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The differential evolution algorithm (DE) is one of the most powerful stochastic real-parameter optimization algorithms. The
theoretical studies on DE have gradually attracted the attention of more and more researchers. However, few theoretical researches
have been done to deal with the convergence conditions for DE. In this paper, a sufficient condition and a corollary for the
convergence of DE to the global optima are derived by using the infinite product. A DE algorithm framework satisfying the
convergence conditions is then established. It is also proved that the two common mutation operators satisfy the algorithm
framework. Numerical experiments are conducted on two parts. One aims to visualize the process that five convergent DE based
on the classical DE algorithms escape from a local optimal set on two low dimensional functions. The other tests the performance
of a modified DE algorithm inspired of the convergent algorithm framework on the benchmarks of the CEC2005.

1. Introduction

The differential evolution algorithm (DE) is a population-
based stochastic parallel evolutionary algorithm.DE emerged
as a very competitive form of evolutionary computing since
it was proposed by Storn and Price in 1995 [1]. DE or its vari-
ants have been achieving competitive ranking in various
competitions held on the IEEE Congress on Evolutionary
Computation (CEC) Conference Series [2, 3]. According to
frequently reported comprehensive studies [4–6], DE out-
performs many other optimization methods in terms of
convergence speed and robustness over common benchmark
functions. Compared to most other evolutionary algorithms,
DE is much more simple and straightforward to implement,
and has very few control parameters. Perhaps due to these
advantages, it has got many practical applications, such as
function optimization [7–11], multiobjective optimization
[12], classification [13], and scheduling [14].

Theoretical studies of algorithms are very important to
understand their search behaviors and to develop more effi-
cient algorithms. With the popularity of DE in applications,
more and more researchers pay attention to the theoretical

studies on DE. According to the research contents, the main
results of theoretical studies on DE can be divided into three
classes as follows.

1.1. Researches on the Timing Complexity of DE. DE is a
population-based stochastic search algorithm. Its runtime-
complexity analysis is a critical issue. Zielinski et al. [15] inves-
tigated the runtime complexity of DE for various stopping
criteria including a fixed number of generations (𝐺max) and
maximum distance criterion (MaxDist). MaxDist means that
algorithms stop the execution if the maximum distance from
every vector to the best population member is below a given
threshold.

1.2. Researches on the Dynamical Behavior of DE’s Population.
This class focuses on investigating the evolving process
of DE’s population. For instance, the development of the
expected population variance and population distribution
over time is an important issue. Zaharie [16–20] theoretically
analyzed the influence of the variation operators (mutation
and crossover) and their parameters on the expected popula-
tion variance. In 2009, Zaharie [21] theoretically investigated
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the influence of the crossover operators (including classical
binomial and exponential strategies) and the crossover prob-
ability on the expected population variance. Dasgupta et al.
[22, 23] proposed a mathematical model of the underlying
evolutionary dynamics of a one-dimensional DE-population,
and the model showed that the fundamental dynamics of the
each parameter vector in DE employs the gradient-descent
type search strategy. Wang and Huang [24] developed a
stochastic model of a one-dimensional DE-population to
analyze the evolving process of the population distribution
over time.

1.3. Researches on the Convergence Property of DE. This class
investigates the limit behavior of DE’s population. The main
issue is that under which assumptions can it be guaran-
teed that DE or its variants can reach an optimal solution
[25]. Technically speaking, commonly used concepts include
convergence in probability, almost sure convergence, and
convergence in distribution.

Xue et al. [26] performed a mathematical modeling and
convergence analysis of continuous multi-objective differen-
tial evolution (MODE) under certain simplified assumptions,
and this work was extended in [27]. Zhao et al. [28] pro-
posed a hybrid differential evolution with transform function
(HtDE) and proved its convergence. Sun [29] developed a
Markov chain modeling and proved that the classical DE
does not hold with convergence in probability. He et al.
[30] defined the differential operator (DO) as a random
mapping from the solution space to the Cartesian product
of solution space and analyzed the asymptotic convergence
of DE by using the random contraction mapping theorem.
Ghosh et al. [31] established asymptotic convergence behavior
of a classical DE (DE/rand/1/bin) algorithm by applying the
concepts of Lyapunov stability theorems. And the analysis is
based on the assumption that the objective function has the
following two properties, (1) the objective function has the
second-order continual derivative in the search space, and (2)
it possesses a unique global optimum in the range of search.

The studies of this paper are confined to the third class,
convergence property of DE.

We note that the conclusion of [30, 31] is in contradiction
with [29]. According to the inference process, the asymptotic
convergence in [30] refers to almost sure convergence. In fact,
if DE does not hold with convergence in probability, then it
does not holdwith almost sure convergence.We also note that
the value of the random mapping DO defined in [30] may
be greater than 1, which is debatable. In [31], the asymptotic
convergence analysis of DE/rand/1/bin, which was proved
by applying Lyapunov stability theorems, should be a local
convergence property. The reason is, according to Lyapunov
stability theorems, the distribution of the initial population
depends on the maximum region of the asymptotic stability.
So for some functions, DE/rand/1/bin possesses asymptotic
stability property if and only if initial individuals are closed
enough to the global optimum. In addition, from the muta-
tion operators of the classical DE, it can be derived that DE, if
its population traps in a local optimum, cannot escape. This
property was employed by [29] to prove that the classical DE
does not possess global convergence in probability.

Taking into account that a convergent algorithm may
have stronger robustness than a divergent one. Zhao et al.
[28] developed a convergent algorithm, HtDE and proved its
convergence. Zhan and Zhang [32] proposed a DE with ran-
dom walk. Xue et al. [26, 27] analyzed MODE’s convergence.
However, the conditions for global convergence of DE have
not been explored. In this paper, the following problems will
be addressed.

(i) What are sufficient conditions for the global conver-
gence of DE?

(ii) What is the algorithm framework of the convergent
DE?

(iii) Which operators can assist the classical DE to hold
with a certain asymptotic convergence?

The discussion in this paper will be undertaken in a
general measurable space, and infinite productionwill be used
as an analysis tool.

This paper is organized as follows. Section 2 introduces
the classical DE. Section 3 proves a sufficient condition and
a corollary for the convergence of DE to the global optima.
Section 4 presents a DE algorithm framework satisfying the
convergence conditions. Section 5 proves several operators
satisfying the convergent algorithm framework. Section 6
gives numerical experiments to verify the robustness of
the convergent DE. Section 7 analyzes and discusses the
theoretical conclusions and the experimental results in detail.
Section 8 summarizes this paper and indicates several direc-
tions for future research.

