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Traditional manifold learning algorithms, such as locally linear embedding, Isomap, and Laplacian eigenmap, only provide the
embedding results of the training samples. To solve the out-of-sample extension problem, spectral regression (SR) solves the
problem of learning an embedding function by establishing a regression framework, which can avoid eigen-decomposition of dense
matrices.Motivated by the effectiveness of SR, we incorporatemultiple kernel learning (MKL) into SR for dimensionality reduction.
The proposed approach (termedMKL-SR) seeks an embedding function in the Reproducing Kernel Hilbert Space (RKHS) induced
by the multiple base kernels. An MKL-SR algorithm is proposed to improve the performance of kernel-based SR (KSR) further.
Furthermore, the proposed MKL-SR algorithm can be performed in the supervised, unsupervised, and semi-supervised situation.
Experimental results on supervised classification and semi-supervised classification demonstrate the effectiveness and efficiency of
our algorithm.

1. Introduction

In real applications, the resulting data representations are
generally high dimensional. Practical algorithms usually
behave badly when faced with many unnecessary features.
Hence, finding a way of transforming them into a uni-
fied space of lower dimension can facilitate the underlying
tasks such as pattern recognition or regression problems.
Dimensionality reduction (DR) techniques, which have been
widely used inmany fields of information processing, include
unsupervised, supervised, and semisupervised methods due
to different assumptions about the data distribution or the
availability of the data labeling.

In order to handle the data sampled from a nonlinear low
dimensional manifold, many manifold learning techniques,
such as ISOMAP [1], Locally Linear Embedding (LLE) [2],
and Laplacian Eigenmap [3], have been proposed in recent
years, which reduce the dimensionality of a fixed training set
in a way that can maximally preserve certain interpoint rela-
tionships. One of the major limitations of these methods is
that they do not generally address the out-of-sample problem.
Although some methods explicitly require an embedding
function either linear or in RKHS when minimizing the

objective function [4, 5], the computation of these methods
involves eigendecomposition of dense matrices which is
expensive in both time andmemory. Spectral regression (SR),
which is fundamentally based on regression and spectral
graph analysis [6–10], can avoid eigen-decomposition of
densematrices and has better performance at a faster learning
speed. Moreover, it can be performed either in supervised,
unsupervised, or semisupervised situation. Kernel SR (KSR)
is the kernelized version of SR in the reproducing kernel
Hilbert space (RKHS), which can further improve the per-
formance of SR. While KSR is based on a single kernel, in
practice it is often hard to select a suitable kernel. A common
way to an automatic selection of optimal kernels is to learn
a linear combination of base kernels. Motivated by the
effectiveness of SR, we introduce a framework called MKL-
SR that incorporates multiple kernel learning (MKL) into the
training process of SR. We will illustrate the formulation of
MKL-SRwith graph embedding [11], which provides a unified
view for a large family of DR methods. Any DR technique
expressible by graph embedding can therefore be generalized
by MKL-SR to boost their power by automatically selecting
optimal kernels. As the corresponding SR algorithm would
do, the proposed approach not only solves the out-of-sample
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extension problem but also improves the performance of
kernel-based SR (KSR) for the supervised, semisupervised,
and unsupervised learning problems.

The paper is structured as follows. In Section 2, we
briefly introduce the related work. We provide the MKL-SR
framework and present the optimization process in Section 3.
The experimental results are shown in Section 4. Finally, we
give the related conclusions in Section 5.

2. Related Work

Since the relevant literature is quite extensive, our survey
instead emphasizes the key concepts crucial to the establish-
ment of the proposed framework.

2.1. Spectral Regression Algorithm. In the traditional spectral
dimensionality reduction algorithms, seeking an embedding
function which minimizes the objective function involves
eigen-decomposition of dense matrices, which has the high
computational cost in both time and memory. The SR algo-
rithm uses the least squares method to get the best projection
direction, instead of computing the densitymatrix of features,
so it has much faster learning speed. An affinity graph G
of both labeled and unlabeled points is constructed to find
the intrinsic geometry structure and to learn the responses
with the given data. Then, with these responses, the ordinary
regression is applied to learning the embedding function.

