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The first main idea of this paper is to develop thematrix sequences that represent Padovan and Perrin numbers.Then, by taking into
account matrix properties of these new matrix sequences, some behaviours of Padovan and Perrin numbers will be investigated.
Moreover, some important relationships between Padovan and Perrin matrix sequences will be presented.

1. Introduction and Preliminaries

There are so many studies in the literature that concern the
special number sequences such as Fibonacci, Lucas, Pell,
Jacobsthal, Padovan, and Perrin (see, e.g., [1–4] and the
references cited therein). On the other hand, the matrix
sequences have taken so much interest in different types of
numbers (cf. [5–7]).Therefore, a newmatrix sequence related
to less known numbers it is worth studying. In the light of
this thought, the goal of this paper is to define the related
matrix sequences for Padovan and Perrin numbers for the first
time in the literature. Actually the most important difference
with some other similar studies is, herein, that the study
contains three-dimensional matrices instead of two as given
in Fibonacci, Lucas, and Pell.

In Fibonacci numbers, there clearly exists the term
Golden ratio which is defined as the ratio of two consecutive
Fibonacci numbers that converges to 𝛼 = (1 + √5)/2. It is
also clear that the ratio has somany applications in, especially,
physics, engineering, architecture, and so forth [8, 9]. In a
similar manner, the ratio of two consecutive Padovan and
Perrin numbers converges to
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that is named as Plastic constant and was firstly defined
in 1924 by Gérard Cordonnier. He described applications to
architecture; in 1958, he gave a lecture tour that illustrated
the use of the Plastic constant in many buildings and

monuments. The smallest Pisot number is the positive root
of the characteristic equation 𝑋3 − 𝑋 − 1 = 0 known as the
Plastic constant.This is also the characteristic equation of the
recurrence equations (2) and (3), and the Plastic constant is
one of its roots which is the unique real root.

Although the study of Perrin numbers started in the
beginning of the 19 century under different names, the
master study was published in 2006 by Shannon et al. [3].
In this reference, the authors defined the Perrin {𝑅

𝑛
}
𝑛∈N and

Padovan {𝑃
𝑛
}
𝑛∈N sequences as in the forms
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respectively. It is well known that the relationship between
{𝑅
𝑛
}
𝑛∈N and {𝑃

𝑛
}
𝑛∈N is presented by

𝑅
𝑛
= 3𝑃
𝑛−5

+ 2𝑃
𝑛−4
. (4)

This paper is divided into two sections except the first
one. In Section 2, thematrix sequences of Padovan andPerrin
numbers will be defined for the first time in the literature.
Then, by giving the generating functions, the Binet formulas,
and summation formulas over these new matrix sequences,
we will obtain some fundamental properties on Padovan and
Perrin numbers. In Section 3, we will present the relationship
between these matrix sequences. Since we are studying three-
dimensional matrices and so sequences for Padovan and
Perrin numbers, there exist some difficulties in the meaning
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of the investigation of properties of Padovan and Perrin
numbers. However, by the results in Sections 2 and 3 of this
paper, we have a great opportunity to compare and obtain
some new properties over these numbers. This is the main
aim of this paper.

2. The Matrix Sequences of Padovan and
Perrin Numbers

In this section, we will mainly focus on the matrix sequences
of Padovan and Perrin numbers to get some important resu-
lts. In fact, as a middle step, we will also present the rela-
ted Binet formulas, summations, and generating functions.
Besides, the new Binet formulas will be used in Section 3.

Hence, in the following, we will firstly define the Padovan
and Perrin matrix sequences.

Definition 1. For 𝑛 ∈ N, the Padovan (P
𝑛
) and Perrin matrix

sequences (R
𝑛
) are defined by

P
𝑛+3

= P
𝑛+1

+P
𝑛
, (5)

R
𝑛+3

=R
𝑛+1

+R
𝑛
, (6)

respectively, with initial conditions

P
0
= (

1 0 0

0 1 0

0 0 1

) , P
1
= (

0 1 0

0 0 1

1 1 0

) ,

P
2
= (

0 0 1

1 1 0

0 1 1

) ,

R
0
= (

4 2 −3

−3 1 2

2 −1 1

) , R
1
= (

−3 1 2

2 −1 1

1 3 −1

) ,

R
2
= (

2 −1 1

1 3 −1

−1 0 3

) .

(7)

In Definition 1, the matrixP
1
is a matrix analogue of the

Fibonacci Q-matrix which exists for Padovan numbers.
The first main result gives the 𝑛th general terms of the

sequences in (5) and (6) via Padovan and Perrin numbers as
in the following.

Theorem2. For any integer 𝑛 ≥ 0, one has thematrix sequenc-
es
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respectively.