2. Classical Differential Evolution

DE is a competitive algorithm for solving continuous opti-
mization problem. Consider the optimization problem:

max {𝑓 (𝑥) ; 𝑥 ∈ 𝑆} , (1)

where 𝑆 is a measurable space and 𝑓(𝑥) is the objective
function (or the fitness of 𝑥) which satisfies that for any
bounded 𝑥 ∈ 𝑆, 𝑓(𝑥) is bounded. The optimal solution set
is denoted as 𝑆∗ = {𝑥

∗

| 𝑓(𝑥
∗

) = max{𝑓(𝑥)}, 𝑥 ∈ 𝑆}, where
𝑥
∗ is the optimum solution.
Let 𝜇(⋅) be ameasure to space 𝑆. Perhaps 𝜇(𝑆∗) = 0, which

means that 𝑆∗ is a set with measure 0. This is not convenient
to analyze. In view of the accuracy of practical problems,
without loss of generality, we can consider an expanded set
𝑆
∗

𝛿
= {𝑥 | 𝑓(𝑥

∗

) − 𝑓(𝑥) < 𝛿}, where 𝛿 is a small positive
value. We can choose an appropriate 𝛿, which can meet the
accuracy and make 𝜇(𝑆∗

𝛿
) > 0. We use 𝑆∗

𝛿
(𝜇(𝑆∗
𝛿
) > 0)

to replace the set 𝑆∗ in this paper. Meanwhile, in order to
simplify the calculation, let us suppose that the search space
𝑆 = 𝐼
𝑛, where 𝐼 = [0, 1], 𝑛 is the dimension of 𝑆.

The classical DE [2, 33, 34] works through a simple cycle
of reproduction and selection operators after initialization.
The reproduction operator includes mutation and crossover
operators. The classical DE for solving the above problem (1)
can be described in detail as follows.

(1) Initialization: Generate an initial population denoted
by𝑋(0), and let 𝑡 ← 0.
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(2) Reproduction: Generate a trial population 𝑌(𝑡) from
the target population𝑋(𝑡).

Mutation: generate a new population from𝑋(𝑡)

by a mutation operator, denoted by 𝑉(𝑡).
Crossover: generate a new population from𝑋(𝑡)

and 𝑉(𝑡) by a crossover operator, denoted by
𝑈(𝑡), and let 𝑌(𝑡) ← 𝑈(𝑡).

(3) Selection: generate a new population from 𝑋(𝑡) and
𝑌(𝑡) by a selection operator, denoted by 𝑍(𝑡).

(4) If the termination condition is satisfied, then stop; else
let 𝑡 ← 𝑡 + 1 and𝑋(𝑡) ← 𝑍(𝑡); then go to Step 2.

The initial population is generated by assigning random
values in the search space to the variables of every solution.

2.1. Reproduction Operator

2.1.1. Mutation Operator. After initialization, DE creates a
donor vector V𝑡

𝑖
corresponding to each individual 𝑥𝑡

𝑖
in the

𝑡th generation through the mutation operator. Several most
frequently referred mutation strategies are presented as fol-
lows:

DE/rand/1: V𝑡
𝑖
= 𝑥
𝑡

𝑟
1

+ 𝐹(𝑥
𝑡

𝑟
2

− 𝑥
𝑡

𝑟
3

),

DE/best/1: V𝑡
𝑖
= 𝑥
𝑡

best + 𝐹(𝑥
𝑡

𝑟
1

− 𝑥
𝑡

𝑟
2

),

DE/cur-to-best/1: V𝑡
𝑖
= 𝑥
𝑡

𝑖
+𝐹(𝑥
𝑡

best −𝑥
𝑡

𝑖
)+𝐹(𝑥

𝑡

𝑟
1

−𝑥
𝑡

𝑟
2

),

DE/best/2: V𝑡
𝑖
= 𝑥
𝑡

best + 𝐹(𝑥
𝑡

𝑟
1

− 𝑥
𝑡

𝑟
2

) + 𝐹(𝑥
𝑡

𝑟
3

− 𝑥
𝑡

𝑟
4

),

DE/rand/2: V𝑡
𝑖
= 𝑥
𝑡

𝑟
1

+ 𝐹(𝑥
𝑡

𝑟
2

− 𝑥
𝑡

𝑟
3

) + 𝐹(𝑥
𝑡

𝑟
4

− 𝑥
𝑡

𝑟
5

),

where 𝑥𝑡best denotes the best individual of the current gener-
ation, the indices 𝑟

1
, 𝑟
2
, 𝑟
3
, 𝑟
4
, 𝑟
5
∈ 𝑆
𝑟
= {1, 2, . . . ,NP} \ {𝑖}

are uniformly random integersmutually different anddistinct
from the running index 𝑖, NP is population size, and𝐹 ∈ (0, 1]

is a real parameter, calledmutation factor or scaling factor.

2.1.2. Crossover Operator. Following mutation, the crossover
operator is applied to further increase the diversity of the
population. In crossover, the target vector, 𝑥𝑡

𝑖
, is combined

with elements from the donor vector, V𝑡
𝑖
, to produce the trial

vector, 𝑢𝑡
𝑖
, using the binomial crossover,

𝑢
𝑡

𝑖,𝑗
= {

V𝑡
𝑖,𝑗
, if rand (0, 1) ≤ Cr or 𝑗 = 𝑗rand,

𝑥
𝑡

𝑖,𝑗
, otherwise,

(2)

where Cr ∈ (0, 1) is the probability of crossover and 𝑗rand
is a random integer in [1, 𝑛]. Unless otherwise mentioned,
rand(0, 1) is a uniformly distributed random number con-
fined in the range [0, 1].

2.2. Selection Operator. Finally, the selection operator is
employed to maintain the most promising trial individuals
in the next generation. The classical DE adopts a simple
selection scheme. It compares the objective values of the
target vector 𝑥𝑡

𝑖
and trial vector 𝑢𝑡

𝑖
. If the trial individual

reduces the value of the objective function then it is accepted
for the next generation; otherwise the target individual is
retained in the population. The selection operator is defined
as

𝑥
𝑔+1

𝑖
= {

𝑢
𝑡

𝑖
, if 𝑓 (𝑢𝑡

𝑖
) < 𝑓 (𝑥

𝑡

𝑖
) ,

𝑥
𝑡

𝑖
, otherwise.

(3)

3. Convergence Condition

There are different kinds of definitions of convergence for
analyzing asymptotic convergence of algorithms.The follow-
ing definition of convergence, that is, convergence in proba-
bility, is used in this paper.

Definition 1. Let {𝑋(𝑡), 𝑡 = 0, 1, 2, . . .} be a population sequ-
ence generated by usingDE to solve the optimization problem
(1). Then DE converges to the global optimum, if and only if

lim
𝑡→∞

𝑝 {𝑋 (𝑡) ∩ 𝑆
∗

𝛿
̸= 0} = 1. (4)

Let us give a sufficient condition for the convergence of
DE.

Theorem 2. Consider using DE to solve the optimization
problem (1). In the 𝑡

𝑘
th target population 𝑋(𝑡

𝑘
), there exists at

least one individual 𝑥, which corresponds to the trial individual
𝑦 by a reproduction operator, such that

𝑝 {𝑦 ∈ 𝑆
∗

𝛿
} ≥ 𝜁 (𝑡

𝑘
) > 0, (5)

and the series ∑∞
𝑘=1

𝜁(𝑡
𝑘
) diverges; then DE converges to the

optimal solution set 𝑆∗
𝛿
.

Where {𝑡
𝑘
, 𝑘 = 1, 2, . . .} denotes any subsequence of natural

number set, 𝑝{𝑦 ∈ 𝑆∗
𝛿
} denotes the probability that 𝑦 belongs to

the optimal solution set 𝑆∗
𝛿
, and 𝜁(𝑡

𝑘
) is a small positive value

which may change as 𝑡
𝑘
.

