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If a graph 𝐺 admits a 𝑘-list assignment 𝐿 such that 𝐺 has a unique 𝐿-coloring, then 𝐺 is called uniquely 𝑘-list colorable graph, or
U𝑘LC graph for short. In the process of characterizing U𝑘LC graphs, the complete multipartite graphs 𝐾

1∗𝑟,𝑠
(𝑟, 𝑠 ∈ 𝑁) are often

researched. But it is usually not easy to construct the unique 𝑘-list assignment of 𝐾
1∗𝑟,𝑠

. In this paper, we give some propositions
about the property of the graph𝐾

1∗𝑟,𝑠
when it is U𝑘LC, which provide a very significant guide for constructing such list assignment.

Then a special example of U𝑘LC graphs𝐾
1∗𝑟,𝑠

as a application of these propositions is introduced.The conclusion will pave the way
to characterize U𝑘LC complete multipartite graphs.

1. Introduction

In this section, some definitions and results about list
colorings which are referred to throughout the paper are
introduced. For the necessary definitions and notation, we
refer the reader to standard texts, such as [1]. Following the
paper [2], we use the notation 𝐾

𝑠∗𝑟
(𝑟, 𝑠 ∈ 𝑁, 𝑁 is the set

of natural numbers) for a complete 𝑟-partite graph in which
each part is of size 𝑠. Notation such as 𝐾

𝑠∗𝑟,𝑡
, (𝑟, 𝑠, 𝑡 ∈ 𝑁) is

used similarly.
The idea of list colorings of graphs is due, independently,

to Vizing [3] and Erdős et al. [4]. For a graph 𝐺 = (𝑉, 𝐸) and
each vertex V ∈ 𝑉(𝐺), let 𝐿(V) denote a list of colors available
for V. 𝐿 = {𝐿(V) | V ∈ 𝑉(𝐺)} is said to be a list assignment of𝐺.
If |𝐿(V)| = 𝑘 for all V ∈ 𝑉(𝐺), then 𝐿 is called 𝑘-list assignment
of𝐺. For example, the numbers nearby the vertices in Figure 1
are 2-list assignment of the graph. A list coloring from a given
collection of lists is a proper coloring 𝑐 such that 𝑐(V) is chosen
from𝐿(V).Wewill refer to such a coloring as an L-coloring [5].
In Figure 1, the set of circled numbers makes a 2-list coloring
of the graph.

The list coloringmodel can be used in the channel assign-
ment [6–8].The fixed channel allocation scheme leads to low
channel utilization across the whole channel. It requires a
more effective channel assignment and management policy,
which allows unused parts of channel to become available
temporarily for other usages so that the scarcity of the channel
can be largely mitigated [6]. It is a discrete optimization
problem. A model for channel availability observed by the
secondary users is introduced in [6]. We abstract each
secondary network topology into a graph, where vertices
represent wireless users such as wireless lines, WLANs, or
cells, and edges represent interferences between vertices. In
particular, if two vertices are connected by an edge in the
graph, we assume that these two vertices cannot use the same
spectrum simultaneously. In addition, we associate with each
vertex a set, which represents the available spectra at this
location. Due to the differences in the geographical location
of each vertex, the sets of spectra of different nodes may be
different. Then a list coloring model is constructed.

The research of list coloring consists of two parts: the
choosability and the unique list colorability. Some relations
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Figure 1: The list of graph.

between uniquely list colorability and choosability of a graph
are presented in [9]. In this paper, we research the unique list
colorability of graph.

The concept of unique list coloring was introduced by
Dinitz and Martin [10] and independently by Mahmoodian
and Mahdian [11], which can be used to study defining set of
𝑘-coloring [12] and critical sets in Latin squares [13]. Let𝐺 be
a graph with 𝑛 vertices, and suppose that for each vertex V in
𝐺, there exists a list of 𝑘 colors 𝐿(V), such that there exists
a unique 𝐿-coloring for 𝐺; then 𝐺 is called uniquely k-list
colorable graph or a U𝑘LC graph for short. It is obvious that
the set of circled numbers makes a 2-list coloring of the graph
in Figure 2. For a graph𝐺, it is said to have the property𝑀(𝑘)
if and only if it is not uniquely 𝑘-list colorable graph. So𝐺 has
the property𝑀(𝑘) if for any collection of lists assigned to its
vertices, each of size 𝑘, either there is no list coloring for 𝐺
or there exist two list colorings. Note that the𝑚-number of a
graph 𝐺, denoted by𝑚(𝐺), is defined to be the least integer 𝑘
such that 𝐺 has the property𝑀(𝑘).

