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We give a characterization of trace-preserving and positive linear maps preserving trace distance partially, that is, preservers of
trace distance of quantum states or pure states rather than all matrices. Applying such results, we give a characterization of quantum
channels leaving Helstrom’s measure of distinguishability of quantum states or pure states invariant and show that such quantum
channels are fully reversible, which are unitary transformations.

1. Introduction

Linear preserver problems concern the characterization of
linear maps on matrix spaces that leave certain functions,
subsets, relations, and so forth, invariant, and have been an
active research area in matrix theory. The earliest paper on
linear preserver problems dates back to the year of 1897, and
a great deal of effort has been devoted to the study of this
type of questions (see [1–4] and their references). In 1975,
Choi in [4] gave a characterization of completely positive
linear maps on matrix algebras. In the theory of quantum
information, a quantum channel just be a completely positive
and trace preserving linearmap. So Choi gave amathematical
characterization of quantum channels. Such a result is applied
in quantum information extensively. In recent years, more
and more researchers on linear preserver problems pay
their attention to the theory of quantum information (see
[5–9] and their references). In this paper, we will give a
characterization of trace-preserving and positive linear maps
preserving trace distance partially, that is, preservers of trace
distance of quantum states or pure states rather than all
matrices (see Theorems 6 and 10). Applying such results,
we give a characterization of quantum channels leaving
Helstrom’s measure of distinguishability of quantum states or
pure states invariant and show that such quantum channels
are fully reversible, which are unitary transformations (see
Theorems 7 and 11).

In themathematical framework of quantum information,
quantum states are positive operators with trace 1 on complex
Hilbert space 𝐻, and we denote by S(𝐻) the set of all
quantum states on 𝐻, which is a convex subset of the space
of trace-class operators T(𝐻). Pure states are rank one
projections. If dim𝐻 = 𝑛 < ∞, then T(𝐻) is identical with
B(𝐻), that is, the 𝑛 × 𝑛 complex matrix algebra. In the case
of dim𝐻 = 𝑛 < ∞, a quantum channel Φ : B(𝐻) → B(𝐻)

has the following form:

Φ(𝜌) =

𝑚

∑

𝑖=1

𝑀
𝑖
𝜌𝑀
∗

𝑖
, (1)

where 𝑀
𝑖
𝑠 ∈ B(𝐻) and ∑

𝑚

𝑖=1
𝑀
∗

𝑖
𝑀
𝑖
= 𝐼 with the identity

𝐼. For a quantum channel Φ, the aim of quantum error
correction is to find another quantum channel Ψ such that

Ψ ∘ Φ (𝜌) = 𝜌, for 𝜌 ∈ C ⊆ S (𝐻) . (2)

Here, we call that Φ is reversible for the state 𝜌; if Φ is
reversible for all states 𝜌 ∈ C, then Φ is reversible on C.
C is a subset of S(𝐻) and is called error correction code.
It is easy to check that if Φ is reversible for 𝜌, 𝜎, then Φ

is reversible for the arbitrary convex combination of 𝜌, 𝜎.
So, if C is an error correction code, we can assume that
C is a convex set. The topic of quantum error correction
or reversibility of quantum channels naturally arises in
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the analysis of questions in quantum information and plays
an important role in the theory of quantum information (see
[10–13] and their references). In the theory of reversibility of
quantum channels, Helstrom’s measure of distinguishability
of quantum states plays an important role and is defined as
follows.

Definition 1. Helstrom’s measure of distinguishability of
quantum states 𝜌, 𝜎 with respect to 𝜆 ∈ [0, 1] is defined by
𝑃
𝐻
(𝜌, 𝜎, 𝜆) = (1/2)(1 + ‖𝜆𝜌 − (1 − 𝜆)𝜎‖

1
).

Definition 2. A map Φ : B(𝐻) → B(𝐻) preserves
Helstrom’s measure of distinguishability of quantum states
𝜌, 𝜎 if 𝑃

𝐻
(𝜌, 𝜎, 𝜆) = 𝑃

𝐻
(Φ(𝜌), Φ(𝜎), 𝜆); equivalently,

‖𝜆Φ(𝜌) − (1 − 𝜆)Φ(𝜎)‖
1
= ‖𝜆𝜌 − (1 − 𝜆)𝜎‖

1
for arbitrary 𝜆 ∈

[0, 1].