Proof. The proof will be done by induction steps.
First of all, let us consider (3) and then fix

𝑛 = 2, 𝑛 = 1, 𝑛 = 0, 𝑛 = −1, 𝑛 = −2 (10)

in it. Thus we obtain the equalities 𝑃
−1
= 𝑃
−3
= 𝑃
−4
= 0

and 𝑃
−2
= 𝑃
−5
= 1 which gives the following first step of the

induction:
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1 0 0

0 1 0

0 0 1

) . (11)

Secondly, again considering (10) and initial condition for (3),
we also get

P
1
= (

0 1 0

0 0 1

1 1 0

) . (12)

Actually, by iterating this procedure and assuming the
equation in (8) holds for all 𝑛 = 𝑘 ∈ Z+, we can end up
the proof if we manage to show that the case also holds for
𝑛 = 𝑘 + 1:

P
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= P
𝑘−1

+P
𝑘−2
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𝑃
𝑘−5

𝑃
𝑘−5

𝑃
𝑘−3

𝑃
𝑘−4
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= (

𝑃
𝑘−4

𝑃
𝑘−2

𝑃
𝑘−3
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𝑘−3

𝑃
𝑘−1

𝑃
𝑘−2

𝑃
𝑘−2
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𝑘
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𝑘−1

) .

(13)

Hence that is the result.
For the truthness of the Perrin matrix sequence, we need

to follow almost the same approximation by considering (2).
Similarly as in the above case, the final step of the induction
can be obtained byR

𝑘+1
=R
𝑘−1

+R
𝑘−2

as follows:

R
𝑘+1

= (
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) . (14)

This completes the proof.

Theorem 3. For every 𝑛 ∈ N, one can write the Binet formulas
for the Padovan and Perrin matrix sequences as the form

P
𝑛
= 𝐴
1
𝑥
𝑛
+ 𝐵
1
𝑦
𝑛
+ 𝐶
1
𝑧
𝑛
, R

𝑛
= 𝐴
2
𝑥
𝑛
+ 𝐵
2
𝑦
𝑛
+ 𝐶
2
𝑧
𝑛
,

(15)
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where

𝐴
1
=

𝑥P
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+ 𝑥
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+P
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2R
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𝑦 (𝑦 − 𝑥) (𝑦 − 𝑧)

,

𝐶
2
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2
+ 𝑧
2R
1
+R
0

𝑧 (𝑧 − 𝑥) (𝑧 − 𝑦)

,

(16)

such that 𝑥, 𝑦, and 𝑧 are roots of characteristic equations of (5)
and (6).

Proof. We note that the proof will be based on the recurrence
relations (5) and (6) in Definition 1. As in the previous result,
we will only show the truthness of the Binet formula for
Padovanmatrix sequence and will omit the proof of the same
formula for Perrin matrix sequence since they have the same
characteristic equations.

So let us consider (5). By the assumption, the roots of the
characteristic equation of (5) are𝑥,𝑦, and 𝑧. Hence its general
solution of it is given by

P
𝑛
= 𝐴
1
𝑥
𝑛
+ 𝐵
1
𝑦
𝑛
+ 𝐶
1
𝑧
𝑛
. (17)

Using initial conditions in Definition 1 and also applying
fundamental linear algebra operations, we clearly get the
matrices 𝐴

1
, 𝐵
1
, and 𝐶

1
, as desired. This implies the formula

forP
𝑛
.

In [3], the authors obtained the Binet formulas for
Padovan and Perrin numbers. Now as a different approxima-
tion and so as a consequence of Theorems 2 and 3, in the
following corollary, we will present the formulas for these
numbers via related matrix sequences. In fact, in the proof
of this corollary, we will just compare the linear combination
of the 3rd row and 2nd column entries of the matrices:

(i) 𝐴
1
,𝐵
1
, and𝐶

1
with thematrixP

𝑛
in (8) and, similar-

ly,

(ii) 𝐴
2
, 𝐵
2
, and 𝐶

2
with the matrixR

𝑛
in (9).

Corollary 4. The Binet formulas for Padovan and Perrin
numbers in terms of their matrix sequences are given by

𝑃
𝑛−1

=

𝑥
𝑛+3

(𝑥 − 𝑦) (𝑥 − 𝑧)

+

𝑦
𝑛+3

(𝑦 − 𝑥) (𝑦 − 𝑧)

+

𝑧
𝑛+3

(𝑧 − 𝑥) (𝑧 − 𝑦)

,

𝑅
𝑛−1

= 𝑥
𝑛−1

+ 𝑦
𝑛−1

+ 𝑧
𝑛−1
,

(18)

where 𝑛 > 0.