Given a training set with 𝑙 labeled samples x
1
, x
2
, . . . , x

𝑙

and (𝑛 − 𝑙) unlabeled samples x
𝑙+1
, x
𝑙+2
, . . . , x

𝑚
, where the

sample x
𝑖
∈ 𝑅
𝑑 belongs to one of 𝑐 classes, let 𝑙

𝑘
be the number

of labeled samples in the 𝑘th class (the sum of 𝑙
𝑘
is equal to 𝑙).

The SR algorithm is summarized as follows.

Step 1. Constructing the adjacency graph G let X be the
training set and letG denote a graph with 𝑛 nodes, where the
𝑖th node corresponds to the sample x

𝑖
. In order to model the

local structure as well as the label information, the graph G
will be constructed through the following three steps.

(1) If x
𝑖
is among𝑝-nearest neighbors of x

𝑗
or x
𝑗
is among

𝑝-nearest neighbors of x
𝑖
, then nodes 𝑖 and 𝑗 are

connected by an edge.
(2) If x

𝑖
and x
𝑗
are in the same class (i.e., same label), then

nodes 𝑖 and 𝑗 are also connected by an edge.
(3) Otherwise, if x

𝑖
and x
𝑗
are not in the same class, then

the edge will be deleted between nodes 𝑖 and 𝑗.

Step 2. Constructing the weightmatrixW letW be the sparse
symmetric 𝑛 × 𝑛 matrix, where W

𝑖𝑗
represents the weight of

the edge joining vertices 𝑖 and 𝑗.

(1) If there is no any edge between nodes 𝑖 and 𝑗, then
W
𝑖𝑗
= 0.

(2) Otherwise, if both x
𝑖
and x

𝑗
belong to the 𝑘th class,

thenW
𝑖𝑗
= 1/𝑙
𝑘
, elseW

𝑖𝑗
= 𝛿 ⋅ 𝑠(𝑖, 𝑗),

where 𝛿 (0 < 𝛿 ≤ 1) is a given parameter to adjust the weight
between supervised and unsupervised neighbor information.
Therein, 𝑠(𝑖, 𝑗) is a similarity evaluation function between x

𝑖

and x
𝑗
; we have two variations, the first one is simple-minded

function 𝑠(𝑖, 𝑗) = 1 and the secondone is heat kernel function:

𝑠 (𝑖, 𝑗) = exp(−
󵄩󵄩󵄩󵄩󵄩
x
𝑖
− x
𝑗

󵄩󵄩󵄩󵄩󵄩

2

2𝜎2
) , (1)

where 𝜎 ∈ R.

Step 3. For eigen-decomposing let D be the 𝑛 × 𝑛 diagonal
matrix, whose (𝑖, 𝑖)th element is the sum of the 𝑖th column
(or row) of W. Find 𝑦

0
, 𝑦
1
, . . . , 𝑦

𝑐−1
, which are the largest 𝑐

generalized eigenvectors of the eigenproblem

Wy = 𝜆Dy, (2)

where the first eigenvector 𝑦
0
is a vector of all ones with

eigenvalue 1.

Step 4. Calculate 𝑐 − 1 vectors a
1
, . . . , a

𝑚−1
𝜖R𝑑. a

𝑘
(𝑘 =

1, . . . , 𝑐 − 1) is the solution of the regularized least square
problem

a
𝑘
= argmin

a
(

𝑛

∑

𝑖=1

(aTx
𝑖
−𝑦
𝑘

𝑖
)
2

+ 𝛾‖a‖2) , (3)

where 𝑦𝑘
𝑖
is the 𝑖th element of y𝑘.

Step 5. Let A be an 𝑑 × (𝑐 − 1) transformation matrix, where
A = [a

1
, . . . , a

𝑐−1
]. The testing samples or new sample can be

embedded into 𝑐 − 1 dimensional subspace by

x → z = ATx. (4)

Next, we briefly discuss the kernel spectral regression. If
we choose a nonlinear function in RKHS; that is, 𝑦