It is clear from the definition of uniquely 𝑘-list colorable
graphs that each U𝑘LC graph is also a U(𝑘 − 1)LC graph [14].
That is to say that, a graph which has the property𝑀(𝑘 − 1)
also has the property𝑀(𝑘).

Mahdian andMahmoodian [5] characterized uniquely 2-
list colorable graphs. They showed the following.

Proposition 1 (see [5]). A connected graph has the property
𝑀(2) if and only if every block of𝐺 is either a cycle, a complete
graph, or a complete bipartite graph.

In paper [15], it is showed that recognizing uniquely
𝑘-list colorable graphs is Σ𝑝

2
-complete for every 𝑘 ≥ 3;

then uniquely 3-list colorable graphs are unlikely to have a
nice characterization. But Ghebleh and Mahmoodian [14]
and He et al. [16–18] have characterized the U3LC complete
multipartite graphs, and one has the following.

Proposition 2 (see [14]). The graphs 𝐾
3,3,3

, 𝐾
2,4,4

, 𝐾
2,3,5

,
𝐾
2,2,9

, 𝐾
1,2,2,2

, 𝐾
1,1,2,3

, 𝐾
1,1,1,2,2

, 𝐾
1∗4,6

, 𝐾
1∗5,5

, and 𝐾
1∗6,4

are
U3LC.

Proposition 3 (see [16]). Let 𝐺 be a complete multipartite
graph; then 𝐺 is U3LC if and only if it has one of the graphs
in Proposition 2 as an induced subgraph.

A

B

C D

E

(2,③)

(1,②)(1,③)

(①, 3)

(①, 2)

Figure 2: The list coloring of graph.

Wang et al. [19] have characterized U4LC complete
multipartite graphs with at least 6 parts except for finitely
many of them.

In the process of characterizingU𝑘LC completemultipar-
tite graphs, it is often researched that the property 𝑀(𝑘) of
complete multipartite graphs has only one part whose size is
more than one; that is, 𝐾

1∗𝑟,𝑠
(𝑟, 𝑠 ∈ 𝑁). Paper [14] studied

the property𝑀(3) of graphs𝐾
1∗𝑟,3

and𝐾
1,1,1,𝑟

. The following
was concluded.

Proposition 4 (see [14]). For every 𝑟 ≥ 2, 𝑚(𝐾
1∗𝑟,3

) =

𝑚(𝐾
1,1,1,𝑟

) = 3.

The property 𝑀(4) of graphs 𝐾
1∗𝑟,5

and 𝐾
1∗5,𝑟

is
researched in paper [19], and it is showed the following.

Proposition 5 (see [19]). For every 𝑟 ≥ 1, 𝐾
1∗5,𝑟

and 𝐾
1∗𝑟,5

have the property 𝑀(4), and if 𝑟 ≥ 5, then 𝑚(𝐾
1∗5,𝑟

) =

𝑚(𝐾
1∗𝑟,5

) = 4.

Conclusions above are generalized by Wang et al. [20]
recently.

Proposition 6 (see [20]). For every 𝑟 ≥ 1, 𝑘 ≥ 2, 𝐾
1∗𝑟,(2𝑘−3)

has the property𝑀(𝑘).

Proposition 7 (see [20]). For every 𝑟 ≥ 1, 𝑘 ≥ 2, 𝐾
1∗(2𝑘−3),𝑟

has the property𝑀(𝑘).