Proof. In DE, each target individual corresponds to a trial
individual by its reproduction operator. According to the
condition ofTheorem 2, we can get the probability that all the
individuals of the 𝑡

𝑘
th trial population 𝑌(𝑡

𝑘
) do not belong to

the optimal solution set 𝑆∗
𝛿
:

𝑝 {𝑌 (𝑡
𝑘
) ∩ 𝑆
∗

𝛿
= 0} ≤ 1 − 𝜁 (𝑡

𝑘
) , (6)

so, we can get the probability that all the individuals of every
trial population in previous (𝑡

𝑘
− 1) iterations do not belong

to the optimal solution set 𝑆∗
𝛿
:

𝑡
𝑘
−1

∏

𝑖=1

𝑝 {𝑌 (𝑖) ∩ 𝑆
∗

𝛿
= 0} ≤

𝑘−1

∏

𝑖=1

(1 − 𝜁 (𝑖)) . (7)

And because of the elitist selection operation in DE, the
optimal individual of trail populations will retain the next
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generation population. So we can get the probability that the
𝑡
𝑘
th population𝑋(𝑡

𝑘
) does not contain optima:

𝑝 {𝑋 (𝑡
𝑘
) ∩ 𝑆
∗

𝛿
= 0} =

𝑡
𝑘
−1

∏

𝑖=1

𝑝 {𝑌 (𝑖) ∩ 𝑆
∗

𝛿
= 0}

≤

𝑘−1

∏

𝑖=1

(1 − 𝜁 (𝑖)) .

(8)

So for the classical DE with elitist selection, we have

lim
𝑡→∞

𝑝 {𝑋 (𝑡) ∩ 𝑆
∗

𝛿
̸= 0}

≥ lim
𝑘→∞

𝑝 {𝑋 (𝑡
𝑘
) ∩ 𝑆
∗

𝛿
̸= 0}

= 1 − lim
𝑘→∞

𝑝 {𝑋 (𝑡
𝑘
) ∩ 𝑆
∗

𝛿
= 0}

= 1 − lim
𝑘→∞

𝑡
𝑘
−1

∏

𝑖=1

𝑝 {𝑌 (𝑖) ∩ 𝑆
∗

𝛿
= 0}

≥ 1 − lim
𝑘→∞

𝑘−1

∏

𝑖=1

(1 − 𝜁 (𝑖))

= 1 −

+∞

∏

𝑖=1

(1 − 𝜁 (𝑖)) .

(9)

And from the property of the infinite product [35]:

if series
+∞

∑

𝑖=1

𝜁 (𝑖) diverges, then
+∞

∏

𝑖=1

(1 − 𝜁 (𝑖)) = 0. (10)

So for the divergent series ∑+∞
𝑖=1

𝜁(𝑖), we can get that

lim
𝑡→∞

𝑝 {𝑋 (𝑡) ∩ 𝑆
∗

𝛿
̸= 0} = 1. (11)

According to Definition 1, this theorem holds.

Corollary 3. In Theorem 2, if 𝜁(𝑡) equals ever to a positive
constant 𝜁 > 0, then DE converges to the optimal solution 𝑆∗

𝛿
.

Proof. Obviously, the series ∑
+∞

𝑡=0
𝜁(𝑡) diverges when 𝜁(𝑡)

equals ever to a positive constant 𝜁 > 0. From Theorem 2,
we can get that DE converges to the optimal solution 𝑆∗

𝛿
.

Now we give several observations to the above conditions
as follows.

(i) Theorem 2 means that if the probability entering into
the optimal set in a certain sub-sequence population
is large enough, then the modified DE converges
to the global optimal set in probability. And the
population states need no ergodicity.

(ii) Corollary 3 is just a special case of Theorem 2 and
is very easy to check. There are some improved DE
algorithms such as HtDE proposed by Zhao et al.
[28], DE-RW proposed by Zhan and Zhang [32],
DE-MC proposed by Braak [36], which satisfies the
convergence condition ofTheorem 2 (or Corollary 3).

(iii) He and Yu [37] and Rudolph [38] presented several
important conclusions on convergence conditions for
evolutionary algorithms. These conclusions do apply
to DE algorithm. However, comparing with these
conclusions, Theorem 2 is more relaxed and easier to
check.

4. Algorithm Framework
Possessing Convergence

As the introduction section analyzed, it cannot be guaranteed
that the classical DE holds with the global convergence.
However, DE can converge to the global optimal solution if
its reproduction operation satisfies the sufficient conditions
given in Theorem 2 or Corollary 3. A DE algorithm frame-
work integrating an extra mutation component will be given
in this section. Owing to the fact that the purpose of using the
extra mutation is to assist the classical DE to converge, this
paper addresses to the operator as AsCo-mutation operator.

According to the sufficient conditions proved above, we
can define the AsCo-mutation operator as follow.

Definition 4. AsCo-mutation is a mutation operator assisting
the classical DE to converge. It satisfies the following condi-
tions.

(1) To a certain sub-sequence {𝑋(𝑡
𝑘
), 𝑘 = 1, 2, . . .} of

population sequence {𝑋(𝑡), 𝑡 = 1, 2, . . .}, AsCo-
mutation changes at least one individual in each
{𝑋(𝑡
𝑘
), 𝑘 = 1, 2, . . .} with a positive probability.

(2) Let 𝑌(𝑡
𝑘
) denote the population generated by using

AsCo-mutation; there exists at least one individual 𝑦
in 𝑌(𝑡

𝑘
), such that

𝑝 {𝑦 ∈ 𝑆
∗

𝛿
} ≥ 𝜁 (𝑡

𝑘
) > 0, (12)

and the series ∑+∞
𝑘=1

𝜁(𝑡
𝑘
) diverges.

Taking into account the fact that the algorithm frame-
work using AsCo-mutation will contain some convergent
algorithms ofDE family, this paper addresses to the algorithm
framework as CDE. The algorithm framework CDE can be
described as follows.

(1) Initialization: generate an initial population denoted
by𝑋(0), and let 𝑡 ← 0.

(2) Reproduction: generate a trial population 𝑌(𝑡) from
the target population𝑋(𝑡).

Mutation: generate a new population from𝑋(𝑡)

by a mutation operator, denoted by 𝑉(𝑡).
Crossover: generate a new population from𝑋(𝑡)

and 𝑉(𝑡) by a crossover operator, denoted by
𝑈(𝑡).
AsCo-mutation: if the certain condition gener-
ating sub-sequence population is satisfied, then
generate a new population 𝑊(𝑡) from 𝑈(𝑡) by
AsCo-mutation and let 𝑌(𝑡) ← 𝑊(𝑡); other-
wise, let 𝑌(𝑡) ← 𝑈(𝑡).
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(3) Selection: generate a new population from 𝑋(𝑡) and
𝑌(𝑡) by a selection operator, denoted by 𝑍(𝑡).

(4) If the termination condition is satisfied, then stop; else
let 𝑡 ← 𝑡 + 1 and𝑋(𝑡) ← 𝑍(𝑡); then go to Step 2.