In [10], Robin Blume-Kohout et al. discussed the trace
norm ‖ ⋅ ‖

1
(defined by ‖𝐴‖

1
= tr(√𝐴∗𝐴)) and reversibility

of quantum channels, where Helstrom’s measure of distin-
guishability of quantum states is used as a criterion for
reversibility of quantum channels. Robin Blume-Kohout et
al., showed that for a quantum channelΦ, with the following
additional condition:

the projection to the joint support of

all states in C is onto,
(†)

Φ preserves Helstrom’s measure of distinguishability of all
𝜌, 𝜎 ∈ C if and only if Φ is reversible on C. In this paper,
we prove that, in the case of C = S(𝐻), that is, a quantum
channelΦ preserves Helstrom’s measure of distinguishability
of all states 𝜌, 𝜎 ∈ S(𝐻) if and only ifΦ is reversible onS(𝐻)

(see Theorem 7). We call such a channel the fully reversible
channel as follows.

Definition 3. A quantum channel Φ : B(𝐻) → B(𝐻) is
fully reversible if there exists a quantum channel Ψ such that
Ψ ∘ Φ(𝜌) = 𝜌 for all quantum states 𝜌.

In Definition 2, taking 𝜆 = 1/2, one can define the map
preserving trace distance of quantum states as follows.

Definition 4. A map Φ : B(𝐻) → B(𝐻) preserves
trace distance of quantum states if for all 𝜌, 𝜎 ∈ S(𝐻),
‖Φ(𝜌) − Φ(𝜎)‖

1
= ‖𝜌 − 𝜎‖

1
.

The map preserving Helstrom’s measure of distinguisha-
bility must preserve trace distance. Robin Blume-Kohout
et al. in [10] showed that with the assumption (†), the
channel preserving Helstrom’s measure of distinguishability
is reversible for an error correction code C, but the channel
preserving trace distance of quantum states is not. In this
paper, wewill show that the channel preserving trace distance
of all quantum states is also fully reversible (see Theorem 7).
Indeed a fully reversible channel Φ is a unitary transfor-
mation; that is, there exists a unitary operator 𝑈 such that
Φ(𝜌) = 𝑈𝜌𝑈

∗ for all quantum states𝜌. Alsomany authors pay
their attention to characterizing preservers of trace distance
(see [14, 15] and their references). LetP

1
(𝐻) be the set of all

pure states; furthermore, we introduce the following general
partial preservers of trace distance of pure states.

Definition 5. A map Φ : B(𝐻) → B(𝐻) preserves
trace distance of pure states if for all 𝑃,𝑄 ∈ P

1
(𝐻),

‖Φ(𝑃) − Φ(𝑄)‖
1
= ‖𝑃 − 𝑄‖

1
.

The map preserving trace distance of quantum states
must preserve trace distance of pure states. We also give a
characterization of trace preserving and positive linear maps
preserving trace distance of pure states and show that the
channel preserving trace distance of all pure states is also fully
reversible (see Theorems 10 and 11).

2. Partially Trace Distance Preservers and
Fully Reversible Channels

In this section, we are first devoted to characterizing a class
of positive and trace-preserving linear maps preserving trace
distance of quantum states.

Theorem 6. Let 𝐻 be a finite dimensional complex Hilbert
space with dim𝐻 = 𝑛, Φ : B(𝐻) → B(𝐻) being a positive
and trace-preserving linear map; then the following statements
are equivalent:

(I) Φ preserves trace distance of quantum states; that is,
‖Φ(𝜌) − Φ(𝜎)‖

1
= ‖𝜌 − 𝜎‖

1
for all 𝜌, 𝜎 ∈ S(𝐻);

(II) there exists a unitary operator𝑈 on𝐻 such thatΦ(𝜌) =
𝑈𝜌𝑈
∗ for all states 𝜌 ∈ S(𝐻) or Φ(𝜌) = 𝑈𝜌

𝑡

𝑈
∗ for all

states 𝜌 ∈ S(𝐻), where 𝜌𝑡 is the transpose of 𝜌 with
respect to an orthonormal basis.