Proof. For the first part of the proof, by taking into account
Definition 1 andTheorem 3, we can write

P
𝑛
= 𝐴
1
𝑥
𝑛
+ 𝐵
1
𝑦
𝑛
+ 𝐶
1
𝑧
𝑛

=

𝑥P
2
+ 𝑥
2P
1
+P
0

𝑥 (𝑥 − 𝑦) (𝑥 − 𝑧)

𝑥
𝑛
+

𝑦P
2
+ 𝑦
2P
1
+P
0

𝑦 (𝑦 − 𝑥) (𝑦 − 𝑧)

𝑦
𝑛

+

𝑧P
2
+ 𝑧
2P
1
+P
0

𝑧 (𝑧 − 𝑥) (𝑧 − 𝑦)

𝑧
𝑛

=

𝑥
𝑛−1

(𝑥 − 𝑦) (𝑥 − 𝑧)

(

1 𝑥
2

𝑥

𝑥 𝑥 + 1 𝑥
2

𝑥
2
𝑥 + 𝑥
2
𝑥 + 1

)

+

𝑦
𝑛−1

(𝑦 − 𝑥) (𝑦 − 𝑧)

(

1 𝑦
2

𝑦

𝑦 𝑦 + 1 𝑦
2

𝑦
2
𝑦 + 𝑦
2
𝑦 + 1

)

+

𝑧
𝑛−1

(𝑧 − 𝑥) (𝑧 − 𝑦)

(

1 𝑧
2

𝑧

𝑧 𝑧 + 1 𝑧
2

𝑧
2
𝑧 + 𝑧
2
𝑧 + 1

) .

(19)

Herein, since 𝑥, 𝑦, and 𝑧 are roots of the characteristic
equation𝑋3 − 𝑋 − 1 = 0, we clearly have

P
𝑛
=

𝑥
𝑛−1

(𝑥 − 𝑦) (𝑥 − 𝑧)

(

1 𝑥
2
𝑥

𝑥 𝑥
3
𝑥
2

𝑥
2
𝑥
4
𝑥
3

)

+

𝑦
𝑛−1

(𝑦 − 𝑥) (𝑦 − 𝑧)

(

1 𝑦
2
𝑦

𝑦 𝑦
3
𝑦
2

𝑦
2
𝑦
4
𝑦
3

)

+

𝑧
𝑛−1

(𝑧 − 𝑥) (𝑧 − 𝑦)

(

1 𝑧
2
𝑧

𝑧 𝑧
3
𝑧
2

𝑧
2
𝑧
4
𝑧
3

) .

(20)

Also, by Theorem 2, we obtain

(

𝑃
𝑛−5

𝑃
𝑛−3

𝑃
𝑛−4

𝑃
𝑛−4

𝑃
𝑛−2

𝑃
𝑛−3

𝑃
𝑛−3

𝑃
𝑛−1

𝑃
𝑛−2

) =

𝑥
𝑛−1

(𝑥 − 𝑦) (𝑥 − 𝑧)

(

1 𝑥
2
𝑥

𝑥 𝑥
3
𝑥
2

𝑥
2
𝑥
4
𝑥
3

)

+

𝑦
𝑛−1

(𝑦 − 𝑥) (𝑦 − 𝑧)

(

1 𝑦
2
𝑦

𝑦 𝑦
3
𝑦
2

𝑦
2
𝑦
4
𝑦
3

)

+

𝑧
𝑛−1

(𝑧 − 𝑥) (𝑧 − 𝑦)

(

1 𝑧
2
𝑧

𝑧 𝑧
3
𝑧
2

𝑧
2
𝑧
4
𝑧
3

) .

(21)

Now, if we compare the 3rd row and 2nd column entries with
the matrices in the above equation, then we get

𝑃
𝑛−1

=

𝑥
𝑛+3

(𝑥 − 𝑦) (𝑥 − 𝑧)

+

𝑦
𝑛+3

(𝑦 − 𝑥) (𝑦 − 𝑧)

+

𝑧
𝑛+3

(𝑧 − 𝑥) (𝑧 − 𝑦)

.

(22)
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For the second part of the proof, in a similarmanner, by again
taking into accountTheorem 3 and Definition 1, we can write

R
𝑛
= 𝐴
2
𝑥
𝑛
+ 𝐵
2
𝑦
𝑛
+ 𝐶
2
𝑧
𝑛

=

𝑥R
2
+ 𝑥
2R
1
+R
0

𝑥 (𝑥 − 𝑦) (𝑥 − 𝑧)

𝑥
𝑛
+

𝑦R
2
+ 𝑦
2R
1
+R
0

𝑦 (𝑦 − 𝑥) (𝑦 − 𝑧)

𝑦
𝑛

+

𝑧R
2
+ 𝑧
2R
1
+R
0

𝑧 (𝑧 − 𝑥) (𝑧 − 𝑦)

𝑧
𝑛

=

𝑥
𝑛−1

(𝑥 − 𝑦) (𝑥 − 𝑧)

× (

2𝑥 − 3𝑥
2
+ 4 −𝑥 + 𝑥

2
+ 2 𝑥 + 2𝑥

2
− 3

𝑥 + 2𝑥
2
− 3 3𝑥 − 𝑥

2
+ 1 −𝑥 + 𝑥

2
+ 2

−𝑥 + 𝑥
2
+ 2 3𝑥

2
− 1 3𝑥 − 𝑥

2
+ 1

)

+

𝑦
𝑛−1

(𝑦 − 𝑥) (𝑦 − 𝑧)