𝑖
= 𝑓(x

𝑖
) =

∑
𝑛

𝑗=1
𝛼
𝑗
𝑘(x
𝑖
, x
𝑗
), and 𝐾(x

𝑖
, x
𝑗
) is the Mercer kernel of RKHS

H
𝐾
. Equation (3) can be rewritten as

min
𝛼𝑘

𝑛

∑

𝑖=1

(K𝛼
𝑘
− 𝑦
𝑘

𝑖
)
2

+ 𝛼
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩
2

𝐾
, (5)

where K is 𝑛 × 𝑛 gram matrix 𝐾
𝑖𝑗
= 𝐾(x

𝑖
, x
𝑗
). Find 𝑐 − 1

vectors 𝛼
1
, . . . ,𝛼

𝑐−1
∈ R𝑛. 𝛼

𝑘
(𝑘 = 1, . . . , 𝑐 − 1) is the solution

of the following linear equations system:

(K + 𝛼𝐼)𝛼
𝑘
= y
𝑘
. (6)

Let Θ = [𝛼
1
, . . . ,𝛼

𝑐−1
], Θ is a 𝑛 × (𝑐 − 1) transformation

matrix.The samples can be embedded into 𝑐 − 1 dimensional
subspace by

x → z = Θ𝑇𝐾 (⋅, x) , (7)

where𝐾(⋅, x) = [𝐾(x
1
, x), . . . , 𝐾(x

𝑛
, x)]𝑇.

2.2. Multiple Kernel Learning. MKL learns a kernel machine
with multiple kernel functions or kernel matrices. Recent
studies have shown that MKL not only increases the recog-
nition accuracy but also enhances the interpretability of the
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resulting classifiers. Given a set of base kernel functions
{𝑘
𝑚
}
𝑀

𝑚=1
, an ensemble kernel function 𝑘 is defined by

𝑘 (x
𝑖
, x
𝑗
) =

𝑀

∑

𝑚=1

𝛽
𝑚
𝑘
𝑚
(x
𝑖
, x
𝑗
) , 𝛽

𝑚
≥ 0. (8)

Consequently, an often-used MKL decision function derived
from binary-class SVM is

𝑓 (x) =
𝑁

∑

𝑖=1

𝛼
𝑖
𝑦
𝑖
𝑘 (x
𝑖
, x) + b =

𝑁

∑

𝑖=1

𝛼
𝑖
𝑦
𝑖

𝑀

∑

𝑚=1

𝛽
𝑖
𝑘
𝑚
(x
𝑖
, x) + b. (9)

The training process of MKL generally optimizes over both
the coefficients {(𝛼

𝑖
)}
𝑁

𝑖=1
and {(𝛽

𝑚
)}
𝑀

𝑚=1
.

In recent years, dimensionality reduction methods based
on multiple kernels have been proposed to improve the
performance of those using single kernel. In [12], kernel
learning was first incorporated into DR methods. Then, a
multiple kernel DR frameworkwas designed in [13]. Recently,
Zhu et al. proposed a dimensionality reduction method by
Mixed Kernel Canonical Correlation Analysis (CCA) [14, 15].
In this method, the high dimensional data space is mapped
into the reproducing kernel Hilbert space (RKHS) with a
linear combination between a local kernel and a global kernel.
Kernel CCA is further improved by performing Principal
Component Analysis (PCA) followed by CCA for effective
dimensionality reduction, which can be implemented in
supervised learning, semisupervised learning, and transfer
learning. Motivated by their work, we aim to incorporate the
MKL optimization into SR to yield more flexible dimension-
ality reduction schemes.

3. The MKL-SR Framework

Wefirst explain how to integrateMKL and SR for dimension-
ality reduction.Then, we propose an optimization procedure
to complete the framework.

3.1. MKL-SR Model. Suppose that the ensemble kernel 𝐾 in
MKL-SR is generated by linearly combining the base kernels
{𝑘
𝑚
}
𝑀

𝑚=1
as in (8). Selecting a nonlinear function in RKHS

induced by the kernel function 𝑘(x
𝑖
, x
𝑗
) = ∑
𝑀

𝑚=1
𝛽
𝑚
𝑘
𝑚
(x
𝑖
, x
𝑗
),

we have 𝑦
𝑖
= 𝑓(x

𝑖
) = ∑

𝑛

𝑗=1
∑
𝑀

𝑚=1
𝛼
𝑗
𝛽
𝑚
𝑘
𝑚
(x
𝑖
, x
𝑗
). The

constrained optimization problem for 1𝐷MKL-SR is defined
as follows:

min
𝛼,𝛽

𝑁

∑

𝑖,𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝛼
𝑇
K
(𝑖)
𝛽 − 𝛼
𝑇
K
(𝑗)
𝛽