But there is no other conclusion about what are the
maximal numbers 𝑟 and 𝑠 such that the graph𝐾

1∗𝑟,𝑠
is aU𝑘LC

graph for every 𝑘. Besides, the property of list assignment
of U𝑘LC graph 𝐾

1∗𝑟,𝑠
is still unclear, and there is a lack of

the necessary conditions for the U𝑘LC graph 𝐾
1∗𝑟,𝑠

. It seems
that the larger 𝑘 is, themore difficult the characterizingU𝑘LC
graphs are.

In fact, if we want to proof that some graph 𝐾
1∗𝑟,𝑠

is
a U𝑘LC graph, we must find a 𝑘-list assignment such that
there exists a unique list coloring. In general it is not easy to
construct such list assignment, and it usually requires a lot of
skills. But if some properties of such graphs are known, the
construction process perhaps will become easier. In addition,
it is hoped that one can obtain some properties of U𝑘LC
graph 𝐾

1∗𝑟,𝑠
for every 𝑘, not only for special 𝑘.
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In this paper the property of the graph𝐾
1∗𝑟,𝑠

is researched
when it is a U𝑘LC graph. The paper is organized as follows.
In Section 2, we give some propositions about the property
of the graph 𝐾

1∗𝑟,𝑠
when it is a U𝑘LC graph. According to

these propositions, a special example of U𝑘LC graphs 𝐾
1∗𝑟,𝑠

is introduced in Section 3. In Section 4, we discuss the results
and give an open problem. The conclusion will pave the way
to characterize U𝑘LC complete multipartite graphs.

2. Property of the U𝑘LC Graph 𝐾
1∗𝑟,𝑠

In this section, we list some theorems about the property
of the graph 𝐾

1∗𝑟,𝑠
when it is U𝑘LC, as it is conducive to

construct the list assignment of U𝑘LC complete multipartite
graphs and characterize the U𝑘LC graphs.

Theorem 8. For every 𝑟 ≥ 1, if 𝐾
1∗𝑟,𝑠

is a U𝑘LC graph, then
𝑠 ≥ 2 (𝑟, 𝑠 ∈ 𝑁).

Proof. If 𝑠 = 1, 𝐾
1∗𝑟,𝑠

= 𝐾
1∗(𝑟+1)

has the property 𝑀(2) by
Proposition 1; so it is not a U2LC graph, nor a U𝑘LC graph
which is contradictory to the suppose.

In view of these facts, it is supposed that 𝑠 ≥ 2 for a U𝑘LC
graph 𝐾

1∗𝑟,𝑠
in the following.

In the process of proving Theorem 9, for convenience,
the 𝑟 + 1 parts of 𝐾

1∗𝑟,𝑠
are denoted by 𝑉

𝑖
= {V

𝑖
} for

𝑖 = 1, 2, . . . , 𝑟 and 𝑉
𝑟+1

= {V
𝑟+1

,V
𝑟+2
, . . . , V

𝑟+𝑠
}. For the

given 𝑘-list assignment 𝐿: 𝐿(V
𝑖
) = {𝑐

𝑖,1
, 𝑐
𝑖,2
, . . . , 𝑐

𝑖,𝑘
}, 𝑖 =

1, 2, . . . , 𝑟 + 𝑠, there is a unique 𝑘-list color 𝑐: 𝑐(V
𝑖
) = 𝑐

𝑖,1
,

𝑖 = 1, 2, . . . , 𝑟 + 𝑠. Furthermore, one has 𝐷
𝑖
= {𝑐
𝑖,1
}, 𝑖 =

1, 2, . . . , 𝑟; 𝐷
𝑖
= {𝑐
𝑖,2
, c
𝑖,3
, . . . , 𝑐

𝑖,𝑘
}, 𝑖 = 1, 2, . . . , 𝑟; 𝐷

𝑟+1
=

{𝑐
𝑟+1,1

, 𝑐
𝑟+2,1

, . . . , 𝑐
𝑟+𝑠,1

}; 𝐷
𝑟+1

= {𝑐
𝑟+1,2

, 𝑐
𝑟+1,3

, . . . , 𝑐
𝑟+1,𝑘

, 𝑐
𝑟+2,2

,
𝑐
𝑟+2,3

, . . . , 𝑐
𝑟+2,𝑘

, . . . , 𝑐
𝑟+𝑠,2

, 𝑐
𝑟+𝑠,3

, . . . , 𝑐
𝑟+𝑠,𝑘

}.

