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A general algebraic method based on the generalized Jacobi elliptic functions expansion method, the improved general mapping
deformation method, and the extended auxiliary function method with computerized symbolic computation is proposed to
construct more new exact solutions for coupled Schrödinger-Boussinesq equations. As a result, several families of new generalized
Jacobi elliptic function wave solutions are obtained by using this method, some of them are degenerated to solitary wave solutions
and trigonometric function solutions in the limited cases, which shows that the general method is more powerful than plenty of
traditional methods and will be used in further works to establish more entirely new solutions for other kinds of nonlinear partial
differential equations arising in mathematical physics.

1. Introduction

Nonlinear partial differential equations (NLPDEs) are widely
used to describe complex physical phenomena arising in the
world around us and various fields of science. The inves-
tigation of exact solutions of NLPDEs plays an important
role in the study of these phenomena such as the nonlinear
dynamics and the mechanism behind the phenomena. With
the development of soliton theory, many powerful methods
for obtaining exact solutions ofNLPDEs have been presented,
such as homotopy perturbation method [1], nonperturbative
method [2], homogeneous balance method [3], Bäcklund
transformation [4], Darboux transformation [5], extended
tanh-function method [6], extended 𝐹-expansion method
[7], 𝐺/𝐺 method [8], exp-function method [9], sine-cosine
method [10], Jacobi elliptic function method [11], extended
Riccati equation rational expansion method [12], extended
auxiliary function method [13], and other methods [14, 15].

In [16, 17], Hong proposed a generalized Jacobi elliptic
functions expansion method to obtain generalized exact
solutions of NLPDEs. In [18], Hong and Lu proposed an
improved general mapping deformation method which is
more general than many other algebraic expansion methods

[19, 20]. The solution procedure of this method, by the help
of Matlab or Mathematica, is of utmost simplicity, and this
method can be easily extended to all kinds of NLPDEs. In
this work, we will propose the general algebraic method
which contained the two methods [16–18] to obtain several
new families of exact solutions for the coupled Schrödinger-
Boussinesq equations.

2. Summary of the General Algebraic Method

Consider a given nonlinear evolution equation with one
physical field 𝑢(𝑥, 𝑡) in two variables 𝑥 and 𝑡

𝑃 (𝑢, 𝑢
𝑡
, 𝑢
𝑥
, 𝑢
𝑥𝑥
, . . .) = 0. (1)

We seek the following formal solutions of the given system by
a new intermediate transformation:

𝑢 (𝜉) =

𝑛

∑

𝑖=0

𝐴
𝑖
𝜙
𝑖

(𝜉) , (2)

where 𝐴
𝑖
are constants to be determined later. 𝜉 = 𝜉(𝑥, 𝑡) are

arbitrary functions with the variables 𝑥 and 𝑡. The parameter
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𝑛 can be determined by balancing the highest order derivative
terms with the nonlinear terms in (1). And 𝜙(𝜉) is a solution
of the following ordinary differential equation:

𝜙
2

(𝜉) =

4

∑

𝑖=0

𝑎
𝑖
𝜙
𝑖

(𝜉) . (3)

Substituting (3) and (2) into (1) and setting the coefficients
of 𝜙𝑖(𝜉) (𝑖 = 0, 1, 2, . . .) and 𝜙

𝑗
(𝜉)√∑

4

𝑖=0
𝑎
𝑖
𝜙𝑖(𝜉) (𝑗 = . . . ,

−2, −1, 0, 1, 2, . . .) to zero yield a set of algebraic equations for
𝐴
𝑖
, 𝑎
𝑖
, and 𝜉. Using the Mathematica to solve the algebraic

equations and substituting each of the solutions of the set,
that is, each of the expressions of 𝜙(𝜉) into (2), we can get the
solutions of (1). In order to obtain somenew general solutions
of (3), we assume that (3) has the following solutions:

𝜙 (𝜉) = 𝑐
0
+ 𝑐
1
𝑒 (𝜉) + 𝑐

2
𝑓 (𝜉) + 𝑐

3
𝑔 (𝜉) + 𝑐

4
ℎ (𝜉) , (4)

where 𝑐
𝑖
= 𝑐
𝑖
(𝑡) (𝑖 = 0, . . . , 4) are functions of 𝑡 to be

determined later and the four functions 𝑒 = 𝑒(𝜉), 𝑓 = 𝑓(𝜉),

𝑔 = 𝑔(𝜉), and ℎ = ℎ(𝜉) are expressed as follows:

