Algorithm 11 is the worst. Algorithm 10 is the slowest one,
and the solution generated by Algorithm 10 is worse than the
solution generated by Algorithm 7.

From Tables 1–6, one can see that Algorithm 7 yields
some approximate solutions to [𝑃] that have a better objective
function value in comparison with Algorithms 10 and 11.

5. Conclusion

In this paper, we propose a method for smoothing the non-
smooth square-order exact penalty function for inequality
constrained optimization. Error estimations are obtained
among the optimal objective function values of the smoothed
penalty problem, of the nonsmooth penalty problem, and of
the original optimization problem. The algorithm based on
the smoothed penalty functions is shown to be convergent
under mild conditions.

According to the numerical results given in Section 4,
one may draw that the smoothing penalty function 𝜑

𝑞
(𝑥)

yields some better convergence results for computing an
approximate solution to [𝑃] than 𝐹(𝑥, 𝑞) and 𝑓(𝑥, 𝑞).

Finally, we give some advices on how to choose a param-
eter in the algorithm. According to our experience, initially,
𝑞
0
may be 0.1, 1, 5, 10, 100, 1000, or 10000,𝑁 = 2, 5, 10, or 100,

and the iteration formula 𝑞 = 𝑁𝑞. The initial value of 𝜖
0
may

be 10, 5, 1, 0.5, or 0.1, 𝜂 = 0.5, 0.1, 0.05, or 0.01, and the iteration
formula 𝜖 = 𝜂𝜖.
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