Theorem 9. Suppose that 𝑟 ≥ 1, 𝑘 ≥ 3, and 𝑠 ≥ 3. Suppose
that for some 𝑟, 𝑠, 𝑘, 𝐾

1∗𝑟,𝑠
is a U𝑘LC graph, and the unique

𝑘-list color 𝑐 from the 𝑘-list assignment 𝐿 is defined as above;
then one has the following:

(1) 𝑐
𝑖,1
̸= 𝑐
𝑗,1
, where 1 ≤ 𝑖, 𝑗 ≤ 𝑟 and 𝑖 ̸= 𝑗; 𝑐

𝑖,1
̸= 𝑐
𝑗,1
, where

1 ≤ 𝑖 ≤ 𝑟, 𝑟 + 1 ≤ 𝑗 ≤ 𝑟 + 𝑠;
(2) |𝐷

𝑟+1
| ≥ 2;

(3) |𝐷
𝑟+1
| ≤ 𝑠 − 2;

(4) 𝑐
𝑖,1
∉ {𝑐
𝑗,2
, 𝑐
𝑗,3
, . . . , 𝑐

𝑗,𝑘
}, 𝑖, 𝑗 = 𝑟 + 1, 𝑟 + 2, . . . , 𝑟 + 𝑠;

(5) | ⋃𝑟+1
𝑖=1
𝐷
𝑖
| = |⋃

𝑟+1

𝑖=1
𝐷
𝑖
| and 𝐷

𝑖
⊆ ⋃
𝑗 ̸= 𝑖
𝐷
𝑖
, 𝑖, 𝑗 =

1, 2, . . . , 𝑟 + 1;
(6) there must be a 𝑖 (1 ≤ 𝑖 ≤ 𝑟) such that𝐷

𝑖
⊆ 𝐷
𝑟+1

.

Proof. Let 𝐺 = 𝐾
1∗𝑟,𝑠

.

(1) From the definition of the U𝑘LC graph, this conclu-
sion is obvious.

(2) Suppose that |𝐷
𝑟+1
| = 1, which means that 𝑐

𝑟+1,1
=

𝑐
𝑟+2,1

= ⋅ ⋅ ⋅ = 𝑐
𝑟+𝑠,1

.

Let 𝐻 = 𝐺 − 𝑉
𝑟+1

= 𝐾
1∗𝑟

. We introduce a (𝑘 − 1)-list
assignment 𝐿󸀠 to 𝐻 as follows. For every vertex V in 𝐻, if

𝑎 ∈ 𝐿(V), then 𝐿󸀠(V) = 𝐿(V) \ {𝑐
𝑟+1,1

}; otherwise 𝐿󸀠(V) =
𝐿(V) \ {𝑏} where 𝑏 ∈ 𝐿(V) and 𝑏 ̸= 𝑐(V). Since 𝐿 induces a
list coloring 𝑐 for 𝐺, 𝐻 has exactly a 𝐿󸀠-coloring, namely,
the restriction of 𝑐 on 𝐻. 𝐻 = 𝐾

1∗𝑟
has the property 𝑀(2)

by Proposition 1; so it has the property 𝑀(𝑘), and we can
obtain a new 𝐿󸀠-coloring of 𝐻. From the construction of 𝐿󸀠,
we know that the new 𝐿󸀠-coloring can be extended to𝐺.Thus,
𝐺 has a new 𝐿-coloring which is different from 𝑐 which is
contradictory to the fact that 𝑐 is the unique 𝑘-list color.

(3) We use the reduction to absurdity.

Case 1. One has |𝐷
𝑟+1
| = 𝑠 which means that 𝑐

𝑟+1,1
, 𝑐
𝑟+2,1

,

. . . , 𝑐
𝑟+𝑠,1

are pairwise different.
Adding new edges between any two vertices in

{V
𝑟+1
, V
𝑟+2
, . . . , V

𝑟+𝑠
}, the resulting graph is 𝐺󸀠 = 𝐾

𝑟+𝑠
.