𝑒 =
1

𝑝 + 𝑞𝐹 + 𝑟𝐹2 + 𝑙𝐹
, 𝑓 =

𝐹

𝑝 + 𝑞𝐹 + 𝑟𝐹2 + 𝑙𝐹
,

𝑔 =
𝐹
2

𝑝 + 𝑞𝐹 + 𝑟𝐹2 + 𝑙𝐹
, ℎ =

𝐹


𝑝 + 𝑞𝐹 + 𝑟𝐹2 + 𝑙𝐹
,

(5)

where 𝑝, 𝑞, 𝑟, and 𝑙 are arbitrary constants which ensure the
denominator unequal to zero, and 𝐹 = 𝐹(𝜉) is a solution of
the following equations:

𝐹
2
= 𝐴 + 𝐵𝐹

2
+ 𝐶𝐹
4
+ 2𝐷𝐹 + 2𝐸𝐹

3
,

𝐹

= 𝐵𝐹 + 2𝐶𝐹

3
+ 𝐷 + 3𝐸𝐹

2
,

(6)

where “” denotes 𝑑/𝑑𝜉, “” denotes 𝑑2/𝑑𝜉2, 𝐴, 𝐵, 𝐶,𝐷, and
𝐸 are arbitrary constants, and the four functions 𝑒, 𝑓, 𝑔, and ℎ
satisfy the following relations:

𝑒

= −𝑞𝑒ℎ − 2𝑟𝑓ℎ − 𝑙 (𝐷𝑒

2
+ 𝐵𝑒𝑓 + 2𝐶𝑓𝑔 + 3𝐸𝑓

2
) ,

𝑓

= 𝑝𝑒ℎ − 𝑟𝑔ℎ + 𝑙 (𝐴𝑒

2
+ 𝐷𝑒𝑓 − 𝐶𝑔

2
− 𝐸𝑓𝑔) ,

𝑔

= 𝑞𝑔ℎ + 2𝑝𝑓ℎ + 𝑙 (2𝐴𝑒𝑓 + 3𝐷𝑓

2
+ 𝐵𝑓𝑔 + 𝐸𝑔

2
) ,

ℎ

= (𝐷𝑝 − 𝐴𝑞) 𝑒

2
+ (𝐵𝑝 − 𝐷𝑞 − 2𝐴𝑟) 𝑒𝑓

+ (2𝐶𝑝+𝐸𝑞−𝐵𝑟) 𝑓𝑔+3 (𝐸𝑝−𝐷𝑟) 𝑓
2
+(𝐶𝑞−𝐸𝑟) 𝑔

2
,

𝑓
2
=𝑒𝑔, ℎ

2
=𝐴𝑒
2
+𝐵𝑓
2
+𝐶𝑔
2
+2𝐷𝑒𝑓+2𝐸𝑓𝑔,

𝑝𝑒 + 𝑞𝑓 + 𝑟𝑔 + 𝑙ℎ = 1.

(7)

And 𝑒, 𝑓, 𝑔, and ℎ satisfy one of the following relations at the
same time.

Family 1. When 𝑝 = 0

(𝐶𝑙
2
− 𝑟
2
) ℎ
2
= − 𝐶 + 2𝐶𝑙ℎ − 𝐵𝑟 (1 − 𝑙ℎ − 𝑞𝑓) 𝑒

− 𝐴𝑒
2
𝑟
2
− 2𝐷𝑟

2
𝑒𝑓 + (2𝐶𝑞 − 2𝐸𝑟) 𝑓

+ (2𝑙𝐸𝑟 − 2𝐶𝑙𝑞) 𝑓ℎ + (2𝐸𝑞𝑟 − 𝐶𝑞
2
) 𝑓
2
.

(8a)

Family 2. When 𝑞 = 0

(𝐶𝑙
2
− 𝑟
2
) ℎ
2
= 2𝐶 (𝑙ℎ + 𝑝𝑒 − 𝑝𝑙𝑒ℎ) + 2𝐸𝑟 (𝑙ℎ − 1) 𝑓

− 𝐵𝑟 (1 − 𝑙ℎ − 𝑝𝑒) 𝑒 − (𝐶𝑝
2
+ 𝐴𝑟
2
) 𝑒
2

+ (2𝐸𝑝𝑟 − 2𝐷𝑟
2
) 𝑒𝑓 − 𝐶.