Applying Theorem 6, we will have the following main
result.

Theorem 7. Let 𝐻 be a finite dimensional complex Hilbert
space with dim𝐻 = 𝑛,Φ : B(𝐻) → B(𝐻) being a quantum
channel, that is, a completely positive and trace-preserving
linear map; then the following statements are equivalent:

(I) Φ is fully reversible;
(II) Φ preserves Helstrom’s measure of distinguishability

of quantum states, that is, ‖𝜆Φ(𝜌) − (1 − 𝜆)Φ(𝜎)‖
1
=

‖𝜆𝜌 − (1 − 𝜆)𝜎‖
1
for all 𝜌, 𝜎 ∈ S(𝐻) and arbitrary

𝜆 ∈ [0, 1];
(III) Φ preserves trace distance of quantum states; that is,

‖Φ(𝜌) − Φ(𝜎)‖
1
= ‖𝜌 − 𝜎‖

1
for all 𝜌, 𝜎 ∈ S(𝐻);

(IV) Φ is a unitary transformation; that is, there exists a
unitary operator 𝑈 on 𝐻 such that Φ(𝜌) = 𝑈𝜌𝑈

∗ for
all input states 𝜌.

Remark 8. Theorem 7 shows that quantum channels leaving
Helstrom’s measure of distinguishability or trace distance of
all quantum states invariant is fully reversible and vice versa.
Also we prove that a quantum channel is fully reversible if
and only if it is a unitary transformation. Indeed, such a
result also can be induced by some other characterization
of preservers in existence. Here, let us give a short proof; if
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a quantumchannel is fully reversible, by [11], then the channel
preserves the relative entropy of all quantum states. Such a
map has been characterized in [16], where Molnár showed
that the map preserving relative entropy of all quantum
states has the following form: 𝐴 → 𝑈𝐴𝑈

∗, where 𝑈 is a
unitary or antiunitary operator. Applying the result in [16],
it follows from linearity and complete positivity of quantum
channels that fully reversible quantum channels are unitary
transformations.

Before the proof of Theorems 6 and 7, we first give some
primary observations. It is mentioned that a quantum state 𝜌
is a pure state if and only if rank 𝜌 = 1 if and only if 𝜌2 = 𝜌;
that is, pure states are rank one projections.

Lemma 9. For a quantum state 𝜌 ∈ S(𝐻) with dim𝐻 = 𝑛 <

∞, 𝜌 is a pure state if and only if there exist 𝑛 − 1 pairwise
orthogonal states 𝜌

1
, . . . , 𝜌

𝑛−1
such that 𝜌𝜌

𝑖
= 0 for all 1 ≤ 𝑖 ≤

𝑛 − 1.

Proof of Lemma 9. If 𝜌 is a pure state, then rank 𝜌 = 1; one
can find 𝑛−1 pairwise orthogonal pure states 𝜌

1
, . . . , 𝜌

𝑛−1
such

that 𝜌𝜌
𝑖
= 0 for all 1 ≤ 𝑖 ≤ 𝑛 − 1 since dim𝐻 = 𝑛.

Conversely, assume on the contrary that rank 𝜌 ≥ 2; then
there exist 𝑥, 𝑦 ∈ Ran𝜌 and 𝑥 ⊥ 𝑦. If there exist 𝑛−1 pairwise
orthogonal states 𝜌

1
, . . . , 𝜌

𝑛−1
such that 𝜌𝜌

𝑖
= 0 for all 1 ≤ 𝑖 ≤

𝑛 − 1, then there exist 𝑛 − 1 vectors 𝑒
𝑖
∈ Ran𝜌

𝑖
for each 𝜌

𝑖

being pairwise orthogonal nonzero vectors since 𝜌
1
, . . . , 𝜌

𝑛−1

are positive and pairwise orthogonal, but 𝑒
𝑖
⊥ [𝑥, 𝑦] for all

1 ≤ 𝑖 ≤ 𝑛 − 1 since 𝜌𝜌
𝑖
= 0 for all 1 ≤ 𝑖 ≤ 𝑛 − 1. It follows that

dim𝐻 > 𝑛. This is a contradiction to dim𝐻 = 𝑛. The proof
is completed.