On the basis of DE, the reproduction operator of
CDE increases a step, AsCo-mutation. Obviously, the algo-
rithm framework CDE satisfies Theorem 2 when the AsCo-
mutation satisfies the Definition 4. That is to say, CDE,
which employs the AsCo-mutation given by the Definition 4,
converges to the global optimum.

5. Several Mutation Operators Satisfying
Convergence Condition

Like DE algorithm, most evolutionary algorithms for numer-
ical optimization problems use vectors of floating point
numbers for their chromosomal representations. For such
representations, many mutation operators [39] have been
proposed. The most common mutation operators include
Uniform mutation [40] and Gaussian mutation [41, 42].
We introduce these operators and prove that they meet the
definition of AsCo-mutation for CDE in turn.

5.1. Uniform Mutation. Uniform mutation replaces the solu-
tion vector 𝑥 with a uniformly distributed random vector 𝜉
confined in the domain 𝑆 (𝑆 = 𝐼

𝑛

). Each component of the
vector 𝜉 is a uniformly distributed (independent identically
distributed) random number from [0, 1]. So the density
function of 𝜉 can be expressed as:

𝑝
𝜉
(𝑥) = {

1, if 𝑥 ∈ 𝐼𝑛,
0, otherwise.

(13)

As shown in the CDE algorithm framework, suppose
that AsCo-mutation operator employed by CDE is Uniform
mutation. Let 𝑤 denote the new individual generated by
Uniformmutation; then the probability that𝑤 belongs to the
optimal solution set can be calculated as follow:

𝑝 {𝑤 ∈ 𝑆
∗

𝛿
} = ∫
𝑆
∗

𝛿

𝑝
𝜉
(𝑥) d𝑚 = 𝜇 (𝑆

∗

𝛿
) > 0. (14)

The method that CDE uses Uniform mutation is flexible,
such as mutating an arbitrary individual selected from the set
𝑈(𝑡) at a given probability 𝑃ac and mutating more than one
individual. Let 𝑘 (𝑘 < NP) denote the number of mutated
individuals, then the probability 𝑃one/𝑊 that at least one of
𝑊(𝑡) belongs to the optimal solution set can be calculated as
follow:

𝑃one/𝑊 ≥ 1 − [1 − 𝑝 {𝑤 ∈ 𝑆
∗

𝛿
} ⋅ 𝑃ac]

𝑘

= 1 − [1 − 𝜇 (𝑆
∗

𝛿
) ⋅ 𝑃ac]

𝑘

> 0,

(15)

where the 𝑃ac is an empirical probability, 𝑃ac ∈ (0, 1], and
the diversity of the population will gradually enhance as 𝑃ac
increases.

In addition, the implementation of Uniform mutation
operator can be also flexible. For example, in order to keep
the tradeoff between exploration and exploitation, this paper
presents the following operator.

DE/um-best/1

V𝑡
𝑖
= 𝑥
𝑡

𝑖
+ 𝐹 (𝑥

𝑡

best − 𝑥
𝑡

𝑖
) + rand (0, 1) (𝑥𝑡

𝑟
𝑏1

− 𝑥
𝑡

𝑟
𝑏2

) , (16)

where rand(0,1) denotes a uniform random number in [0, 1].
The 𝑥

𝑟
𝑏1

, 𝑥
𝑟
𝑏2

are boundary individuals at a given probability
𝑃
𝑏
, each element of which equals either the upper boundary

or the lower boundary value.The 𝑟
𝑏
1

, 𝑟
𝑏
2

are uniform random
integers in [1, ⌊NP(1 + 𝑃

𝑏
)⌋]. That is, when the index 𝑟

𝑏
1

(𝑟
𝑏
2

)

is no less than NP, 𝑥
𝑟
𝑏1

(𝑥
𝑟
𝑏2

) will takes a boundary individual.
Obviously, if 𝑥

𝑟
𝑏1
,𝑗
takes the upper boundary value of the

𝑗th dimension while 𝑥
𝑟
𝑏2
,𝑗
takes the lower boundary value

(and vice-versa), then the element V𝑡
𝑖,𝑗

is ergodic in the 𝑗th
dimension. Therefore the individual V𝑡

𝑖
can be ergodic in the

search space like Uniform mutation operator.

5.2. Gaussian Mutation. Gaussian mutation modifies all
components of the solution vector 𝑥 by adding a random
noise:

𝑥 = 𝑥 + 𝜂, (17)

where 𝜂 is a vector of independent randomGaussian numbers
with a mean of zero and standard deviations 𝜎. The density
function of 𝜂 can be expressed as:

𝑝
𝜂
(𝑦) = (

1

𝜎√2𝜋
)

𝑛

⋅

𝑛

∏

𝑖=1

exp(
−𝑦
2

𝑖

2𝜎2
)

= (
1

𝜎√2𝜋
)

𝑛

⋅ exp(−
𝑛

∑

𝑖=1

𝑦
2

𝑖

2𝜎2
) .

(18)

Now, let us suppose that AsCo-mutation operator
employed by CDE is Gaussianmutation.Then the probability
that𝑤 generated byGaussianmutation belongs to the optimal
solution set can be calculated as follow:

𝑝 {𝑤 ∈ 𝑆
∗

𝛿
} = ∫
̃
𝑆
∗

𝛿

𝑝
𝜂
(𝑦) d𝑚, (19)

where 𝑆∗
𝛿
= 𝑆
∗

𝛿
− 𝑥 = {𝑧 − 𝑥 | 𝑧 ∈ 𝑆

∗

𝛿
}.

On the other hand, for any individual 𝑥 ∈ 𝑆 = 𝐼
𝑛, such

that 𝑆∗
𝛿
⊆ [−1, 1]

𝑛. So

𝑝
𝜂
(𝑦) ≥ (

1

𝜎√2𝜋
)

𝑛

⋅ exp (− 𝑛

2𝜎2
) , ∀𝑦 ∈ 𝑆

∗

𝛿
. (20)

Implying that

𝑝 {𝑤 ∈ 𝑆
∗

𝛿
} ≥ 𝜇 (𝑆

∗

𝛿
) ⋅ (

1

𝜎√2𝜋
)

𝑛

⋅ exp(− 𝑛

2𝜎2
)

= 𝜇 (𝑆
∗

𝛿
) ⋅ (

1

𝜎√2𝜋
)

𝑛

⋅ exp (− 𝑛

2𝜎2
)

> 0.

(21)
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Like uniform mutation, the used method of Gaussian
mutation is flexible. As before 𝑘 (𝑘 < NP) denotes the number
of individuals mutated by Gaussian mutation operator, 𝑃ac
denotes the probability that each individual is mutated, and
𝑃one/𝑊 denotes the probability that at least one of 𝑊(𝑡)

belongs to the optimal solution set. Then 𝑃one/𝑊 can be
calculated as follow:

𝑃one/𝑊 ≥ 1 − [1 − 𝑝 {𝑤 ∈ 𝑆
∗

𝛿
} ⋅ 𝑃ac]

𝑘

≥ 1 − [1 − 𝜇 (𝑆
∗

𝛿
) ⋅ (

1

𝜎√2𝜋
)

𝑛

⋅ exp(− 𝑛

2𝜎2
)]

𝑘

> 0.