(8b)

Family 3. When 𝑟 = 0

𝐶𝑙
2
𝑔
2
= 1 − 2𝐸𝑙

2
𝑓𝑔 − 2𝑝𝑒 + (𝑝

2
− 𝐴𝑙
2
) 𝑒
2

− 2𝑞𝑓 + 2 (𝑝𝑞 − 𝐷𝑙
2
) 𝑒𝑓 + (𝑞

2
− 𝐵𝑙
2
) 𝑒𝑔.

(8c)

Family 4. When 𝑙 = 0

𝑟
2
ℎ
2
= 𝐶 − 2𝐶𝑝𝑒 + (2𝐸𝑟 − 2𝐶𝑞) 𝑓 + (𝐶𝑝

2
+ 𝐴𝑟
2
) 𝑒
2

+ (𝐶𝑞
2
− 2𝐸𝑞𝑟 + 𝐵𝑟

2
) 𝑒𝑔

+ (2𝐶𝑝𝑞 − 2𝐸𝑝𝑟 + 2𝐷𝑟
2
) 𝑒𝑓.

(8d)

Substituting (4), (7) along with (8a)–(8d) into (3) separately
yields four families of polynomial equations for 𝑒, 𝑓, 𝑔, and
ℎ. Setting the coefficients of 𝑒𝑖, 𝑒𝑖𝑓, 𝑒𝑖𝑔, 𝑒𝑖ℎ, 𝑒𝑖𝑓𝑔, 𝑒𝑖𝑓ℎ, and
𝑒
𝑖
𝑔ℎ (𝑖 = 0, 1, 2, . . .) to zero yields a set of overdetermined

differential equations (ODEs) in 𝑝, 𝑞, 𝑟, 𝑙, 𝑎
𝑖
, and 𝑐

𝑖
(𝑖 =

0, 1, 2, 3, 4), 𝐴, 𝐵, 𝐶,𝐷, 𝐸, and 𝜉(𝑥, 𝑡), solving the ODEs by
Mathematica andWu elimination, we can obtain many exact
solutions of (3) according to (4), (5), (6). If we let 𝑐

0
= 𝑐
1
=

𝑐
3
= 𝑐
4
= 0, 𝑐

2
= 1, 𝑝 = 1, 𝑞 = 𝑟 = 𝑙 = 0, 𝑎

0
= 𝐴, 𝑎

1
= 2𝐷,

𝑎
2
= 𝐵, 𝑎

3
= 2𝐸, and 𝑎

4
= 𝐶, we have𝜑(𝜉) = 𝐹(𝜉); ourmethod

contains the improved general mapping deformationmethod
[18].

Remark 1. Our method proposed here is more general than
the 𝐺/𝐺method [8], the extended Riccati equation rational
expansion method [12], the extended auxiliary function
method [13], the generalized Jacobi elliptic functions expan-
sion method [16, 17], and many other algebra expansion
methods [6, 7, 11, 18–21].
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Remark 2. Equations (2) and (3) can be extended to the
following forms:

𝑢 (𝜉) =

𝑛

∑

𝑖=0

𝐴
𝑖
(𝑡) 𝜙
𝑖

(𝜉) +

−1

∑

𝑖=−𝑛

𝐴
𝑛−𝑖
(𝑡) 𝜙
𝑖

(𝜉)

+

𝑛

∑

𝑖=−𝑛

𝐵
𝑖
(𝑡) 𝜙
𝑖

(𝜉) 𝜙


(𝜉) ,

𝜙
2

(𝜉) =

𝑁

∑

𝑖=0

𝑎
𝑖
(𝑡) 𝜙
𝑖

(𝜉) ,

(9)

where 𝑁 can be an arbitrary positive integer. 𝑛 is usually a
positive integer. If 𝑛 is a fraction or a negative integer, wemake
the following transformation:

(a) when 𝑛 = 𝑑/𝑐 is a fraction, we let 𝑢(𝜉) = V𝑑/𝑐(𝜉), then
return to determine the balance constant 𝑛 again;

(b) when 𝑛 is a negative integer, we suppose 𝑢(𝜉) = V𝑛(𝜉),
then return to determine the balance constant 𝑛 again.