󵄩󵄩󵄩󵄩󵄩

2

𝑤
𝑖𝑗 (10)

Subject to
𝑁

∑

𝑖,𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝛼
𝑇
K
(𝑖)
𝛽

󵄩󵄩󵄩󵄩󵄩

2

𝑑
𝑖𝑖
= 1 (11)

𝛽
𝑚
≥ 0, 𝑚 = 1, 2, . . . ,𝑀, (12)

where

𝛼 = [𝛼
1
, . . . , 𝛼

𝑛
]
𝑇
∈ R
𝑛
,

𝛽 = [𝛽
1
, . . . , 𝛽

𝑀
]
𝑇
∈ R
𝑀
,

K
(𝑖)
=
[
[

[

𝑘
1
(1, 𝑖) ⋅ ⋅ ⋅ 𝑘

𝑀
(1, 𝑖)

... d
...

𝑘
1
(𝑛, 𝑖) ⋅ ⋅ ⋅ 𝑘

𝑀
(𝑛, 𝑖)

]
]

]

∈ R
𝑛×𝑀
.

(13)

The additional constraints in (12) arise from the use of the
ensemble kernel in (8) and are to ensure that the resulting
kernel 𝐾 in MKL-SR is a nonnegative combination of base
kernels.

Observe from (10) that the one-dimensional projection of
MKL-SR is specified by a sample coefficient vector 𝛼 and a
kernel weight vector 𝛽.The two vectors, respectively, account
for the relative importance among the samples and the base
kernels in the construction of the projection. To generalize
the formulation to uncover a multidimensional projection,
we consider a set of 𝑐 − 1 sample coefficient vectors, denoted
by

A = [𝛼
1
𝛼
2
⋅ ⋅ ⋅𝛼
𝑐−1
] . (14)

The resulting projection will map samples to a (𝑐 − 1)-
dimensional euclidean space. Similar to the 1𝐷 case, a
projected sample x

𝑖
can be written as

A𝑇K(𝑖)𝛽 ∈ R𝑐−1. (15)

The optimization problem (10) can now be extended to
multidimensional MKL-SR as

min
A,𝛽

𝑁

∑

𝑖,𝑗=1

󵄩󵄩󵄩󵄩󵄩
A𝑇K(𝑖)𝛽−A𝑇K(𝑗)𝛽󵄩󵄩󵄩󵄩󵄩

2

𝑤
𝑖𝑗
, (16)

subject to
𝑁

∑

𝑖,𝑗=1

󵄩󵄩󵄩󵄩󵄩
A𝑇K(𝑖)𝛽󵄩󵄩󵄩󵄩󵄩

2

𝑑
𝑖𝑖
= 1,

𝛽
𝑚
≥ 0, 𝑚 = 1, 2, . . . ,𝑀.

(17)

3.2. Optimization Algorithm. Since direct optimization to
(16) is difficult, we instead adopt an iterative, two-step
strategy to alternately optimize A and 𝛽. At each iteration,
one ofA and 𝛽 is optimized while the other is fixed, and then
the roles ofA and 𝛽 are switched. Iterations are repeated until
convergence or a maximum number of iteration is reached.

3.2.1. OnOptimizingA. Wecan indirectly utilize 1𝐷MKL-SR
to solve multidimensional MKL-SR. By fixing 𝛽, the problem
(10) can be transformed into the following optimal problem:

𝛼
∗
= argmax

𝛼

𝛼
𝑇K𝑊K𝑇𝛼

𝛼
𝑇K𝐷K𝑇𝛼

, (18)

where K = [K(1)𝛽, . . . ,K(𝑛)𝛽] ∈ R𝑛×𝑛. The optimal 𝛼’s are
the eigenvectors corresponding to the maximum eigenvalue
of the eigenproblem

K𝑊K𝛼 = 𝜆K𝐷K𝛼. (19)
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The training procedure of MKL-SR
Input: A set of training data, matrices𝑊 and𝐷, a set of base kernels {𝑘

𝑚
}
𝑀

𝑚=1

and parameter 𝛾 in (21).
Output: Sample coefficient vectors A = [𝛼

1
𝛼
2
. . . 𝛼

𝑐−1
];