(22)

Obviously, let 𝜁(𝑡) = 𝑃one/𝑊, uniform mutation and
Gaussian mutation operators satisfy Definition 4. And thus
we can get the followingTheorem 5.

Theorem 5. DE algorithm employing uniform mutation or
Gaussian mutation operator converges in probability to the
global optimum of the optimization problem (1).

6. Experimental Verification

It is proved in the previous sections that CDE algorithms
possess convergence in probability, which only means it can
be guaranteed that CDE algorithms reach an optimal solution
when the iteration times approaches infinity, but does not
mean that CDE can find out the optimal solutionwithin finite
iteration times. However, a convergent algorithm should
generally hold stronger robustness. Thus this section gives
experiments by being composed of two parts to verify CDE’s
robustness. One aims to visualize the process escaping from a
local optimal set of CDE on two low dimensional functions.
The other is conducted to test a modified DE algorithm,
which is inspired of the above convergence theory, on the
benchmark functions of the CEC2005.

6.1. Experiments on Low Dimensional Functions. To achieve
the aims mentioned above, experiments are conducted on
two numerical functions which are chosen according to the
experimental results of [43–46]. One is the DE deceptive
function [45], which can lead the classical DE to trap in the
local optimum. The other is the Rastrigin function. In [45,
46], nineteen benchmark functions including the rastrigin
function were tested using the classical DE. Those results
indicated that the optimization effect of the rastrigin function
is one of the worst.

6.1.1. Deceptive Function. Consider

𝑓 (𝑥) = {
−3sinc (2𝑥 + 10) , if − 10 ≤ 𝑥 < 0,
−√𝑥 ⋅ sin (𝑥𝜋) , if 0 ≤ 𝑥 ≤ 10,

(23)

where the function sinc(𝑡) is given by

sinc (𝑡) =
{

{

{

1, if 𝑡 = 0,
sin𝜋𝑡
𝜋𝑡

, if 𝑡 ̸= 0.
(24)
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Figure 1: DE’s deceptive function.

The landscape of DE deceptive function is shown in
Figure 1. The global optimum of the function is 𝑥 = −5.0

with the function value 𝑓(𝑥) = −3. There is a deceptive local
minimum 𝑥 = 8.5060with function value 𝑓(𝑥) = −2.9160 in
this test function.

6.1.2. Rastrigin Function (2 Dimensions). Consider

𝑓 (𝑥) = 20 +

2

∑

𝑖=1

((𝑥
𝑖
)
2

− 10 cos (2𝜋𝑥
𝑖
)) ,

𝑥 ∈ [−5.12, 5.12]
2

.

(25)

The global optimum of the function is 𝑥 = (0, 0) with the
function value 𝑓(𝑥) = 0. There are many local optima in this
test function.

Let CDE-um denote the CDE algorithm using uniform
mutation operator. Suppose that CDE-um mutates the worst
individual of 𝑈(𝑡) at probability 1, and the new individual is
directly retained to the next generation. Experiments were
conducted to compare five typical versions of the classic DE
with CDE-um algorithm. All experiments were implemented
for 50 independent replications. The convergence times and
convergence ratio on the 50 replications were reported.

In order to show the robustness of CDE-um, we reported
the number of function evaluations (FES) to achieve the
Ter Err within Max FES. Table 1 gave the FES of 50 indepen-
dent replications of five typical versions on the DE’s deceptive
function, while Table 2 reported the FES on the Rastrigin
function. Those typical versions included DE/best/1 versus
CDE-um/best/1, DE/rand/1 versus CDE-um/rand/1, DE/cur-
to-best/1 versus CDE-um/cur-to-best/1, and DE/best/2 ver-
sus CDE-um/best/2, as well as DE/rand/2 versus CDE-
um/best/2. Table 3 analyzes the results of Tables 1 and 2. From
the statistics of Table 3, we can see that the ratio (ConRa)
converging to the optimum of CDE-um is much higher than
the corresponding DE.



Journal of Applied Mathematics 7

Table 1: FES to achieve the Ter Err for DE’s deceptive function.

Alg. best/1 rand/1 cur-to-best/1 best/2 rand/2
DE CDE-um DE CDE-um DE CDE-um DE CDE-um DE CDE-um

FES

176 192 272 416 448 824 264 384 392 632
— 4240 — 184032 — 3328 — 424 560 504
— 147504 — 3920 — 2160 272 744 560 504
— 500832 304 464 — 1384 — 1808 336 1296
— 26200 — 312 — 560 — 1552 536 600
— 163976 448 6248 — 1360 — 320 — 808
— 1568 368 592 — 464 296 312 472 888
— 200 368 727168 — 2944 — 464 560 936
— 5448 320 312 592 664 392 912 424 472
— 66712 — 312 — 22736 304 392 — 768
— 98824 320 5040 — 520 272 1448 352 744
— 82080 — 177312 344 240 — 416 504 648
— 50208 288 520 592 4272 — 368 — 800
— 5408 272 320 — 824 272 408 360 704
— 3096 352 400 416 976 288 344 576 680
— 152256 304 352 — 832 288 320 — 528
— 1.41𝐸 + 06 — 312 — 4200 — 3592 432 624
— 312624 256 312 — 1192 288 256 480 672
— 370328 224 508880 — 1232 — 608 — 672
— 176 256 2144 — 1328 272 2600 368 784
— 205016 — 632248 — 1240 312 352 376 592
184 168 328 360 672 376 328 464 392 720
— 607768 312 688 — 2888 — 416 408 672
— 2200 — 2240 — 632 — 464 352 896
— 184240 — 1312 536 752 312 520 472 1080
160 406128 — 448 552 408 368 360 — 672
— 268560 — 817456 — 9792 — 2456 448 560
— 295208 — 360 — 1128 — 776 352 744
— 38936 336 336 — 672 — 416 — 728
— 160 296 402096 472 512 208 328 496 784
— 126144 — 368 — 520 336 4360 — 576
— 759336 312 184160 752 2456 — 376 — 840
— 292232 304 2064 392 680 — 480 320 5032
— 24032 — 336 632 936 272 2088 352 656
— 240 — 107664 — 2456 272 2696 456 552
— 555152 — 1432 — 1008 320 1096 336 1664
168 265536 264 105600 — 352 232 512 — 752
168 2256 296 1864 — 1680 360 352 384 760
— 55616 280 320 — 20664 — 904 — 832
— 1.11𝐸 + 06 336 248 — 592 — 376 352 824
176 263744 — 11136 — 800 408 448 616 69016
— 123896 352 400 456 2168 264 960 536 592
— 200 352 1456 288 672 288 384 544 792
— 784008 304 238752 — 1368 320 5320 520 2536
— 164408 — 29432 — 1072 304 1248 488 584
208 252816 — 4216 392 704 — 568 496 536
— 2088 — 3200 432 560 280 440 576 536
— 542560 — 312 616 472 440 368 — 848
192 1768 — 80536 — 640 — 432 — 672
— 743632 304 320 — 592 — 2976 408 680

“FES” denotes the number of function evaluations. “—” indicates that the algorithm cannot find the optimum within Max FES.
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Table 2: FES to achieve the Ter Err for Rastrigin function.