Note that 𝑐 is also a proper 𝐿-coloring of 𝐺󸀠, and 𝐺󸀠 has the
property 𝑀(2) by Proposition 1; hence 𝐺󸀠 has the property
𝑀(𝑘). So we can obtain another coloring of 𝐺󸀠, which is also
a legal 𝐿-coloring for 𝐺, which is contradictory to the fact
that 𝑐 is the unique 𝑘-list color.
Case 2. One has |𝐷

𝑟+1
| = 𝑠 − 1 which means that in

{V
𝑟+1
, V
𝑟+2
, . . . , V

𝑟+𝑠
} there are just two vertices assigned a

common color, and the others are pairwise different.
Not loss of generality, we say that 𝑐

𝑟+1,1
= 𝑐
𝑟+2,1

and 𝑐
𝑘,1

are pairwise different for 𝑘 = 𝑟 + 3, 𝑟 +

4, . . . , 𝑟 + 𝑠. Adding new edges between any two vertices in
{V
1
, V
2
, . . . , V

𝑟
, V
𝑟+3
, V
𝑟+4
, . . . , V

𝑟+𝑠
}, the resulting graph is 𝐺󸀠󸀠 =

𝐾
𝑟+𝑠−2

. A (𝑘 − 1)-list assignment 𝐿󸀠 to 𝐺󸀠󸀠 is introduced as
follows. For every vertex V in 𝐺󸀠󸀠, if 𝑐

𝑟+1,1
∈ 𝐿(V), then 𝐿󸀠(V) =

𝐿(V) \ {𝑐
𝑟+1,1

}; otherwise 𝐿󸀠(V) = 𝐿(V) \ {𝑏} where 𝑏 ∈ 𝐿(V)
and 𝑏 ̸= 𝑐(V). It is obvious that |𝐿󸀠(V)| = 𝑘 − 1 for every
V ∈ 𝑉(𝐺󸀠󸀠), and the restriction of 𝑐 on 𝐺󸀠󸀠 is an 𝐿󸀠-coloring
of 𝐺󸀠󸀠. Obviously, 𝐺󸀠󸀠 = 𝐾

1∗(𝑟+𝑠−2)
has the property𝑀(2) by

the Proposition 1 and the property𝑀(𝑘 − 1). By the property
𝑀(𝑘 − 1) of 𝐺󸀠󸀠, we can obtain a new 𝐿󸀠-coloring 𝑐󸀠 of 𝐺󸀠󸀠,
which can be extended to 𝐺 as follows. For every vertex V in
𝐺, if V ∈ 𝑉(𝐺󸀠󸀠), then 𝑐󸀠󸀠(V) = 𝑐󸀠(V); otherwise 𝑐󸀠󸀠(V) = 𝑐(V).
From the construction of 𝐿󸀠, it is obvious that 𝑐󸀠󸀠 is a new 𝐿-
coloring of 𝐺 which is contradictory to the fact that 𝑐 is the
unique 𝑘-list color.

In sum, |𝐷
𝑟+1
| ≤ 𝑠 − 2.

(4) If 𝑖 = 𝑗, then it is obvious that the conclusion is
true. If 𝑖 ̸= 𝑗, then we suppose that the conclusion is
wrong, which means that there are two numbers 𝑖

0

and 𝑗
0
such that 𝑖

0
̸= 𝑗
0
and 𝑐
𝑖0 ,1
∈ {𝑐
𝑗0 ,2
, 𝑐
𝑗0 ,3
, . . . , 𝑐

𝑗0 ,𝑘
}.

It is clear that 𝑐
𝑖0 ,1

̸= 𝑐
𝑗0 ,1

. Let 𝑐󸀠(V
𝑗0
) = 𝑐

𝑖0 ,1
and let

𝑐
󸀠
(V
𝑘
) = 𝑐
𝑘,1

for 𝑘 = 1, 2, . . . , 𝑟+𝑠 but 𝑘 ̸= 𝑗
0
. Obviously,

𝑐
󸀠 is a new 𝐿-coloring of 𝐺 which is contradictory to
the fact that 𝑐 is the unique 𝑘-list color.