Remark 3. Notice that

𝐹
1
(𝜉)
(𝐴,𝐵,𝐶,𝐷,𝐸)

1

→ 𝜑
1
(𝜉)
(𝑎
0
,𝑎
1
,𝑎
2
,𝑎
3
,𝑎
4
)
1

= 𝐹
2
(𝜉)
(𝐴,𝐵,𝐶,𝐷,𝐸)

2

→ 𝜑
2
(𝜉)
(𝑎
0
,𝑎
1
,𝑎
2
,𝑎
3
,𝑎
4
)
2

= 𝐹
3
(𝜉)
(𝐴,𝐵,𝐶,𝐷,𝐸)

3

→ ⋅ ⋅ ⋅ .

(10)

We find a meanful conclusion that this general method
implies a BT of (1) with the compatible conditions (4), (5),
(6), (7), and (8a)–(8d).

In the following, we will use this method to solve the
Schrödinger-Boussinesq equations.

3. Exact Solutions to the Coupled Schrödinger-
Boussinesq Equations

We consider the coupled Schrödinger-Boussinesq equations
[21–28]

𝑖𝐸
𝑡
+ 𝐸
𝑥𝑥
+ 𝛼𝐸 − 𝑁𝐸 = 0,

3𝑁
𝑡𝑡
− 𝑁
𝑥𝑥𝑥𝑥

+ 3 (𝑁
2
)
𝑥𝑥
+ 𝛽𝑁
𝑥𝑥
− (|𝐸|

2
)
𝑥𝑥
= 0.

(11)

These equations are known to describe various physical
processes in laser and plasma, such as formation, Langmuir
field amplitude, intense electromagnetic waves, and modu-
lational instabilities [22–25]. The problem of the complete
integrability of this system has been studied by Chowdhury
et al. from the point of view of Painlevé analysis [25]. The
solitary wave solutions for system (11) have been obtained
in [26, 27]. The Jacobi doubly periodic wave solutions and a
range of other solutions for this systemhave been investigated
in [21, 28]. We are interested in searching new generalized
Jacobi elliptic function solutions for (11) by using ourmethod.

We consider the following transformations:

𝐸 (𝑥, 𝑡) = 𝐸 (𝜉) = 𝑢 (𝜉) 𝑒
𝑖(𝑘𝑥+𝜔𝑡+𝜉

00
)
,

𝑁 (𝑥, 𝑡) = 𝑁 (𝜉) = V (𝜉) ,
(12)

𝜉 = 𝑎𝑥 − 2𝑎𝑘𝑡 + 𝜉
0
, (13)

where 𝑎 and 𝑘 are constants to be determined later and 𝜉
0
and

𝜉
00
are arbitrary constants.
Substituting (12) and (13) into (11) and integrating the

second equation of system (11) twice, we have

𝑎
2
𝑢

+ (𝛼 − 𝜔 − 𝑘

2
) 𝑢 − 𝑢V = 0,

𝑎
2V + 𝑢2 − (12𝑘2 + 𝛽) V − 3V2 = 0.

(14)

By balancing the highest derivative term with the nonlinear
terms in (14), we obtain 𝑛 = 2. Therefore, we assume that (14)
have the following solutions:

𝑢 (𝜉) = 𝐴
0
+ 𝐴
1
𝜑 (𝜉) + 𝐴

2
𝜑
2

(𝜉) ,

V (𝜉) = 𝐵
0
+ 𝐵
1
𝜑 (𝜉) + 𝐵

2
𝜑
2

(𝜉) .

(15)

Substituting (3), (13), and (15) into (14) and setting the coef-
ficients of 𝜙𝑖(𝜉) (𝑖 = 0, 1, 2, . . .) and 𝜑𝑗(𝜉)√∑4

𝑖=0
𝑎
𝑖
𝜑𝑖(𝜉) (𝑗 =

. . . , −2, −1, 0, 1, 2, . . .) to zero yield a set of over-determined
equations (ODEs) for𝐴

𝑖
, 𝑘, 𝜔, and 𝑎

𝑖
. After solving theODEs

byMathematica, we could determine the following solutions.

Family 1.

𝐴
0
= ±𝑎
2
√
−𝑎
1
𝑎
3
− 8𝑎
0
𝑎
4

2
,

𝐴
1
= ±

2𝑎
2
𝑎
4

𝑎
3

√−2𝑎
1
𝑎
3
− 16𝑎
0
𝑎
4
, 𝐴

2
= 0,

𝐵
0
= 0, 𝐵

1
= 𝑎
2
𝑎
3
, 𝐵

2
= 2𝑎
2
𝑎
4
,

𝜔 = −

𝑎
2
(𝑎
4

3
− 80𝑎
1
𝑎
3
𝑎
2

4
− 128𝑎

0
𝑎
3

4
)

48𝑎
2

3
𝑎
4

+ 𝛼 +
𝛽

12
,

𝑘 =
𝜀

4

√
𝑎
2
(𝑎
4

3
+ 16𝑎
1
𝑎
3
𝑎
2

4
− 128𝑎

0
𝑎
3

4
) − 4𝑎

2

3
𝑎
4
𝛽

3𝑎
2

3
𝑎
4

,

𝜀
2
= 1, 𝑎

2
=
𝑎
2

3

4𝑎
4

+
2𝑎
1
𝑎
4

𝑎
3

.