Alg. best/1 rand/1 cur-to-best/1 best/2 rand/2
DE CDE-um DE CDE-um DE CDE-um DE CDE-um DE CDE-um

FES

— 103376 — 1680 1184 824 1088 1232 2000 2400
— 1.60𝐸 + 06 1392 1472 1408 3328 976 1392 2112 2432
560 1.19𝐸 + 06 1664 1424 1264 2160 1264 1392 1584 2512
— 942224 — 1200 1392 1384 1168 1280 1936 2176
— 672 1440 1584 1280 560 1136 1280 1792 2480
— 452064 1696 1600 1184 1360 1120 1312 1856 2304
560 624 1536 1456 1600 464 1088 1184 2000 1792
720 688 1424 1648 1280 2944 — 1472 — 2352
— 576 1296 1552 1312 664 — 1296 1920 2128
672 576 1184 1248 1184 22736 1056 1296 1776 1936
— 198368 1424 1424 2720 520 1072 1280 2176 2368
— 60336 — 1856 1104 240 1200 1280 2000 2480
656 5.27𝐸 + 06 1424 1584 1136 4272 896 5840 1840 2304
— 267360 1552 28192 1376 824 1056 1056 1728 2288
— 3.16𝐸 + 06 1568 1344 1376 976 1136 1408 1792 2720
672 1.11𝐸 + 06 1296 1440 — 832 1136 1552 2416 2144
608 800 1408 1856 1200 4200 800016 1216 1936 2240
672 2.54𝐸 + 06 1600 1600 1456 1192 1088 1568 2112 2496
704 3.75𝐸 + 06 1536 3712 1184 1232 1168 1232 2096 2512
560 236592 1328 1648 1344 1328 1072 1408 1904 2240
— 3.91𝐸 + 06 1536 1808 1952 1240 — 1328 2336 2368
— 241776 1200 1872 1280 376 1216 1312 1744 2880
— 1072 1408 218208 1344 2888 1152 1248 2000 2512
— 4.70𝐸 + 06 1520 1408 1232 632 1264 1152 1904 2464
— 8.20𝐸 + 06 1344 689360 1136 752 1200 5568 1856 2352
— 640 1424 1488 1376 408 1184 1424 1808 2448
— 788880 1344 3.49𝐸 + 06 1376 9792 1216 1424 2416 2512
576 656 1408 1168 1056 1128 1168 1296 1856 2240
640 560 1408 1536 1184 672 960 1344 1856 2432
— 2.74𝐸 + 06 1376 228048 5136 512 1312 1312 1888 2512
— 672 1312 1520 1456 520 1232 1184 2112 2160
736 17952 — 1584 1536 2456 1200 3504 1920 2560
592 1.87𝐸 + 06 1264 1536 1408 680 1296 1136 2000 2432
— 15456 1328 24288 1280 936 1296 1264 1856 2272
624 2.39𝐸 + 06 1232 1680 1264 2456 1136 1152 2144 2448
— 1.72𝐸 + 06 1264 1504 1040 1008 1264 1504 1776 2352
544 656 1440 1616 1184 352 944 1200 1824 2432
640 5.25𝐸 + 06 1296 1520 1184 1680 960 1360 2064 2048
720 656 1600 2.27𝐸 + 06 1520 20664 976 1296 1744 2080
672 4.95𝐸 + 06 1536 1392 1120 592 1056 1232 1904 2464
— 784 1472 1456 1344 800 1072 1168 1776 2176
528 1.18𝐸 + 06 1472 9.47𝐸 + 06 1472 2168 1280 12944 1824 2672
640 576 1344 1648 1376 672 1056 10960 1984 2528
624 9.54𝐸 + 06 1680 1360 1328 1368 1120 1248 1952 2768
720 87056 1568 1392 1376 1072 1104 1136 1776 2464
640 640 1280 1696 1344 704 1088 1264 2096 2368
576 1.86𝐸 + 06 1328 1344 1232 560 1232 1312 2000 2240
— 848 — 1504 1344 472 1200 1136 2080 2176
544 688 1600 1440 1344 640 1056 1216 2000 2544
640 9.40𝐸 + 06 1392 1408 1136 592 1056 1344 2096 2336

“FES” denotes the number of function evaluations. “—” indicates that the algorithm cannot find the optimum within Max FES.
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Table 3: Statistical analysis of Tables 1 and 2.

Function Deceptive function Rastrigin function
Algorithm RTs CTs ConRa RTs CTs ConRa
DE/best/1 50 8 16% 50 27 54%
CDE-um/best/1 50 50 100% 50 50 100%
DE/rand/1 50 28 56% 50 45 90%
CDE-um/rand/1 50 50 100% 50 50 100%
DE/cur-to-best/1 50 17 34% 50 49 98%
CDE-um/cur-to-best/1 50 50 100% 50 50 100%
DE/best/2 50 29 58% 50 47 94%
CDE-um/best/2 50 50 100% 50 50 100%
DE/rand/2 50 37 74% 50 49 98%
CDE-um/rand/2 50 50 100% 50 50 100%
“RTs” denotes runing times. “CTs” denotes convergence times. “ConRa” denotes convergence ratio.
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Figure 2: Convergence times figure in 50 runs for DE’s deceptive
function using ∗/cur-to-best/1 algorithms.

Figures 2, 3, and 4 showed the convergence times graphs
in 50 independent replications within 800 iterations for DE’s
deceptive function.We can see that all the convergence curves
hold two common characteristics as follows.

(i) When the iteration times are smaller, the convergence
times of five typical versions of the classical DE
are slightly larger than the corresponding CDE-um.
However, with the iteration times are increasing, the
convergence times of CDE-um will become far larger
than the corresponding DE. From this we can see
that smaller increasing in the computational cost can
make a greatly improving on the robustness of CDE-
um algorithm.

(ii) When the iteration times are larger, all the conver-
gence graphs of five typical versions of the classical
DE become a straight line. However, all the graphs
of CDE-um show the ladder’s rising status. This
indirectly shows that the classical DE cannot escape

from a local optimal set or a premature solution
set if trapping in, but CDE-um enhances the ability
to escape from the local optimal set or premature
solution set.

The convergence graphs on the rastrigin function had the
similar characteristics with DE’s deceptive function, so the
graphics are omitted here.

The population size is set to 8×𝑛. Themaximum number
of function evaluations (Max FES) is set to 5,000,000.

(i) Mutation factor, 𝐹 = 0.5 [44, 47];

(ii) Crossover probability, Cr = 0.9 [44, 47];

(iii) Termination error value (Ter Err), Ter Err = 10−12.

6.2. Experiments on Functions of CEC2005. Wang et al.
[48] presented a composite differential evolution algorithm
(CoDE), which employed three trial vector generation strate-
gies, that is, rand/1/bin, rand/2/bin, and current-to-rand/1.
The experimental studies on the 25 benchmark functions of
CEC2005 have indicated that CoDE’s overall performance
was better than the other seven outstanding competitors
(please refer to [48] for details). Now we give a conver-
gent CoDE algorithm (CCoDE-umbest) based on the above
convergent algorithm framework. The CCoDE-umbest algo-
rithmhas theDE/um-best/1 operator, which was presented in
Section 5.1, instead of the current-to-rand/1 of CoDE.