Kernel weight vectors 𝛽;
Make an initial guess for A or 𝛽;
Computing the largest 𝑐 generalized eigenvectors y𝑘 (𝑘 = 1, . . . , 𝑐 − 1) of eigen-problem (2);
For i← 1, 2, . . . , imax do

(1) Compute K;
(2) A is obtained by solving the least squares problem (21);
(3) Compute K󸀠𝑇𝑊K󸀠 in (24) and K󸀠𝑇𝐷K󸀠 in (25);
(4) 𝛽 is optimized by solving optimization problem (24) via SDP;

Return A and 𝛽;

Algorithm 1: MKL-SR algorithm.

Consequently, the columns of the optimal 𝐴∗ = [𝛼
1
,𝛼
2
, . . . ,

𝛼
𝑐−1
] in (16) are the eigenvectors corresponding to the first

𝑐 − 1 smallest eigenvalues in (19).
Solving the problem (19) directly involves eigen-

decomposition of dense matrices, which has the high
computational cost in both time and memory. In order
to solve the eigenproblem in (19) efficiently, we use the
following theorem.

Theorem 1. Let y be the eigenvector of the eigenproblem in (2)
with eigenvalue 𝜆. If K𝛼 = y; then 𝛼 is the eigenvector of the
eigenproblem in (19) with the same eigenvalue 𝜆.

Proof. We have𝑊y = 𝜆𝐷y. At the left side of (19), replacing
K𝛼 by y, we have

K𝑊K𝛼 = K𝑊y = K𝜆𝐷y = 𝜆K𝐷y = 𝜆K𝐷K𝛼. (20)

Thus, 𝛼 is the eigenvector of the eigenproblem (19) with the
same eigenvalue 𝜆.

Theorem 1 shows that, instead of solving the eigenprob-
lem (19), the embedding functions can be acquired through
two steps.

(1) Solve the eigenproblem in (2) to get y.
(2) Find 𝛼 which satisfies K𝛼 = y. Similar to SR, a

possible way is to find 𝛼 which can best fit the
equation in the least squares sense as

𝛼 = argmin
𝛼

(

𝑛

∑

𝑖=1

(𝛼
𝑇
K
(𝑖)
𝛽−y
𝑖
)
2

+ 𝛾‖𝛼‖
2
) , (21)

where y
𝑖
is the 𝑖th element of y.

Since the matrix D is guaranteed to be positive definite,
the eigenproblem in (2) can be stably solved. Moreover, both
D −W and D are sparse matrices. The top 𝑐 eigenvectors of
eigenproblem in (2) can be efficiently calculatedwith Lanczos
algorithms [13]. In addition, the technique to solve the least
square problem is already matured and there exist many
efficient iterative algorithms that can handle very large scale
least square problems.

3.2.2. On Optimizing 𝛽. By fixing 𝐴, the optimization prob-
lem (16) becomes

min
𝛽

𝛽
𝑇
K
󸀠𝑇

𝑊K
󸀠
𝛽 (22)

Subject to 𝛽𝑇K󸀠𝑇𝐷K󸀠𝛽 = 1, 𝛽 ≥ 0, (23)

where K󸀠=[A𝑇K(1), . . . ,A𝑇K(𝑛)]𝑇 ∈ R𝑛×𝑀.
The additional constraints 𝛽 ≥ 0 cause the optimization

to (22) to be no longer transformed into a generalized
eigenvalue problem. It is actually a nonconvex quadratically
constrained quadratic programming (QCQP) problem [13],
which is a NP-hard problem. Thus, we instead consider
solving its convex relaxation by adding an auxiliary variable
𝑇 of size𝑀×𝑀 as

min
𝛽,𝐵

trace (K󸀠𝑇𝑊K
󸀠
𝑇) (24)

Subject to trace (K󸀠𝑇𝐷K󸀠𝑇) = 1, (25)

e𝑇
𝑚
𝛽 ≥ 0, 𝑚 = 1, 2, . . . ,𝑀, (26)