(16)

Family 2.

𝐴
0
= ±√2𝐵

0
, 𝐴

1
= 0, 𝐴

2
= ±6√2𝑎

2
𝑎
4
,

𝐵
0
= const, 𝐵

1
= 0, 𝐵

2
= 6𝑎
2
𝑎
4
,

𝑎
1
= 𝑎
3
= 0, 𝜔 =

1

12
(44𝑎
2
𝑎
2
− 22𝐵

0
+ 12𝛼 + 𝛽) ,

𝑘 = 𝜀√
4𝑎
2
𝑎
2
− 2𝐵
0
− 𝛽

12
, 𝜀

2
= 1.

(17)
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Figure 1: The real part of 𝐸
6
when 𝑎 = 𝛼 = 1, 𝛽 = −1, 𝜉

0
= 0, and𝑚 = 0.9 and a plane graph when 𝑡 = 0.
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Figure 2: The imaginary part of 𝐸
6
when 𝑎 = 𝛼 = 1, 𝛽 = −1, 𝜉

0
= 0, and𝑚 = 0.9 and a plane graph when 𝑡 = 0.

Substituting (4), (5), (6), (7) along with (8a)–(8d) and
(16) into (14) separately yields an ODEs; after solving the
ODEs by Mathematica and Wu elimination, we can obtain
the following solutions of (14) according to (4), (5), (6), (16).
Case 1.

𝐴 = 𝑎
0
1

=
1

4
(1 − 𝑚

2
) , 𝐵 = 𝑎

2
1

= 2 − 𝑚
2
,

𝐶 = 𝑎
4
1

= 1, 𝐷 =
1

2
𝑎
1
1

=
1

2
(𝑚
2
− 1) ,

𝐸 =
1

2
𝑎
3
1

= −1, 0 ≤ 𝑚 ≤ 1,

𝑝 = 1, 𝑞 = 𝑟 = 𝑙 = 0,

𝑐
0
= 𝑐
1
= 𝑐
3
= 𝑐
4
= 0, 𝑐

2
= 1,

𝜑
1
(𝜉
1
) = 𝐹
1
(𝜉
1
) =

cn𝜉
1

±1
±

±
sn𝜉
1
+ cn𝜉
1

,

𝜉
1
= 𝑎𝑥 − 2𝑎𝑘

1
𝑡 + 𝜉
0
.

(18)

Case 2.

𝐴 = 𝑎
0
2

=
1

4
, 𝐵 = 𝑎

2
2

= 2 − 𝑚
2
,

𝐶 = 𝑎
4
2

= 1 − 𝑚
2
, 𝐷 =

1

2
𝑎
1
2

=
1

2
,

𝐸 =
1

2
𝑎
3
2

= 1 − 𝑚
2
, 0 ≤ 𝑚 ≤ 1,

𝑝 = 1, 𝑞 = 𝑟 = 𝑙 = 0,

𝑐
0
= 𝑐
1
= 𝑐
3
= 𝑐
4
= 0, 𝑐

2
= 1,

𝜑
2
(𝜉
2
) = 𝐹
2
(𝜉
2
) =

sn𝜉
2

±1 − sn𝜉
2

±

±
cn𝜉
2

,

𝜉
2
= 𝑎𝑥 − 2𝑎𝑘

2
𝑡 + 𝜉
0
.

(19)

Case 3.