× (

2𝑦 − 3𝑦
2
+ 4 −𝑦 + 𝑦

2
+ 2 𝑦 + 2𝑦

2
− 3

𝑦 + 2𝑦
2
− 3 3𝑦 − 𝑦

2
+ 1 −𝑦 + 𝑦

2
+ 2

−𝑦 + 𝑦
2
+ 2 3𝑦

2
− 1 3𝑦 − 𝑦

2
+ 1

)

+

𝑧
𝑛−1

(𝑧 − 𝑥) (𝑧 − 𝑦)

× (

2𝑧 − 3𝑧
2
+ 4 −𝑧 + 𝑧

2
+ 2 𝑧 + 2𝑧

2
− 3

𝑧 + 2𝑧
2
− 3 3𝑧 − 𝑧

2
+ 1 −𝑧 + 𝑧

2
+ 2

−𝑧 + 𝑧
2
+ 2 3𝑧

2
− 1 3𝑧 − 𝑧

2
+ 1

) .

(23)

Herein, since 𝑥 + 𝑦 + 𝑧 = 0 and 𝑥𝑦𝑧 = 1, we also clearly get

R
𝑛
=

𝑥
𝑛−1

2𝑥
2
+ (1/𝑥)

× (

2𝑥 − 3𝑥
2
+ 4 −𝑥 + 𝑥

2
+ 2 𝑥 + 2𝑥

2
− 3

𝑥 + 2𝑥
2
− 3 3𝑥 − 𝑥

2
+ 1 −𝑥 + 𝑥

2
+ 2

−𝑥 + 𝑥
2
+ 2 3𝑥

2
− 1 3𝑥 − 𝑥

2
+ 1

)

+

𝑦
𝑛−1

2𝑦
2
+ (1/𝑦)

× (

2𝑦 − 3𝑦
2
+ 4 −𝑦 + 𝑦

2
+ 2 𝑦 + 2𝑦

2
− 3

𝑦 + 2𝑦
2
− 3 3𝑦 − 𝑦

2
+ 1 −𝑦 + 𝑦

2
+ 2

−𝑦 + 𝑦
2
+ 2 3𝑦

2
− 1 3𝑦 − 𝑦

2
+ 1

)

+

𝑧
𝑛−1

2𝑧
2
+ (1/𝑧)

× (

2𝑧 − 3𝑧
2
+ 4 −𝑧 + 𝑧

2
+ 2 𝑧 + 2𝑧

2
− 3

𝑧 + 2𝑧
2
− 3 3𝑧 − 𝑧

2
+ 1 −𝑧 + 𝑧

2
+ 2

−𝑧 + 𝑧
2
+ 2 3𝑧

2
− 1 3𝑧 − 𝑧

2
+ 1

) .

(24)

Moreover, by Theorem 2, we obtain

(

𝑅
𝑛−5

𝑅
𝑛−3

𝑅
𝑛−4

𝑅
𝑛−4

𝑅
𝑛−2

𝑅
𝑛−3

𝑅
𝑛−3

𝑅
𝑛−1

𝑅
𝑛−2

)

=

𝑥
𝑛−1

2𝑥
2
+ (1/𝑥)

× (

2𝑥 − 3𝑥
2
+ 4 −𝑥 + 𝑥

2
+ 2 𝑥 + 2𝑥

2
− 3

𝑥 + 2𝑥
2
− 3 3𝑥 − 𝑥

2
+ 1 −𝑥 + 𝑥

2
+ 2

−𝑥 + 𝑥
2
+ 2 3𝑥

2
− 1 3𝑥 − 𝑥

2
+ 1

)

+

𝑦
𝑛−1

2𝑦
2
+ (1/𝑦)

× (

2𝑦 − 3𝑦
2
+ 4 −𝑦 + 𝑦

2
+ 2 𝑦 + 2𝑦

2
− 3

𝑦 + 2𝑦
2
− 3 3𝑦 − 𝑦

2
+ 1 −𝑦 + 𝑦

2
+ 2

−𝑦 + 𝑦
2
+ 2 3𝑦

2
− 1 3𝑦 − 𝑦

2
+ 1

)

+

𝑧
𝑛−1

2𝑧
2
+ (1/𝑧)

× (

2𝑧 − 3𝑧
2
+ 4 −𝑧 + 𝑧

2
+ 2 𝑧 + 2𝑧

2
− 3

𝑧 + 2𝑧
2
− 3 3𝑧 − 𝑧

2
+ 1 −𝑧 + 𝑧

2
+ 2

−𝑧 + 𝑧
2
+ 2 3𝑧

2
− 1 3𝑧 − 𝑧

2
+ 1

) .

(25)

Now, if we compare the 3rd row and 2nd column entries with
the matrices in the above equation, then we get

𝑅
𝑛−1

=

3𝑥
3
− 𝑥

2𝑥
3
+ 1

𝑥
𝑛−1

+

3𝑦
3
− 𝑦

2𝑦
3
+ 1

𝑦
𝑛−1

+

3𝑧
3
− 𝑧

2𝑧
3
+ 1

𝑧
𝑛−1
. (26)

Finally, since 𝑥, 𝑦, and 𝑧 are roots of the characteristic
equation 𝑋3 − 𝑋 − 1 = 0, we can replace 𝑥 + 1, 𝑦 + 1, and
𝑧 + 1 by 𝑥3,𝑦3, and 𝑧3. Then we conclude that

𝑅
𝑛−1

= 𝑥
𝑛−1

+ 𝑦
𝑛−1

+ 𝑧
𝑛−1
, (27)

as required.