[
1 𝛽
𝑇

𝛽 𝑇
] ≽ 0, (27)

where e
𝑚

in (26) is a column vector whose elements are
0 except that its 𝑚th element is 1. To obtain the convex
relaxation of the nonconvex QCQP problem (22), we relax
the equation 𝑇 = 𝛽𝛽𝑇 to 𝑇 ≽ 𝛽𝛽𝑇, which can be equivalently
expressed by the constraint in (27) according to the Schur
complement lemma [16]. The optimization problem (24) is
a semidefinite programming (SDP), which can be efficiently
solved. It can be note that the numbers of constraints and
variables in (24) are linear and quadratic to𝑀, respectively.
In practice, the value of𝑀 is often small. Thus, the proposed
MKL-SR algorithm listed in Algorithm 1 mainly includes a
sequence of SR training.
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3.3. Novel Sample Embedding. After accomplishing the train-
ing procedure of MKL-SR, we can project a testing sample z
into the learned subspace by

z → A𝑇K(z)𝛽, (28)

where

K
(z)
∈ R
𝑛×𝑀
, K

(z)
(𝑖, 𝑚) = 𝑘

𝑚
(𝑥
𝑖
, z) . (29)

Several algorithms such as the nearest neighbor rule or 𝑘-
means clustering can be used to complete classification or
clustering tasks. In the experiments of this paper, we specifi-
cally discuss the effectiveness ofMKL-SR in different learning
tasks, including unsupervised learning for clustering, super-
vised, and semisupervised learning for face recognition.

4. Experiments

Weused seven datasets (ionosphere, letter, digit, and satellite)
from the UCI machine learning repository to perform unsu-
pervised learning task. For the letter and satellite data sets,
we only used their first two classes. Several multiclass data
sets were created from the digits data. The experiments on
supervised and semisupervised classificationwere performed
on the CMU PIE face data set and the extended Yale B data
set [17, 18], respectively. All the face images are manually
aligned and cropped.The pixel values are scaled to [0, 1]. The
basic information about these data sets is listed in Table 1.
All the experiments have been performed in MATLAB 7.14.0
environment running in a 3.10GHZ Intel Core i5-2400 with
3GB RAM.

4.1. Experiments on Unsupervised Learning. To validate that
MKL-SR is effective for an unsupervised dimensionality
reduction task, we applied the proposed algorithm as a
tool to learn an appropriate kernel function for KSR. Each
data set was reduced by SR, single kernel based SR, kernel
principal component analysis (KPCA), andMKL-SR, respec-
tively.The normalized cut spectral clustering (NC) algorithm
was adopted to evaluate the clustering performance on the
reduced data. We set the number of clusters equal to the
true number of classes and compared the clusters generated
by these algorithms with the true classes by computing the
clustering accuracy measure as

Acc = 1
𝑁

max
(𝐶𝑘,𝐿𝑚)

( ∑

(𝐶𝑘,𝐿𝑚)

𝑇 (𝐶
𝑘
, 𝐿
𝑚
)) , (30)

where 𝐶
𝑘
denotes the 𝑘th cluster in the final results, 𝐿

𝑚
is the

true𝑚th class, and 𝑇(𝐶
𝑘
, 𝐿
𝑚
) is the number of entities which

belong to class𝑚 and are assigned to cluster 𝑘.
To obtain stable results, for each data set, we computed

the average results of each algorithm over 20 runs. For
comparison, we also performed the NC algorithm in the
original data space (Baseline). For SR, KSR, and MKL-SR,
the dimension of the subspace is the number of categories.
For KPCA, we tested its performance with all the possible

Table 1: Description of the datasets.

Data Size (𝑛) Feature (𝑑) Class
Ionosphere 351 34 2
Letter A-B 1555 16 2
Satellite C1-C2 2236 36 2
Digits 0689 713 64 4
Digits 1279 718 64 4
CMU PIE 850 1024 5
Extended Yale B 2114 1024 38

dimensions and report the best result. For SR, KSR, and
MKL-SR, we simply set the value of the parameter 𝛾 as 1.
For KSR and KPCA, the Gaussian function exp(−𝑏‖x − a‖2)
with width 1 was selected. ForMKL-SR, we use a linear kernel
function, a polynomial kernel function, and a Gaussian
kernel function.