This paper compared CCoDE-umbest with CoDE on the
25 benchmark functions of CEC2005. Table 4 reported the
average and standard deviation of the function error values
obtained in 25 runs when FES = 1.5E + 5 and FES = 3.0E +
5, respectively. The two bottom lines in Table 4 gave the test
statistics for sign test [49] on the mean errors. From Table 4,
the probability values (0.012 for FES = 1.5E + 5, 0.041 for FES
= 3.0E + 5) supporting the null hypothesis are less than the
significance level at 0.05. So we can reject the null hypothesis,
that is to say, the overall performance of CCoDE-umbest is
better than CoDE on the benchmarks. It implies that the
use of the convergent algorithm framework can improve the
performance of CoDE.
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Figure 3: Convergence times figure in 50 runs for DE’s deceptive function.
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Figure 4: Convergence times figure in 50 runs for DE’s deceptive function.

The population size was set to 60, and the dimension was
set to 10. The strategies of the other parameters are the same
to [48].

All the above algorithms are coded in Visual C++ and the
experiments were executed on a ACER 4750G laptop with a
2.30GHz Intel(R) Core (TM)i5 2410M CPU and 2GB RAM.

7. Analysis and Discussion

In this paper, two sufficient conditions for the convergence of
DEhave been presented in forms of a theoremand a corollary.
These conditions describe the limiting behaviors of DE.
Given a sub-sequence population, the sufficient conditions

require that the probability generating an optimum (or
optima) by the reproduction operations is greater than a small
positive number. Taking into account the selection operator
of DE which can retain the elitist individual(s) of current
population to the next generation, the sufficient conditions
were easily proved by using the infinite product. Judging by
essentials, sufficient conditions for the convergence of the
classical evolutionary algorithms [38] and the elitist genetic
algorithm [50–52], which is proved by using the Markov
Chain, generally conclude two requirements. One is the
ergodicity of the population states; the other is the retention
of the current best solution. In contrast, the sufficient con-
ditions for the convergence of DE presented in this paper
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Table 4: The function error values achieved via CCoDE-umbest and CoDE on CEC2005’s test functions.

FES 1.5𝐸 + 5 3.0𝐸 + 5

Alg. CCoDE-umbest CoDE CCoDE-umbest CoDE
Mean Std. Mean Std. Mean Std. Mean Std.