Now, for Padovan and Perrin matrix sequences, we give
the summations according to specified rules as we depicted at
the beginning of this section.

Theorem 5. For𝑚 > 𝑗 ≥ 0, there exist

𝑛−1

∑

𝑖=0

P
𝑚𝑖+𝑗

=

P
𝑚𝑛+𝑚+𝑗

+P
𝑚𝑛−𝑚+𝑗

+ (1 − 𝑅
𝑚
)P
𝑚𝑛+𝑗

−P
𝑚+𝑗

𝑅
𝑚
− 𝑅
−𝑚

−

P
𝑚−𝑗

− (𝑅
𝑚
− 1)P

𝑗

𝑅
𝑚
− 𝑅
−𝑚

,

(28)
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𝑛−1

∑

𝑖=0

R
𝑚𝑖+𝑗

=

R
𝑚𝑛+𝑚+𝑗

+R
𝑚𝑛−𝑚+𝑗

+ (1 − 𝑅
𝑚
)R
𝑚𝑛+𝑗

−R
𝑚+𝑗

𝑅
𝑚
− 𝑅
−𝑚

−

R
𝑚−𝑗

− (𝑅
𝑚
− 1)R

𝑗

𝑅
𝑚
− 𝑅
−𝑚

.

(29)

Proof. The main point of the proof will be touched just the
resultTheorem 3, in other words the Binet formulas of related
matrix sequences. Differently from previous results, we will
consider the proof over Perrin matrix sequence and will omit
the case of Padovan. Thus,

𝑛−1

∑

𝑖=0

R
𝑚𝑖+𝑗

=

𝑛−1

∑

𝑖=0

(𝐴
2
𝑥
𝑚𝑖+𝑗

+ 𝐵
2
𝑦
𝑚𝑖+𝑗

+ 𝐶
2
𝑧
𝑚𝑖+𝑗

)

= 𝐴
2
𝑥
𝑗
(

𝑥
𝑚𝑛
− 1

𝑥
𝑚
− 1

) + 𝐵
2
𝑦
𝑗
(

𝑦
𝑚𝑛
− 1

𝑦
𝑚
− 1

)

+ 𝐶
2
𝑧
𝑗
(

𝑧
𝑚𝑛
− 1

𝑧
𝑚
− 1

) .

(30)

Herein, simplifying the last equality will be implied in (29) as
required.

If we state almost the same explanation as in Corollary 4,
then the following result will be clear for the summations of
Padovan and Perrin numbers as a consequence ofTheorem 5.

Corollary 6. For𝑚 > 𝑗 > 0, one has

𝑛−1

∑

𝑖=0

𝑃
𝑚𝑖+𝑗−1

=

𝑃
𝑚𝑛+𝑚+𝑗−1

+ 𝑃
𝑚𝑛−𝑚+𝑗−1

+ (1 − 𝑅
𝑚
) 𝑃
𝑚𝑛+𝑗−1

𝑅
𝑚
− 𝑅
−𝑚

−

𝑃
𝑚+𝑗−1

+ 𝑃
𝑚−𝑗−1

− (𝑅
𝑚
− 1) 𝑃

𝑗−1

𝑅
𝑚
− 𝑅
−𝑚

,

𝑛−1

∑

𝑖=0

𝑅
𝑚𝑖+𝑗−1

=

𝑅
𝑚𝑛+𝑚+𝑗−1

+ 𝑅
𝑚𝑛−𝑚+𝑗−1

+ (1 − 𝑅
𝑚
) 𝑅
𝑚𝑛+𝑗−1

𝑅
𝑚
− 𝑅
−𝑚

−

𝑅
𝑚+𝑗−1

+ 𝑅
𝑚−𝑗−1

− (𝑅
𝑚
− 1) 𝑅

𝑗−1

𝑅
𝑚
− 𝑅
−𝑚

.

(31)

Aswe noted at the beginning of this section, the other aim
of this paper is to present generating functions of our new
matrix sequences. The next result deals with it.

Theorem 7. For Padovan and Perrin matrix sequences, one
has the generating functions

∞

∑

𝑖=0

P
𝑖
𝑥
𝑖
=

1

1 − 𝑥
2
− 𝑥
3
(

1 − 𝑥
2

𝑥 𝑥
2

𝑥
2

1 𝑥

𝑥 𝑥 + 𝑥
2
1

) , (32)

∞

∑

𝑖=0

R
𝑖
𝑥
𝑖

=

1

1 − 𝑥
2
− 𝑥
3

× (

4 − 3𝑥 − 2𝑥
2

2 + 𝑥 − 3𝑥
2
−3 + 2𝑥 + 4𝑥

2

−3 + 2𝑥 + 4𝑥
2
1 − 𝑥 + 2𝑥

2
2 + 𝑥 − 3𝑥

2

2 + 𝑥 − 3𝑥
2

−1 + 3𝑥 + 𝑥
2

1 − 𝑥 + 2𝑥
2

) ,

(33)

respectively.