Table 2 lists the mean of 20 different random repetitions
as well as the standard deviation. From Table 2, we observe
that the performance of kernel based algorithms is much
better than SR, which indicates that the performance of linear
DR algorithms can be improved by virtue of nonlinear kernel
functions. MKL-SR significantly surpasses KSR and KPCA,
which are single kernel based approaches. This is due to the
fact that MKL-SR is able to learn a better kernel by MKL,
which is considerably more effective than a single Gaussian
kernel. The performance of KSR is very close to that of
KPCA, but the number of reduced dimensions of KPCA
has to be verified by testing many times. In addition to the
fixed number of reduced dimensions, we also try to examine
how the compared algorithms work when applying KPCA
to obtain projected data of a varied number of dimensions.
Thus, MKL-SR is easy to be implemented and has better
performance than other algorithms.

4.2. Experiments on Supervised Learning. In this experiment,
wemainly comparedMKL-SRwith the following approaches:
KPCA, LDA, SR, and KSR. In order to evaluate the perfor-
mance of these algorithms, we performed the SVMalgorithm
in the original face image space (baseline) and KPCA, LDA,
SR, KSR, andMKL-SR subspace.The kernels and parameters
are set in the same way as in the unsupervised learning.
From each class of the CMU PIE face data sets, we randomly
selected 𝑙 (the number of training samples per class) samples
for training.

For each given 𝑙, we averaged the results over 30 random
splits and computed the mean as well as the standard
deviation, which are listed in Table 3. As can be seen from
Table 3, the performance of KPCA and LDA is even worse
than that of the baseline method, which resulted from the
limitation of KPCA and LDA. As is well known that KPCA is
unsupervised, thus it cannot effectively exploit the supervised
information, which results in the worst performance in
supervised case. LDA does not utilize the regularization
approach to control the model complexity. Thus, it cannot
solve the over-fitting problem in small sample size case.
In contrast, SR, KSR, and MKL-SR take advantage of the
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Table 2: Clustering accuracy (in percent) based on different DR methods.

Data Baseline SR KSR KPCA MKL-SR
Ionosphere 75.1 ± 0.8 80.6 ± 0.5 85.6 ± 0.4 85.2 ± 0.3 89.5 ± 0.2

Letter A-B 86.2 ± 0.6 89.4 ± 0.4 90.7 ± 0.3 91.4 ± 0.3 93.4 ± 0.3

Satellite C1-C2 95.7 ± 0.7 96.3 ± 0.2 97.3 ± 0.3 97.3 ± 0.3 98.7 ± 0.2

Digits 0689 90.3 ± 0.4 92.5 ± 0.3 93.6 ± 0.3 94.6 ± 0.2 95.6 ± 0.2

Digits 1279 93.4 ± 0.2 94.3 ± 0.2 95.7 ± 0.3 94.5 ± 0.2 96.8 ± 0.2

Table 3: Recognition accuracy rates on PIE (mean ± std-dev%).

Train size Baseline KPCA LDA SR KSR MKL-SR
5 × 68 68.0 ± 1.7 40.2 ± 0.3 58.2 ± 1.5 71.9 ± 1.4 72.4 ± 0.7 79.2 ± 0.8

10 × 68 83.2 ± 0.7 51.3 ± 0.3 70.3 ± 1.3 85.0 ± 1.3 87.2 ± 0.4 90.2 ± 0.5

20 × 68 91.1 ± 0.6 68.7 ± 0.3 79.5 ± 0.8 92.3 ± 0.7 94.0 ± 0.3 95.7 ± 0.3

30 × 68 93.4 ± 0.6 70.2 ± 0.4 89.1 ± 0.5 93.4 ± 0.7 95.9 ± 0.2 96.4 ± 0.3

40 × 68 94.6 ± 0.6 82.3 ± 0.4 91.8 ± 0.4 94.8 ± 0.4 96.6 ± 0.2 97.9 ± 0.2

Tikhonov regularizer to improve the smoothness of projec-
tion functions, and they can perform better than KPCA and
LDA. By substituting the nonlinear embedding functions
with the linear ones, KSR and MKL-SR all outperform SR.
The performance of MKL-SR is better than that of KSR based
on a single kernel, which indicates that MKL-SR can select
an appropriate kernel and validates the effectiveness of our
method.