Now we proveTheorem 6.

Proof of Theorem 6. (II)⇒(I) is clear; we only need to check
that (I)⇒(II).

The proof is divided into the following claims.

Claim 1. Φ(S(𝐻)) ⊆ S(𝐻), andΦ on S(𝐻) is injective.
Since Φ is trace-preserving and positive, we have that

Φ(S(𝐻)) ⊆ S(𝐻). Since Φ on S(𝐻) is trace-distance-
preserving, so we have that Φ on S(𝐻) is injective.

Claim 2. Φ on S(𝐻) preserves orthogonality; that is, for
quantum states 𝜌, 𝜎, 𝜌𝜎 = 0 ⇒ Φ(𝜌)Φ(𝜎) = 0.

A well-known proposition is that for arbitrary 𝐴, 𝐵 ∈

B(𝐻), 𝐴∗𝐵 = 𝐵
∗

𝐴 = 0 if and only if ‖𝐴 + 𝐵‖
1
+ ‖𝐴 − 𝐵‖

1
=

2(‖𝐴‖
1
+ ‖𝐵‖

1
) (see [17]). For quantum states 𝜌, 𝜎, one can

check that
𝜌
1
= tr (𝜌) = 1,

𝜌 + 𝜎
1
= tr (𝜌 + 𝜎) = 2. (3)

Since quantum states are positive, so 𝜌𝜎 = 0 if and only if
‖𝜌 − 𝜎‖

1
= 2. Since ‖Φ(𝜌) − Φ(𝜎)‖

1
= ‖𝜌 − 𝜎‖

1
, so ‖𝜌 − 𝜎‖

1
=

2 ⇒ ‖Φ(𝜌) − Φ(𝜎)‖
1
= 2; that is, 𝜌𝜎 = 0 ⇒ Φ(𝜌)Φ(𝜎) = 0.

Claim 3. Φmaps pure states to pure states.
If the quantum state 𝜌 is a pure state, that is, a rank

one projection, by Lemma 9, then there exist 𝑛 − 1 pairwise

orthogonal states 𝜌
1
, . . . , 𝜌

𝑛−1
such that 𝜌

𝑖
𝜌 = 0 for all 1 ≤ 𝑖 ≤

𝑛 − 1. It follows from Claims 1 and 2 that Φ(𝜌
1
), . . . , Φ(𝜌

𝑛−1
)

are states, pairwise orthogonal, and Φ(𝜌
𝑖
)Φ(𝜌) = 0 for all

1 ≤ 𝑖 ≤ 𝑛 − 1. So by Lemma 9 again, Φ(𝜌) is a rank one
projection, that is, a pure state.

Claim 4. Φ(𝜌) = 𝑈𝜌𝑈
∗ for arbitrary quantum state𝜌 ∈ S(𝐻)

or Φ(𝜌) = 𝑈𝜌
𝑡

𝑈
∗ for arbitrary quantum state 𝜌 ∈ S(𝐻),

where 𝑈 is a unitary operator on𝐻.
Nowwe have thatΦ is linear andmaps pure states to pure

states; such a map had been characterized by Friedland et al.
in [8] (see [8, Lemma 2.4]), where authors show that Φ has
one of the following forms:

(I) there is a pure state 𝑅 such thatΦ(𝐴) = tr(𝐴)𝑅 for all
𝐴 ∈ B(𝐻);

(II) there is a unitary operator 𝑈 on𝐻 such that Φ(𝐴) =
𝑈𝐴𝑈
∗ for all𝐴 ∈ B(𝐻) orΦ(𝐴) = 𝑈𝐴

𝑡

𝑈
∗ for all𝐴 ∈

B(𝐻), where 𝐴𝑡 is the transpose of 𝐴 with respect to
an orthonormal basis.