(5) Proof by contradiction. Suppose that | ⋃𝑟+1
𝑖=1
𝐷
𝑖
| ̸=

| ⋃
𝑟+1

𝑖=1
𝐷
𝑖
|, and there are 𝑖

0
and 𝑗
0
such that 1 ≤ 𝑖

0
≤

𝑟 + 𝑠, 2 ≤ 𝑗
0
≤ 𝑘 and 𝑐

𝑖0 ,𝑗0
∉ ⋃
𝑟+1

𝑖=1
𝐷
𝑖
. Let 𝑐󸀠(V

𝑖0
) =

𝑐
𝑖0 ,𝑗0

and let 𝑐󸀠(V
𝑘
) = 𝑐

𝑘,1
for 𝑘 = 1, 2, . . . , 𝑟 + 𝑠 but

𝑘 ̸= 𝑖
0
. Obviously 𝑐󸀠 is a new 𝐿-coloring of 𝐺 which

is contradictory to the fact that 𝑐 is the unique 𝑘-list
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color. Then from (3) we know that 𝐷
𝑖
⊆ ⋃
𝑗 ̸= 𝑖
𝐷
𝑖
,

𝑖, 𝑗 = 1, 2, . . . , 𝑟 + 1.
(6) By contradiction. Suppose for every 𝑖 (1 ≤ 𝑖 ≤ 𝑟) that
𝐷
𝑖
̸⊆ 𝐷
𝑟+1

; then it is obtained that |𝐷
𝑖
\ 𝐷
𝑟+1
| ≥ 1. So

we get that |𝐿(V
𝑖
) \ 𝐷
𝑟+1
| ≥ 2 for every 1 ≤ 𝑖 ≤ 𝑟. Let

𝐻 = 𝐺−𝑉
𝑟+1
= 𝐾
1∗𝑟

.We introduce a 2-list assignment
𝐿
󸀠 to𝐻 as follows. For every vertex V

𝑖
in𝐻, we obtain

𝐿
󸀠
(V
𝑖
) by randomly getting rid of 𝑘 − 2 elements from

𝐿(V
𝑖
) such that 𝐿󸀠(V

𝑖
) ∩ 𝐷
𝑟+1
= Φ and |𝐿󸀠(V

𝑖
)| = 2, as

can be done because |𝐿(V
𝑖
)\𝐷
𝑟+1
| ≥ 2. Since 𝐿 induces

a list coloring 𝑐 for 𝐺,𝐻 has exactly one 𝐿󸀠-coloring,
namely, the restriction of 𝑐 on 𝐻. 𝐻 = 𝐾

1∗𝑟
has the

property 𝑀(2) by Proposition 1; so we can obtain a
new 𝐿󸀠-coloring of𝐻. From the construction of 𝐿󸀠, we
know that the new 𝐿󸀠-coloring can be extended to 𝐺.
Thus, 𝐺 has a new 𝐿-coloring which is different from
𝑐which is contradictory to the fact that 𝑐 is the unique
𝑘-list color.

3. An Example of U𝑘LC Graphs 𝐾
1∗𝑟,𝑠

According the property of U𝑘LC graph in Theorem 9, we
construct a list assignment of graph 𝐾

1∗𝑟,𝑠
for special 𝑟 and

𝑠 and prove that the graph is a U𝑘LC graph in this section.

Theorem 10. Let𝑀 = (𝑘 − 1) (
2𝑘−2

𝑘−1
) where 𝑘 ≥ 2, the graph

𝐾
1∗(2𝑘−2),𝑀

is a U𝑘LC graph.

Proof. For convenience, the (2𝑘 − 1) parts of 𝐾
1∗(2𝑘−2),𝑀

are
denoted by 𝑉

𝑖
= {V
𝑖
} for 𝑖 = 1, 2, . . . , 2𝑘 − 2 and 𝑉

2𝑘−1
=

{𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑀
}.