The key parameter in MKL-SR is the regularization
parameter 𝛾 ≥ 0 which controls the smoothness of the
embedding function based on multiple kernels. Next, we
discuss the impact of parameter 𝛾 on the performance of
MKL-SR. Figure 1 shows the performance of MKL-SR as a
function of the parameter 𝛾. For convenience, the 𝑋-axis is
plotted as 𝛾/(1 + 𝛾) which is strictly in the interval [0, 1].
As can be seen from Figure 1, MKL-SR obtains the best
performance near the middle of the interval. When 𝛾/(1 + 𝛾)
decreases to zero or increases to one, the performance of
MKL-SR decreases sharply. Fortunately, good performance
can be achieved over a wide range of 𝛾, which shows that
the parameter selection is not a crucial problem in MKL-SR
algorithm. In reality, we can use cross validation to verify the
best parameter or simply select a value between 0.1 and 1.

4.3. Experiments on Semisupervised Learning. In the semisu-
pervised case, we compared the performance of MKL-SR
with KPCA and semisupervised KSR. For comparison, we
performed the SVM algorithm in the original face image
space (baseline), KPCA, and semisupervised KSR and MKL-
SR subspace. For KSR and MKL-SR, we simply set the value
of the parameter 𝛾 as 1. In the semisupervised MKL-SR, the
parameter 𝛿 (0 < 𝛿 ≤ 1) was selected by cross validation.
The kernels and parameters are set in the same way as in
the unsupervised learning. For the extended Yale B face data
set, a random subset with 𝑙 (= 5, 10, 20, 30, 40) images per
individual was first taken to form the training set and the rest
of the data set was used to be the testing set. In the training
set, we only use one half data as labeled data and the rest
as unlabeled data. KPCA only uses unlabeled data and the

SVM algorithm is also performed on the reduced data based
on KPCA. KSR and MKL-SR use both labeled and unlabeled
data.The𝑝 is set to be 7 for the𝑝-nearest neighbor graph over
all the training samples in KSR and MKL-SR.

We average the classification accuracy over 30 random
splits for each given 𝑙. The mean as well as the standard
deviation is shown in Table 4. From Table 4, we can observe
that KSR andMKL-SR can efficiently exploit both labeled and
unlabeled data to discover the intrinsic geometry structure
in the data; that is, the reduced data can preserve the original
intrinsic geometry structure very well.Thus, they outperform
the baseline method and KPCA, which cannot utilize all
the available data. The performance of MKL-SR is much
better than that of KSR, which indicates that the final kernel
matrix learned by MKL-SR is still better than the one based
on a single kernel in the semisupervised case. Overall, the
proposedMKL-SR algorithm can achieve better performance
in the supervised, semisupervised, and unsupervised case.

5. Conclusion

In this paper, we propose a new dimensionality reduction
framework called MKL-SR. By means of SR, we solve the
out-of-sample extension problem by seeking an embedding
function in RKHS induced by multiple kernels. Thus, this
method can not only construct the nonlinear embedding
function in the form of convex combination of base kernels
but also improve the performance of single kernel based SR
in the supervised, semisupervised, and unsupervised case.
Experimental results validate the effectiveness and efficiency
of the MKL-SR algorithm. In the near future, we will further
explore how to integrate different MKL methods into our
model.
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Figure 1: Performance of MKL-SR with respect to 𝛾/(1 + 𝛾) on PIE. (a) 𝑙 = 10. (b) 𝑙 = 30.

Table 4: Recognition accuracy rates on Extended Yale B (mean ± std-dev%).

The number of labeled samples Baseline KPCA Semi-supervised KSR Semisupervised MKL-SR
𝑙 = 95 50.8 ± 2.3 57.4 ± 2.0 61.5 ± 1.7 73.2 ± 1.5

𝑙 = 190 69.3 ± 1.4 73.7 ± 1.4 76.3 ± 1.3 80.4 ± 0.9

𝑙 = 380 83.2 ± 0.6 85.8 ± 0.7 89.7 ± 0.3 92.6 ± 0.3

𝑙 = 570 90.1 ± 0.3 92.5 ± 0.3 95.7 ± 0.2 96.3 ± 0.2

𝑙 = 760 91.6 ± 0.2 95.4 ± 0.3 97.2 ± 0.2 97.9 ± 0.2
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