Since Φ preserves orthogonality of rank one projections,
so the case (I) does not occur.Therefore, this claim holds true.
The proof is completed.

Next we will give the proof of Theorem 7.

Proof of Theorem 7. (II)⇒(III) and (IV)⇒(I) are clear; we
only need to check that (I)⇒(II) and (III)⇒(IV).

First we check that (I)⇒(II). If Φ is reversible for all
quantum states, assume that there exists a trace-preserving
and completely positive linear map Ψ such that Ψ ∘ Φ(𝜌) =

𝜌 for any state 𝜌. Since positive and trace-preserving linear
maps are contractive under the trace norm (see [18]), that is,
‖Δ(𝐴)‖

1
≤ ‖𝐴‖

1
for trace-preserving and positive linearmaps

Δ and 𝐴 ∈ B(𝐻), so we have that for all 𝜌, 𝜎 ∈ S(𝐻) and
arbitrary 𝜆 ∈ [0, 1],

𝜆𝜌 − (1 − 𝜆)𝜎
1
=
𝜆Ψ ∘ Φ(𝜌) − (1 − 𝜆)Ψ ∘ Φ(𝜎)

1

≤
Ψ(𝜆Φ(𝜌) − (1 − 𝜆)Φ(𝜎))

1

≤
𝜆Φ(𝜌) − (1 − 𝜆)Φ(𝜎)

1

≤
Φ(𝜆𝜌 − (1 − 𝜆)𝜎)

1

≤
𝜆𝜌 − (1 − 𝜆) 𝜎

1
.

(4)

So ‖𝜆Φ(𝜌) − (1 − 𝜆)Φ(𝜎)‖
1
= ‖𝜆𝜌 − (1 − 𝜆)𝜎‖

1
; (II) holds.

Next we show that (III) ⇒ (IV). Since the channel Φ
satisfies the assumptions in Theorem 6, so there exists a
unitary operator 𝑈 on 𝐻 such that (1) Φ(𝜌) = 𝑈𝜌𝑈

∗ for
all input states 𝜌 or (2) Φ(𝜌) = 𝑈𝜌

𝑡

𝑈
∗ for all input states 𝜌,

where 𝜌𝑡 is the transpose of 𝜌with respect to an orthonormal
basis. One can note that the transpose map is positive but is
not completely positive (see [9]), so for a quantum channel
Φ, case (2) does not occur. So (IV) holds true. The proof is
completed.
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3. Characterizing Channels Reversible for
Pure States

In the section, we first give a characterization of positive
and trace-preserving linear maps preserving trace distance of
pure states.

Theorem 10. Let 𝐻 be a finite dimensional complex Hilbert
space with dim𝐻 = 𝑛, Φ : B(𝐻) → B(𝐻) being a positive
and trace-preserving linear map; then the following statements
are equivalent:

(I) Φ preserves trace distance of pure states; that is,
‖Φ(𝑃) − Φ(𝑄)‖

1
= ‖𝑃 − 𝑄‖

1
for all 𝑃,𝑄 ∈ 𝑃

1
(𝐻);

(II) there exists a unitary operator𝑈 on𝐻 such thatΦ(𝜌) =
𝑈𝜌𝑈
∗ for all states 𝜌 ∈ S(𝐻) or Φ(𝜌) = 𝑈𝜌

𝑡

𝑈
∗ for all

states 𝜌 ∈ S(𝐻), where 𝜌𝑡 is the transpose of 𝜌 with
respect to an orthonormal basis.

Applying Theorem 10, we will have the following refined
result.