𝐴 = 𝑎
0
3

= − (𝑐
2

0
− 1) (1 + (𝑐

2

0
− 1)𝑚

2
) ,

𝐵 = 𝑎
2
3

= (2 − 6𝑐
2

0
)𝑚
2
− 1, 𝐶 = 𝑎

4
3

= −𝑚
2
,

𝐷 =
1

2
𝑎
1
3

= 𝑐
0
− 2𝑐
0
𝑚
2
+ 2𝑐
3

0
𝑚
2
,

𝐸 =
1

2
𝑎
3
3

= 2𝑐
0
𝑚
2
, 0 ≤ 𝑚 ≤ 1,

𝑝 = 1, 𝑞 = 𝑟 = 𝑙 = 0,

𝑐
0
= const, 𝑐

1
= 𝑐
3
= 𝑐
4
= 0, 𝑐

2
= 1,

𝜑
3
(𝜉
3
) = 𝐹
3
(𝜉
3
) = 𝑐
0
+ cn2𝜉

3
, 𝜉
3
= 𝑎𝑥 − 2𝑎𝑘

3
𝑡 + 𝜉
0
.

(20)
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Figure 3: The modulus of 𝐸
6
when 𝑎 = 𝛼 = 1, 𝛽 = −1, 𝜉

0
= 0, and𝑚 = 0.9 and a plane graph when 𝑡 = 0.

Case 4.

𝐴 = 1, 𝐵 = −𝑚
2
− 1, 𝐶 = 𝑚

2
,

𝐷 = 𝐸 = 0, 𝐹 = sn𝜉, 0 ≤ 𝑚 ≤ 1,

𝑎
0
4

= 1, 𝑎
1
4

= ∓4√2 (1 + 𝑚)√𝑚,

𝑎
3
4

= ±2√2 (1 + 𝑚)√𝑚(1 + 6𝑚 + 𝑚
2
− 4 (1 + 𝑚)√𝑚) ,

𝑎
2
4

= 12 (1 + 𝑚)√𝑚 − 6𝑚 − 𝑚
2
− 1,

𝑎
4
4

= 8𝑚(𝑚 + 1)
2
− 2 (1 + 𝑚) (1 + 𝑚

2
+ 6𝑚)√𝑚,

𝑝 = 1, 𝑞 = ±√2 (1 + 𝑚)√𝑚, 𝑟 = 𝑚,

𝑙 = 0, 𝑐
0
= 𝑐
1
= 𝑐
3
= 𝑐
4
= 0, 𝑐

2
= 1,

𝜑
4
(𝜉
4
) =

sn𝜉
4

1 ± √2 (1 + 𝑚)√𝑚sn𝜉
4
+ 𝑚sn2𝜉

4

,

𝜉
4
= 𝑎𝑥 − 2𝑎𝑘

4
𝑡 + 𝜉
0
.

(21)

Case 5.

𝐴 = 1 − 𝑚
2
, 𝐵 = 2𝑚

2
− 1,

𝐶 = −𝑚
2
, 𝐷 = 𝐸 = 0, 0 ≤ 𝑚 ≤ 1,

𝐹 = cn𝜉 𝑎
0
5

= 1, 𝑎
1
5

= −4,

𝑎
2
5

= 8 − 4𝑚
2
, 𝑎

3
5

= 8𝑚
2
− 8, 𝑎

4
5

= 4 − 4𝑚
2
,

𝑝 = 0, 𝑞 = 1, 𝑟 = 0, 𝑙 = ±1,

𝑐
0
= 𝑐
1
= 𝑐
3
= 𝑐
4
= 0, 𝑐

2
= 1,

𝜑
5
(𝜉
5
) =

cn𝜉
5

cn𝜉
5
∓ sn𝜉
5
dn𝜉
5

, 𝜉
5
= 𝑎𝑥 − 2𝑎𝑘

5
𝑡 + 𝜉
0
.

(22)

Case 6.

𝐴 = 𝑚
2
− 1, 𝐵 = 2 − 𝑚

2
, 𝐶 = −1,

𝐷 = 𝐸 = 0, 0 ≤ 𝑚 ≤ 1,

𝐹 = dn𝜉 𝑎
0
6

= 1, 𝑎
1
6

= −4𝑚,

𝑎
2
6

= 8𝑚
2
− 4, 𝑎

3
6

= 8𝑚 − 8𝑚
3
, 𝑎

4
6

= 4𝑚
4
− 4𝑚
2
,

𝑝 = 0, 𝑞 = 𝑚, 𝑟 = 0, 𝑙 = ±1,

𝑐
0
= 𝑐
1
= 𝑐
3
= 𝑐
4
= 0, 𝑐

2
= 1,

𝜑
6
(𝜉
6
) =

dn𝜉
6

dn𝜉
6
∓ 𝑚2sn𝜉

6
cn𝜉
6

, 𝜉
6
= 𝑎𝑥 − 2𝑎𝑘

6
𝑡 + 𝜉
0
.