Proof. We will again omit Padovan case since the proof will
be quite similar.

Assume that 𝐺(𝑥) is the generating function for the
sequence {R

𝑛
}
𝑛∈N. Then we have

𝐺 (𝑥) =

∞

∑

𝑖=0

R
𝑖
𝑥
𝑖

= R
0
+R
1
𝑥 +R

2
𝑥
2
+

∞

∑

𝑖=3

(R
𝑖−2
+R
𝑖−3
) 𝑥
𝑖
.

(34)

From Definition 1, we obtain

𝐺 (𝑥) = R
0
+R
1
𝑥 +R

2
𝑥
2
−R
0
𝑥
2

+ 𝑥
2

∞

∑

𝑖=0

R
𝑖
𝑥
𝑖
+ 𝑥
3

∞

∑

𝑖=0

R
𝑖
𝑥
𝑖

= R
0
+R
1
𝑥 + (R

2
−R
0
) 𝑥
2
+ 𝑥
2
𝐺 (𝑥) + 𝑥

3
𝐺 (𝑥) .

(35)

Now, rearrangement of the above equation will imply that

𝐺 (𝑥) =

R
0
+R
1
𝑥 + (R

2
−R
0
) 𝑥
2

1 − 𝑥
2
− 𝑥
3

(36)

which equals the ∑∞
𝑖=0

R
𝑖
𝑥
𝑖 in the theorem.

Hence that is the result.

In [10], the authors obtained the generating functions
for Padovan and Perrin numbers. However, herein, we will
obtain these functions in terms of Padovan and Perrinmatrix
sequences as a consequence of Theorem 7. To do that we
will again compare the 3rd row and 2nd column entries
with the matrices inTheorem 7. Hence we have the following
corollary.

Corollary 8. There always exist
∞

∑

𝑖=0

𝑃
𝑖−1
𝑥
𝑖
=

𝑥 + 𝑥
2

1 − 𝑥
2
− 𝑥
3
,

∞

∑

𝑖=0

𝑅
𝑖−1
𝑥
𝑖
=

−1 + 3𝑥 + 𝑥
2

1 − 𝑥
2
− 𝑥
3
.

(37)
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3. Relationships between New
Matrix Sequences

The following proposition (which will be needed for some of
our results in this section) expresses that there always exist
some interpasses between the Padovan and Perrin matrix
sequences. In fact its proof can be seen directly by considering
Theorem 2 and the equality in (4).

Proposition 9. For the matrix sequences (P
𝑛
)
𝑛∈N and

(R
𝑛
)
𝑛∈N, one has the following equalities:

(i) R
𝑛
= 3P

𝑛−5
+ 2P
𝑛−4
, 𝑓𝑜𝑟 𝑛 > 4,

(ii) R
0
P
𝑛
= 2P

𝑛−2
+P
𝑛−5

=R
𝑛
, 𝑓𝑜𝑟 𝑛 > 4,

(iii) R
0
P
𝑛
= P
𝑛
R
0
=R
𝑛
.

Remark 10. We remark that the interpass between Padovan
and Perrin numbers was stated in (4) as the expression of a
Perrin number in terms of Padovan numbers. In addition to
this, by taking into account Proposition 9, one can also obtain

𝑃
𝑛−1

=

1

23

(𝑅
𝑛−3

+ 8𝑅
𝑛−2

+ 10𝑅
𝑛−1
) (38)

as a new interpass for the same numbers. Notice the relation
in (38) based on the expression of a Padovan number in terms
of Perrin numbers.

Theorem 11. For𝑚, 𝑛 ∈ N, the following equalities hold:

(i) P
𝑚
P
𝑛
= P
𝑚+𝑛

,
(ii) P

𝑚
R
𝑛
=R
𝑛
P
𝑚
=R
𝑚+𝑛

,
(iii) R

𝑚
R
𝑛
= R
𝑛
R
𝑚
= 4P

𝑚+𝑛−4
+ 4P
𝑚+𝑛−7

+P
𝑚+𝑛−10

,
for𝑚, 𝑛 > 4,

(iv) R
𝑚
R
𝑛
=R
𝑛
R
𝑚
= 2R

𝑚+𝑛−2
+R
𝑚+𝑛−5

, where𝑚 > 4

or 𝑛 > 4.