f1 0.00𝐸 + 00 0.00𝐸 + 00 0.00𝐸 + 00 0.00𝐸 + 00 0.00𝐸 + 00 0.00𝐸 + 00 0.00𝐸 + 00 0.00𝐸 + 00

f2 1.83𝐸 − 04 1.21𝐸 − 04 5.16𝐸 − 04 2.28𝐸 − 04 1.14𝐸 − 11 1.13𝐸 − 11 7.42𝐸 − 11 8.58𝐸 − 11

f3 1.01𝐸 + 04 9.71𝐸 + 03 2.78𝐸 + 05 1.07𝐸 + 05 5.33𝐸 + 03 9.45𝐸 + 03 5.05𝐸 + 04 1.34𝐸 + 04

f4 8.19𝐸 − 03 5.36𝐸 − 03 1.84𝐸 − 02 1.07𝐸 − 02 1.67𝐸 − 08 1.39𝐸 − 08 7.72𝐸 − 08 6.33𝐸 − 08

f5 2.98𝐸 − 03 1.37𝐸 − 03 8.78𝐸 − 02 3.06𝐸 − 02 9.56𝐸 − 10 5.66𝐸 − 10 1.11𝐸 − 06 7.15𝐸 − 07

f6 2.88𝐸 − 05 2.40𝐸 − 05 5.62𝐸 − 03 3.56𝐸 − 03 3.41𝐸 − 14 3.22𝐸 − 14 5.91𝐸 − 09 4.29𝐸 − 09

f7 2.12𝐸 − 01 1.46𝐸 − 01 2.69𝐸 − 01 5.34𝐸 − 02 2.12𝐸 − 01 1.46𝐸 − 01 1.69𝐸 − 01 3.94𝐸 − 02

f8 2.01𝐸 + 01 7.89𝐸 − 02 2.03𝐸 + 01 5.47𝐸 − 02 2.01𝐸 + 01 7.08𝐸 − 02 2.03𝐸 + 01 6.77𝐸 − 02

f9 0.00𝐸 + 00 0.00𝐸 + 00 0.00𝐸 + 00 0.00𝐸 + 00 0.00𝐸 + 00 0.00𝐸 + 00 0.00𝐸 + 00 0.00𝐸 + 00

f10 8.81𝐸 + 00 3.05𝐸 + 00 2.05𝐸 + 01 3.25𝐸 + 00 8.80𝐸 + 00 3.05𝐸 + 00 1.40𝐸 + 01 2.52𝐸 + 00

f11 1.59𝐸 + 00 9.51𝐸 − 01 6.17𝐸 + 00 6.60𝐸 − 01 1.16𝐸 + 00 1.01𝐸 + 00 5.28𝐸 + 00 8.16𝐸 − 01

f12 2.76𝐸 + 00 4.89𝐸 + 00 5.00𝐸 + 02 2.03𝐸 + 02 1.64𝐸 + 00 4.78𝐸 + 00 1.54𝐸 + 02 1.14𝐸 + 02

f13 3.40𝐸 − 01 1.63𝐸 − 01 7.11𝐸 − 01 8.70𝐸 − 02 3.12𝐸 − 01 1.48𝐸 − 01 5.01𝐸 − 01 6.40𝐸 − 02

f14 3.03𝐸 + 00 3.50𝐸 − 01 3.35𝐸 + 00 1.90𝐸 − 01 3.03𝐸 + 00 3.50𝐸 − 01 3.26𝐸 + 00 1.73𝐸 − 01

f15 0.00𝐸 + 00 0.00𝐸 + 00 3.24𝐸 + 00 1.10𝐸 + 01 0.00𝐸 + 00 0.00𝐸 + 00 3.24𝐸 + 00 1.10𝐸 + 01

f16 1.10𝐸 + 02 7.15𝐸 + 00 1.34𝐸 + 02 5.87𝐸 + 00 1.10𝐸 + 02 7.20𝐸 + 00 1.16𝐸 + 02 5.68𝐸 + 00

f17 1.10𝐸 + 02 9.83𝐸 + 00 1.55𝐸 + 02 1.02𝐸 + 01 1.09𝐸 + 02 9.71𝐸 + 00 1.38𝐸 + 02 7.95𝐸 + 00

f18 4.80𝐸 + 02 2.40𝐸 + 02 5.00𝐸 + 02 2.45𝐸 + 02 4.80𝐸 + 02 2.40𝐸 + 02 5.00𝐸 + 02 2.45𝐸 + 02

f19 5.80𝐸 + 02 2.48𝐸 + 02 4.20𝐸 + 02 2.14𝐸 + 02 5.80𝐸 + 02 2.48𝐸 + 02 4.20𝐸 + 02 2.14𝐸 + 02

f20 5.40𝐸 + 02 2.50𝐸 + 02 4.00𝐸 + 02 2.00𝐸 + 02 5.40𝐸 + 02 2.50𝐸 + 02 4.00𝐸 + 02 2.00𝐸 + 02

f21 5.16𝐸 + 02 7.84𝐸 + 01 5.00𝐸 + 02 3.41𝐸 − 13 5.16𝐸 + 02 7.84𝐸 + 01 5.00𝐸 + 02 3.41𝐸 − 13

f22 6.80𝐸 + 02 1.66𝐸 + 02 6.20𝐸 + 02 2.19𝐸 + 02 6.79𝐸 + 02 1.66𝐸 + 02 6.16𝐸 + 02 2.17𝐸 + 02

f23 5.59𝐸 + 02 1.46𝐸 − 12 5.59𝐸 + 02 1.32𝐸 − 12 5.59𝐸 + 02 1.46𝐸 − 12 5.59𝐸 + 02 3.41𝐸 − 13

f24 2.00𝐸 + 02 0.00𝐸 + 00 2.00𝐸 + 02 0.00𝐸 + 00 2.00𝐸 + 02 0.00𝐸 + 00 2.00𝐸 + 02 0.00𝐸 + 00

f25 2.00𝐸 + 02 0.00𝐸 + 00 2.00𝐸 + 02 0.00𝐸 + 00 2.00𝐸 + 02 0.00𝐸 + 00 2.00𝐸 + 02 0.00𝐸 + 00

Sign test on mean Neg Dif Pos Dif Ties P value Neg Dif Pos Dif Ties P value
16 4 5 0.012 15 5 5 0.041

“FES” denotes the number of function evaluations. “Std.” denotes the standard deviation of 25 mean errors. The two bottom lines record the test statistics for
sign test on mean errors. “Neg Dif ” and “Pos Dif ” denote the number of negative and positive differences, respectively. “P value” denotes the probability value
supporting the null hypothesis. Here the both P value are less than the significance level at 0.05.

do not require the population state to hold with the ergodic
property.

Theoretical studies of algorithms’ convergence are of
significance to understand their search behaviors and to
develop more robust algorithms. According to the presented
sufficient conditions, a modified algorithm framework, CDE,
is proposed. By employing an extra mutation operator, the
CDE algorithm framework becomes to converge in proba-
bility. It is not difficult to infer that there are many mutation
operators meeting the convergent condition, such as uniform
mutation, Gaussian mutation operator, and other mutation
operators.

Thus, now there arises a new problem: which mutation
operator is the most suitable one? Inspired by the process
from the classical genetic algorithm to the elitist genetic
algorithm, our preference should be directed to the operators
with the following characteristics. Firstly, the auxiliary oper-
ator is simple and straightforward to implement. Secondly,
the operator can make DE algorithm convergent, thereby
improving the robustness of the algorithm. Finally, the

computational cost generated by the auxiliary operator is
reasonable. Based on these factors, this paper presents the
CDE-um and CCoDE-umbest algorithms and gives numeri-
cal experiments to verify the robustness and competitiveness
of those convergent DE algorithms.

FromTable 3, we can see that all the convergence ratios of
five versions of CDE-um on test functions reach 100%. This
shows that the convergent algorithm CDE-um improves the
robustness of the classical DE. In addition, from Figures 2–
4, comparing with the corresponding DE, the computational
cost of CDE-um is not large, and still acceptable and reason-
able. As shown in Table 4, the results on the CCoDE-umbest
algorithm indicate that the reasonably use of the convergent
algorithm framework can improve the performance of CoDE.

Moreover, the robustness of CDE-um also can be further
analyzed by numerical experiments. Figure 5 gives the con-
vergence graphs for DE’s deceptive function in a single run.
From the graphs in Figure 5, we can see that CDE-um can
escape from the local optimum of the test functions, while
the classical DE cannot escape in case of trapping in the local
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Figure 5: Convergence graph for DE’s deceptive function at a run.

optimum solution set. In fact, the mutation perturbations
approach 0 when the classical DE traps in a local optimum
solution set, which results in that the population of the
classical DE cannot be optimized any more.

Of course, we have to note that convergence in probability
is a property when the iteration times approach infinity. The
previous theorem and experimental results cannot infer that
the CDE can solve all function optimization problems within
a finite iteration.

8. Conclusion and Future Work

The convergent property studies, as one of the basic resea-
rches for algorithms, benefit designing more robust algo-
rithms. Few of researches have been done in dealing with
conditions for the convergence of DE. This paper presented
and proved two sufficient conditions for the convergence
of DE. These sufficient conditions state that DE variants
can guarantee converging to a global optimum solution if
the probability, generating an optimum (or optima) by the
reproduction operations of each generation in a certain
sub-sequence population, is greater than a small positive
number. According to the sufficient conditions, a convergent
algorithm framework CDE was presented. The algorithm
framework demonstrates that the employment of some aux-
iliary operators satisfying certain conditions can make the
classical DE converge in probability. It was then proved that
uniformmutation andGaussianmutation operatorsmeet the
convergence conditions of the auxiliary operator.

Convergent algorithms may not always work compet-
itively, but these should generally possess more powerful
robustness. So in order to further verify the conclusions
drawn from the theoretic researches, this paper gave numer-
ical experiments comparing the performance of the con-
vergent algorithm, CDE-um algorithm, and the classical

DE (including five typical versions). CDE-um algorithm
was designed by incorporating uniform mutation into the
classical DE. The experimental results on the test functions
show that smaller increase in the computational cost can
make a greatly improvement on the robustness for all five
typical versions of CDE-um. In addition, this paper improved
the Composite Differential Evolution (CoDE) inspired of the
convergence theory and tested its competitiveness on the
benchmark functions of CEC2005.

In summary, the sufficient conditions guaranteeing global
convergence of DE variants, which were proved in this paper,
are easy to check and are general enough to be useful for the
family of DE algorithms. And in future works, it appears to be
promising for developing more competitive and convergent
algorithms by incorporating a certain convergence-assisted
operator into some outstanding variants of modified DE
algorithms.
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[49] J. Derrac, S. Garćıa, D. Molina, and F. Herrera, “A practical
tutorial on the use of nonparametric statistical tests as a metho-
dology for comparing evolutionary and swarm intelligence
algorithms,” Swarm and Evolutionary Computation, vol. 1, no.
1, pp. 3–18, 2011.

[50] D. E. Goldberg and P. Segrest, “Finite markov chain analysis of
genetic algorithm,” in Proceedings of the International Confer-
ence on Genetic Algorithms, Hillsdale, NJ, USA, 1987.

[51] J. Suzuki, “A Markov chain analysis on simple genetic algo-
rithms,” IEEE Transactions on Systems, Man and Cybernetics,
vol. 25, no. 4, pp. 655–659, 1995.

[52] L. Ming, Y. P. Wang, and Y. M. Cheng, “On convergencerate of
a class of genetic algorithms,” in Proceedings of the World Auto-
mation Congress, Budapest, Hungary, 2006.