Theorem 11. Let 𝐻 be a finite dimensional complex Hilbert
space with dim𝐻 = 𝑛,Φ : B(𝐻) → B(𝐻) being a quantum
channel, that is, a completely positive and trace-preserving
linear map; then the following statements are equivalent:

(I) Φ is fully reversible;
(II) Φ is reversible on the set of pure states;
(III) Φ preserves Helstrom’s measure of distinguishability

of pure states; that is, ‖𝜆Φ(𝑃) − (1 − 𝜆)Φ(𝑄)‖
1

=

‖𝜆𝑃 − (1 − 𝜆)𝑄‖
1
for all 𝑃,𝑄 ∈ P

1
(𝐻) and arbitrary

𝜆 ∈ [0, 1];
(IV) Φ preserves trace distance of pure states; that is,

‖Φ(𝑃) − Φ(𝑄)‖
1
= ‖𝑃 − 𝑄‖

1
for all 𝑃,𝑄 ∈ P

1
(𝐻);

(V) Φ is a unitary transformation; that is, there exists a
unitary operator 𝑈 on 𝐻 such that Φ(𝜌) = 𝑈𝜌𝑈

∗ for
all input states 𝜌.

Now we proveTheorem 10.

Proof of Theorem 10. (II)⇒(I) is clear; we only need to check
that (I)⇒(II).

Similar to the proof of Theorem 6, we can show that
Φ(S(𝐻)) ⊆ S(𝐻) and Φ on P

1
(𝐻) is injective, so Φ(𝑃) ̸= 0

for any pure state 𝑃. And Φ preserves orthogonality of pure
states; that is, for pure states 𝑃, 𝑄, 𝑃𝑄 = 0 ⇒ Φ(𝑃)Φ(𝑄) = 0.

Next we show that Φ(𝑃) is a pure state for any pure
state 𝑃. For any pure state 𝑃, by Lemma 9, then there exist
𝑛 − 1 pairwise orthogonal nonzero pure states 𝑃

1
, . . . , 𝑃

𝑛−1

such that 𝑃
𝑖
𝑃 = 0 for all 1 ≤ 𝑖 ≤ 𝑛 − 1. Since Φ

preserves orthogonality of pure states and is injective on pure
states, it follows that Φ(𝑃

1
), . . . , Φ(𝑃

𝑛−1
) are states, pairwise

orthogonal, and Φ(𝑃
𝑖
)Φ(𝑃) = 0 for all 1 ≤ 𝑖 ≤ 𝑛 − 1. So by

Lemma 9 again, Φ(𝑃) is a rank one projection.
Nowwe have thatΦ is linear andmaps pure states to pure

states; similar to the proof ofTheorem 6, one can complete the
proof.

Next we will give the proof of Theorem 11.

Proof of Theorem 11. (I)⇒(II), (III)⇒(IV), and (V)⇒(I) are
clear; we only need to check that (II)⇒(III) and (IV)⇒(V).
One can check that (II)⇒(III) holds true similar to the proof
of (I)⇒(II) in Theorem 7.

Next we show that (IV)⇒(V). Since the channel Φ
satisfies the assumptions in Theorem 10, so there exists a
unitary operator 𝑈 on 𝐻 such that (1) Φ(𝜌) = 𝑈𝜌𝑈

∗

for all input states 𝜌 or (2) Φ(𝜌) = 𝑈𝜌
𝑡

𝑈
∗ for all input

states 𝜌, where 𝜌𝑡 is the transpose of 𝜌 with respect to an
orthonormal basis. Since the transpose map is positive, but
is not completely positive (see [9]), so for a quantum channel
Φ, the case (2) does not occur. So (IV) holds true. The proof
is completed.

Remark 12. However, it is also mentioned that if the error
correction code C is the proper convex subset of S(𝐻), that
is, S(𝐻) \ C ̸= 0, the channel preserving trace distance of
quantum states in C may not be reversible on C (see [10,
Example 7]). Also a natural question is to give a characteri-
zation of the channel on a proper subset of S(𝐻) preserving
trace distance, and such a resultmay help us understandmore
deeply the theory of reversibility of quantum channels.
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[18] D. Pérez-Garćıa, M. M. Wolf, D. Petz, and M. B. Ruskai,

“Contractivity of positive and trace-preserving maps under 𝐿
𝑝

norms,” Journal of Mathematical Physics, vol. 47, no. 8, Article
ID 083506, 5 pages, 2006.