Let 𝐴 = {1, 2, . . . , 2𝑘 − 2}. We denote all (𝑘 − 1)-subsets
of 𝐴 by {𝐴

1
, 𝐴
2
, . . . , 𝐴

𝑚
}, where 𝑚 = (

2𝑘−2

𝑘−1
). Now consider

𝐾
1∗(2𝑘−2),𝑀

with the following 𝑘-list of colors on vertices. For
𝑖 = 1, 2, . . . , 2𝑘−2, 𝐿(V

𝑖
) = {𝑖, 2𝑘−1, 2𝑘, . . . , 3𝑘−3}. For every

𝑡 = 1, 2, . . . , 𝑚, 𝑗 = 1, 2, . . . , 𝑘 − 1, 𝐿(𝑢
(𝑗−1)∗𝑚+𝑡

) = {𝑗 + 2𝑘 −

2} ∪ 𝐴
𝑡
.

For example, when 𝑘 = 3, 𝐾
1∗(2𝑘−2),𝑀

= 𝐾
1∗4,12

, and the
above mentioned 𝑘-list assignment 𝐿 for𝐾

1∗4,12
is as follows:

{{156} , {256} , {356} , {456} ,

{512, 513, 514, 523, 524, 534, 612, 613, 614, 623, 624, 634}} .

(1)

Note that the list assignment 𝐿 makes a total of 3𝑘 − 3
colors. Since𝐾

1∗(2𝑘−2),𝑀
is a complete (2𝑘 − 1)-partite graph,

the last part 𝑉
2𝑘−1

can take 𝑘 − 1 colors at the most. From
the construction of 𝐿, it is obtained obviously that {2𝑘 −
1, 2𝑘, . . . , 3𝑘−3} is the unique choice for a 𝑘-list coloring from
𝐿. Then the 𝑉

𝑖
(1 ≤ 𝑖 ≤ 2𝑘 − 2) must take the color 𝑖. In the

example above, the colors in the list coloring are marked by
underlines. So a unique 𝑘-list coloring from 𝐿 is made and
𝐾
1∗(2𝑘−2),𝑀

is a U𝑘LC graph.

Notice that for every 𝑟 ≥ 1, 𝑘 ≥ 2, 𝐾
1∗(2𝑘−3),𝑟

has the
property𝑀(𝑘) by Proposition 7. Now the graph 𝐾

1∗(2𝑘−2),𝑀

in Theorem 10 is a U𝑘LC graph; so it is wrong with the

proposition “for every 𝑟 ≥ 1, 𝑘 ≥ 2, 𝐾
1∗(2𝑘−2),𝑟

has the
property𝑀(𝑘)”. Therefore, (2𝑘 − 3) is the maximal numbers
in Proposition 7.

4. Discussion and Some Open Problems

It is not easy to characterize U𝑘LC complete multipartite
for any 𝑘. In fact, it is a very tricky job to construct a 𝑘-
list assignment such that there exists a unique list coloring.
Theorem 9 provides a direction for constructing such list
assignment of 𝐾

1∗𝑟,𝑠
, and perhaps it makes construction

easier for the researchers. Furthermore,Theorem 9 is true for
every 𝑘 (𝑘 ≥ 2 and 𝑘 ∈ 𝑁), and the conclusion is extensive.

Itmust be noted that the conditions inTheorem 9 are only
necessary conditions of 𝐾

1∗𝑟,𝑠
for U𝑘LC graph, not sufficient

conditions.
Theorem 10 can be regarded as a application of

Theorem 9. And from Theorem 10, it is known that (2𝑘 − 3)
is exactly the maximal numbers in Proposition 7. But notice
that the number 𝑀 = (𝑘 − 1) (

2𝑘−2

𝑘−1
) is not the minimal

number for every 𝑘 in Proposition 7. For example, when
𝑘 = 3,𝑀 = 12 and𝐾

1∗4,12
is U3LC according toTheorem 10.

In fact 𝐾
1∗4,6

is U3LC by Propositions 2 and 3; so 𝑀 = 12

is not the minimal number for 𝑘 = 3 in Proposition 7.
Moreover, it is very likely that for different 𝑘 the minimal
number is different in Proposition 7.

The following problem arises naturally from the work.

Problem. For every 𝑘, characterize all minimum number 𝑠
such that the graph𝐾

1∗(2𝑘−2),𝑠
is a U𝑘LC graph.
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