(23)

Case 7.

𝐴 =

𝐶
1
𝐶
3
𝑞 − 5𝐶

2

3
𝑞
3
+ 𝜀 (𝐶

1
+ 3𝐶
3
𝑞
2
)√𝐶
3
(3𝐶
3
𝑞2 − 2𝐶

1
)

4𝐶
3

,

𝐵 = 0, 𝐶 = 0, 2𝐷 = 𝐶
1
, 2𝐸 = 𝐶

3
,

𝐹 = ℘(
√𝐶
3

2
𝜉,
−4𝐶
1

𝐶
3

,
−4𝑀

𝐶
3

) ,

𝑎
0
7

= 0, 𝑎
1
7

= 𝐶
3
, 𝑎

2
7

= −3𝐶
3
𝑞,

𝑎
3
7

= 𝐶
1
+ 3𝐶
3
𝑞
2
,

𝑎
4
7

= ( − 3𝐶
1
𝐶
3
𝑞 − 9𝐶

2

3
𝑞
3

+𝜀 (𝐶
1
+ 3𝐶
3
𝑞
2
)√𝐶
3
(3𝐶
3
𝑞2 − 2𝐶

1
))

× (4𝐶
3
)
−1

,
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𝜀 = sgn [𝐶
1
+ 3𝐶
3
𝑞
2
] , 𝑝 = 0, 𝑞 = const,

𝑟 = 1, 𝑙 = 0, 𝑐
0
= 𝑐
1
= 𝑐
3
= 𝑐
4
= 0, 𝑐

2
= 1,

𝜑
7
(𝜉
7
) =

1

𝑞 + ℘ ((√𝐶
3
/2) 𝜉
7
, −4𝐶
1
/𝐶
3
, −4𝑀/𝐶

3
)
,

𝜉
7
= 𝑎𝑥 − 2𝑎𝑘

7
𝑡 + 𝜉
0
.

(24)

We obtain the following solutions of (11) according to (4),
(5), (12), (13), (15), and (16) and Cases 1–7:

𝐸
𝑖
(𝑥, 𝑡) = [

[

±𝑎
2√

−𝑎
1
𝑖

𝑎
3
𝑖

− 8𝑎
0
𝑖

𝑎
4
𝑖

2

±

2𝑎
2
𝑎
4
𝑖

𝑎
3
𝑖

√−2𝑎
1
𝑖

𝑎
3
𝑖

− 16𝑎
0
𝑖

𝑎
4
𝑖

𝜑
𝑖
(𝜉
𝑖
) ]

]

× 𝑒
𝑖(𝑘
𝑖
𝑥+𝜔
𝑖
𝑡+𝜉
00
)
,

𝑁
𝑖
(𝑥, 𝑡) = 𝑎

2
𝑎
3
𝑖

𝜑
𝑖
(𝜉
𝑖
) + 2𝑎

2
𝑎
4
𝑖

𝜑
2

𝑖
(𝜉
𝑖
) ,

𝜉
𝑖
= 𝑎𝑥 − 2𝑎𝑘

𝑖
𝑡 + 𝜉
0
, (𝑖 = 1, . . . , 7) ,

(25)

where 𝑎 is an arbitrary constant, 𝑎
0
𝑖

, 𝑎
1
𝑖

, 𝑎
2
𝑖

, 𝑎
3
𝑖

, and 𝑎
4
𝑖

are
defined as Cases 1–7, and 𝜔

𝑖
and 𝑘
𝑖
are defined as follows:

𝜔
𝑖
= −

𝑎
2
(𝑎
4

3
𝑖

− 80𝑎
1
𝑖

𝑎
3
𝑖

𝑎
2

4
𝑖

− 128𝑎
0
𝑖

𝑎
3

4
𝑖

)

48𝑎
2

3
𝑖

𝑎
4
𝑖

+ 𝛼 +
𝛽

12
,

𝑘
𝑖
=
𝜀

4

√
𝑎
2
(𝑎
4

3
𝑖

+ 16𝑎
1
𝑖

𝑎
3
𝑖

𝑎
2

4
𝑖

− 128𝑎
0
𝑖

𝑎
3

4
𝑖

) − 4𝑎
2

3
𝑖

𝑎
4
𝑖

𝛽

3𝑎
2

3
𝑖

𝑎
4
𝑖

,

𝜀
2
= 1, (𝑖 = 1, . . . , 7) .