Proof. (i) FromTheorem 3 with its assumptions, we can have

P
𝑚
P
𝑛
= (𝐴

1
𝑥
𝑚
+ 𝐵
1
𝑦
𝑚
+ 𝐶
1
𝑧
𝑚
)

× (𝐴
1
𝑥
𝑛
+ 𝐵
1
𝑦
𝑛
+ 𝐶
1
𝑧
𝑛
)

= 𝐴
1
𝐴
1
𝑥
𝑚+𝑛

+ 𝐴
1
𝐵
1
𝑥
𝑚
𝑦
𝑛
+ 𝐴
1
𝐶
1
𝑥
𝑚
𝑧
𝑛

+ 𝐵
1
𝐴
1
𝑦
𝑚
𝑥
𝑛
+ 𝐵
1
𝐵
1
𝑦
𝑚+𝑛

+ 𝐵
1
𝐶
1
𝑦
𝑚
𝑧
𝑛

+ 𝐶
1
𝐴
1
𝑧
𝑚
𝑥
𝑛
+ 𝐶
1
𝐵
1
𝑧
𝑚
𝑦
𝑛
+ 𝐶
1
𝐶
1
𝑧
𝑚+𝑛

.

(39)

Herein, since 𝑥 + 𝑦 + 𝑧 = 0 and 𝑥𝑦𝑧 = 1, simple matrix
calculations imply that 𝐴2

1
= 𝐴
1
, 𝐵2
1
= 𝐵
1
, 𝐶2
1
= 𝐶
1
, and

𝐴
1
𝐵
1
= 𝐴
1
𝐶
1
= 𝐵
1
𝐴
1
= 𝐵
1
𝐶
1
= 𝐶
1
𝐴
1
= 𝐶
1
𝐵
1
= [0] .

(40)

Then we obtain

P
𝑚
P
𝑛
= 𝐴
1
𝑥
𝑚+𝑛

+ 𝐵
1
𝑦
𝑚+𝑛

+ 𝐶
1
𝑧
𝑚+𝑛

= P
𝑚+𝑛

. (41)

(ii) Here, we will just show the truthness of the equality
P
𝑚
R
𝑛
= R
𝑚+𝑛

since the other can be done similarly. Now,
by Proposition 9(iii), we write

P
𝑚
R
𝑛
= P
𝑚
P
𝑛
R
0
. (42)

On the other hand, by (i) and again Proposition 9(iii), we
finally haveP

𝑚
R
𝑛
= P
𝑚+𝑛

R
0
=R
𝑚+𝑛

.
(iii) As in (ii), we will just show the first equality of this

condition. So, by Proposition 9(ii), we have

R
𝑚
R
𝑛
= (2P

𝑚−2
+P
𝑚−5

) (2P
𝑛−2

+P
𝑛−5
) . (43)

It is easy to see that one can use (i) in this latest equality.Thus,
applying sufficient operations, we then obtain

R
𝑚
R
𝑛
= 4P

𝑛+𝑚−4
+ 4P
𝑚+𝑛−7

+P
𝑚+𝑛−10

, (44)

as desired.
The final part of the proof can be seen similarly as in the

proof of (iii).

Comparingmatrix entries and then usingTheorems 2 and
11, we obtain the following result.

Corollary 12. One has the following identities for Padovan
and Perrin numbers:

(i) 𝑃
𝑚−3

𝑃
𝑛−3

+ 𝑃
𝑚−1

𝑃
𝑛−2

+ 𝑃
𝑚−2

𝑃
𝑛−1

= 𝑃
𝑚+𝑛−1

,
(ii) 𝑃
𝑚−3

𝑅
𝑛−3

+ 𝑃
𝑚−1

𝑅
𝑛−2

+ 𝑃
𝑚−2

𝑅
𝑛−1

= 𝑅
𝑚+𝑛−1

,
(iii) 𝑅

𝑚−3
𝑅
𝑛−3

+ 𝑅
𝑚−1

𝑅
𝑛−2

+ 𝑅
𝑚−2

𝑅
𝑛−1

= 4𝑃
𝑚+𝑛−5

+

4𝑃
𝑚+𝑛−8

+ 𝑃
𝑚+𝑛−11

,
(iv) 𝑅

𝑚−3
𝑅
𝑛−3
+𝑅
𝑚−1

𝑅
𝑛−2
+𝑅
𝑚−2

𝑅
𝑛−1

= 2𝑅
𝑚+𝑛−3

+𝑅
𝑚+𝑛−6

.

Proof. (i) By using Theorems 2 and 11, we have P
𝑚
P
𝑛
=

P
𝑚+𝑛

which can be written mathematically as

(

𝑃
𝑚−5

𝑃
𝑚−3

𝑃
𝑚−4

𝑃
𝑚−4

𝑃
𝑚−2

𝑃
𝑚−3

𝑃
𝑚−3

𝑃
𝑚−1

𝑃
𝑚−2

)(

𝑃
𝑛−5

𝑃
𝑛−3

𝑃
𝑛−4

𝑃
𝑛−4

𝑃
𝑛−2

𝑃
𝑛−3

𝑃
𝑛−3

𝑃
𝑛−1

𝑃
𝑛−2

)

= (

𝑃
𝑚+𝑛−5

𝑃
𝑚+𝑛−3

𝑃
𝑚+𝑛−4

𝑃
𝑚+𝑛−4

𝑃
𝑚+𝑛−2

𝑃
𝑚+𝑛−3

𝑃
𝑚+𝑛−3

𝑃m+𝑛−1 𝑃𝑚+𝑛−2

) .