(26)

With the similar process,substituting (4), (5), (6), and
(7) along with (8a)–(8d) and (17) into (14) separately yields
ODEs; after solving the ODEs by Mathematica and Wu
elimination, we can obtain the following solutions of (11)
according to (4), (5), (12), (13), (15), and (17) and the solutions
of (3) mentioned in [29]:

𝐸
𝑗
(𝑥, 𝑡) = [±√2𝐵

0
± 6√2𝑎

2
𝑎
4
𝑗

𝜑
2

𝑗
(𝜉
𝑗
)] 𝑒
𝑖(𝑘
𝑗
𝑥+𝜔
𝑗
𝑡+𝜉
00
)
,

(𝑗 = 0, 1, 2, . . .) ,

𝑁
𝑗
(𝑥, 𝑡) = 𝐵

0
+ 6𝑎
2
𝑎
4
𝑗

𝜑
2

𝑗
(𝜉
𝑗
) , 𝜉

𝑗
= 𝑎𝑥 − 2𝑎𝑘

𝑗
𝑡 + 𝜉
0
,

𝜔
𝑗
=
1

12
(44𝑎
2
𝑎
2
𝑗

− 22𝐵
0
+ 12𝛼 + 𝛽) ,

𝑘
𝑗
= 𝜀

√
4𝑎
2
𝑎
2
𝑗

− 2𝐵
0
− 𝛽

12
, 𝜀
2
= 1.

(27)

Remark 4. If we let 𝑎
0
1.1

= 1−𝑚
2, 𝑎
2
1.1

= 2𝑚
2
−1, 𝑎
4
1.1

= −𝑚
2,

𝑎
1
1.1

= 𝑎
3
1.1

= 0, and 𝜑
1.1
(𝜉
1.1
) = cn𝜉

1.1
, then we have

𝐸
1.1
(𝑥, 𝑡) = [±√2𝐵

0
∓ 6√2𝑎

2
𝑚
2cn2 (𝜉

1.1
)] 𝑒
𝑖(𝑘
1
𝑥+𝜔
1
𝑡+𝜉
00
)
,

𝑁
1.1
(𝑥, 𝑡) = 𝐵

0
− 6𝑎
2
𝑚
2cn2 (𝜉

1.1
) , 𝜉

1.1
= 𝑎𝑥 − 2𝑎𝑘

1.1
𝑡 + 𝜉
0
,

𝜔
1.1
=
1

12
(44𝑎
2
(2𝑚
2
− 1) − 22𝐵

0
+ 12𝛼 + 𝛽) ,

𝑘
1.1
= 𝜀

√
4𝑎
2
(2𝑚
2
− 1) − 2𝐵

0
− 𝛽

12
, 𝜀
2
= 1.

(28)

If we let 𝑎 = (1/2)√𝑏
0
, 𝑚 = 1, or 𝑎 = (1/2)√(1/2𝑚2 − 1)𝑏

0
,

then solution (𝐸
1.1
(𝑥, 𝑡),𝑁

1.1
(𝑥, 𝑡)) is in full agreement with

the solution 𝐸
1
, 𝑁
1
and 𝐸

2
, 𝑁
2
mentioned in [21].

Remark 5. The seven types of explicit solutions we obtained
here to (11) are not shown in the previous literature to our
knowledge. They are new exact solutions of (11). Notice that
sn𝜉 → tanh 𝜉, cn𝜉 → sech𝜉, and dn𝜉 → sech𝜉 when the
modulus 𝑚 → 1, and sn𝜉 → sin 𝜉, cn𝜉 → cos 𝜉, and
dn𝜉 → 1 when the modulus 𝑚 → 0. Solutions 𝐸

𝑖
, 𝑁
𝑖
(𝑖 =

1, . . . , 6) are degenerated to solitary wave solutions when the
modulus𝑚 → 1 and to triangular functions solutions when
the modulus𝑚 → 0.

We can give the numerical simulation of 𝐸
6
to show their

physical properties (see Figures 1, 2, and 3).

4. Conclusion
In this paper, we succeed to propose a general algebraic
method approach for finding new exact solutions of the
nonlinear evolution equations. By using this method and
computerized symbolic computation, we have found abun-
dant new exact solutions for the coupled Schrödinger-
Boussinesq equations (11). More importantly, our method
is much simpler and powerful to find new solutions to
various kinds of nonlinear evolution equations, such as KdV
equation, Boussinesq equation, and zakharov equation. We
believe that this method should play an important role for
finding exact solutions in the mathematical physics.
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