(45)

Now, by firstlymultiplying the left-hand sidematrices and
then by comparing the 3rd rows and 2nd columns entries, we
finally obtain the required equation in (i).

The proofs of the remaining conditions can be done
similarly by considering againTheorems 11 and 2.

Hence that is the result.

In the light of the above results, the following theorems
provide us the convenience to obtain the powers of Padovan
and Perrin matrix sequences.

Theorem 13. For 𝑚, 𝑛, r ∈ N and 𝑛 ≥ 𝑟, the following
equalities hold:

(i) P𝑚
𝑛
= P
𝑚𝑛
,

(ii) P𝑚
𝑛+1

= P𝑚
1
P
𝑚𝑛
,

(iii) P
𝑛−𝑟

P
𝑛+𝑟

= P2
𝑛
= P𝑛
2
.
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Proof. (i) We actually can write P𝑚
𝑛
= P
𝑛
P
𝑛
⋅ ⋅ ⋅P
𝑛
(𝑚-

times). Now, by Theorem 11(i), we clearly obtain P
𝑚𝑛

as the
next step of this equality.

(ii) Let us consider the left-hand side of the equality. As a
similar approximation in (i), we write

P
𝑚

𝑛+1
= P
𝑛+1

P
𝑛+1
⋅ ⋅ ⋅P
𝑛+1

= P
𝑚(𝑛+1)

= P
𝑚
P
𝑚𝑛
= P
1
P
𝑚−1

P
𝑚𝑛
.

(46)

Similarly, we can write P
𝑚−1

= P
1
P
𝑚−2

. By iterative proc-
esses, we hence obtain

P
𝑚

𝑛+1
= P
1
P
1
⋅ ⋅ ⋅P
1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑚 times
P
𝑚𝑛
= P
𝑚

1
P
𝑚𝑛
.

(47)

The proof of (iii) can be seen quite similarly as the proof
of (ii).

Theorem 14. For𝑚, 𝑛, 𝑟 ∈ N and 𝑛 ≥ 𝑟, the equalities

R
𝑛−𝑟

R
𝑛+𝑟

=R
2

𝑛
,

R
𝑚

𝑛
=R
𝑚

0
P
𝑚𝑛

(48)

always hold.

Proof. In the first part of the proof, we mainly consider
Theorem 3, in otherwords, the Binet formula of Perrinmatrix
sequence. Hence we can write

R
𝑛−𝑟

R
𝑛+𝑟
−R
2

𝑛

= (𝐴
2
𝑥
𝑛−𝑟
+ 𝐵
2
𝑦
𝑛−𝑟
+ 𝐶
2
𝑧
𝑛−𝑟
)

× (𝐴
2
𝑥
𝑛+𝑟
+ 𝐵
2
𝑦
𝑛+𝑟
+ 𝐶
2
𝑧
𝑛+𝑟
)

− (𝐴
2
𝑥
𝑛
+ 𝐵
2
𝑦
𝑛
+ 𝐶
2
𝑧
𝑛
)
2
,

(49)

where 𝐴
2
, 𝐵
2
, and 𝐶

2
and 𝑥, 𝑦, and 𝑧 are as given in

Theorem 3. By applying some elementary operations, we
obtain

R
𝑛−𝑟

R
𝑛+𝑟
−R
2

𝑛
= 𝐷, (50)

where

𝐷 = 𝐴
2
𝐵
2
𝑥
𝑛−𝑟
𝑦
𝑛−𝑟
(𝑥
𝑟
− 𝑦
𝑟
)
2
+ 𝐴
2
𝐶
2
𝑥
𝑛−𝑟
𝑧
𝑛−𝑟
(𝑥
𝑟
− 𝑧
𝑟
)
2

+ 𝐵
2
𝐶
2
𝑦
𝑛−𝑟
𝑧
𝑛−𝑟
(𝑦
𝑟
− 𝑧
𝑟
)
2
.

(51)

Eventually, by 𝐴
2
𝐵
2
= 𝐴
2
𝐶
2
= 𝐵
2
𝐶
2
= [0]

3×3
, we get

R
𝑛−𝑟

R
𝑛+𝑟

=R2
𝑛
, as required.

Secondly, let us consider the right-hand side of the
equalityR𝑚

𝑛
=R𝑚
0
P
𝑚𝑛
. By Theorem 13(i), we have

R
𝑚

0
P
𝑚𝑛
=R
0
R
0
⋅ ⋅ ⋅R
0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑚 times
P
𝑛
P
𝑛
⋅ ⋅ ⋅P
𝑛⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑚 times
.

(52)

By iterating usage of Proposition 9(iii), we finally obtain

R
𝑚

0
P
𝑚𝑛
=R
0
P
𝑛
R
0
P
𝑛
⋅ ⋅ ⋅R
0
P
𝑛

=R
𝑛
R
𝑛
⋅ ⋅ ⋅R
𝑛
=R𝑚
𝑛
.

(53)

Hence that is the result.
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