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A fractional quadratic-form identity is derived from a general isospectral problem of fractional order, which is devoted to
constructing the Hamiltonian structure of an integrable coupling of the fractional BK hierarchy. The method can be generalized to

other fractional integrable couplings.

1. Introduction

The theory of derivatives of noninteger order can go back
to Leibniz, Liouville, Grunwald, Letnikov, and Riemann.
And the fractional analysis has attracted increasing inter-
est of many researchers, because fractional analysis has
numerous applications: kinetic theories [1-3], such as sta-
tistical mechanics [4-6], dynamics in complex media [7, 8],
and many others [9-16]. In recent studies in physics, the
researchers have found many applications of the derivatives
and integrals of fractional order [16, 17]. They also pointed
out that fractional-order models are more appropriate than
integer-order models for various real materials. The main
advantage of fractional derivative in comparison with clas-
sical integer-order models is that it provides an effective
instrument for the description of memory and hereditary
properties of various materials and progress. Also, the
advantages of the fractional derivatives become apparent
in modeling mechanical and electrical properties of real
materials and in the description of rheological properties of
rocks, as well as in many other fields.

The fractional calculus is a generalization of ordinary
differentiation and integration to arbitrary order [17-20].
Since Riewe [4, 21] presented a concept of nonconservation

mechanics, fractional conservation laws [22], Lie symmetries
[9], and fractional Hamiltonian systems [23-33] have been
receiving more and more attention.

It is an important and interesting topic to search for new
Hamiltonian hierarchies of soliton equations and their inte-
grable couplings in soliton theory. Tu once proposed a simple
and efficient method to construct the integrable systems
and Hamiltonian structures [34], which was called the Tu
scheme by Ma [35]. Later, many integrable systems and their
Hamiltonian structures were worked out [36-39]. Recently,
Wu and Zhang proposed the generalized Tu formula and
searched for the Hamiltonian structure of fractional AKNS
hierarchy [40]. In [41], a generalized Hamiltonian structure of
the fractional soliton equation hierarchy was presented. Very
recently, Wang and Xia obtained the fractional supersoliton
hierarchies and their super-Hamiltonian structures by using
fractional supertrace identity [42, 43]. Then, how to generate
integrable coupling system and Hamiltonian structure of
fractional soliton equation?

In this paper, begining with a general isospectral prob-
lem of fractional order, we propose a fractional quadratic-
form identity, from which the Hamiltonian structure of an
integrable coupling of the fractional BK hierarchy is derived.



2. Brief Overview of Fractional
Differentiable Functions

Several local versions have been presented [44-52], among
which Jumarie’s derivative is defined as follows [52]:

! j (=& (f &) - £(0))dE,

Dif (x) = (- oc)d
O<a<l);

some properties of the fractional differentiable functions are
given as follows.

(a) The Leibniz product law.

Assuming that f(x) is an « order differentiable function
in the area of point x, from the Jumarie-Kolwankar’s Taylor
series [52-54], we can have

DEf () = lim Y (f () - f )
e (y-x)

, (0<a<l).

)

If g(x) is a differentiable function of « order, the Leibniz
product law can hold for the nondifferentiable functions [39,
44, 45]

DS (f (x)g(x)) =g(x)Dyf (x) + f (x) Dig(x). (3)

(b) Denoting I as the Riemann-Liouville integration in
the following form:

oI f (x) = D f (x) = j £ @8,

T'(a+1)
O<ac<l,

we can have a generalized Newton-Leibniz formulation

1
T(1+a) J f () (dx)* = f(1) - f(0),
L a«_ ~
1'*(1 +(X) J-O Dxf (5) (dg) = f(x) f(()), (5)

(c) With the propertles (a) and (b), integration by parts
for « order differentiable functions f(x) and g(x) can be
generated as

ﬁj 9(0) DS (x) (dx)®
©)
b 1 b o «
=90 WLt j £ (%) D%g (x) (dx)".

(d) From [31, 32, 55], the fractional variational derivative

is written as
oL
( Py > ) )
o(D3)"y

8L aL
Z(— )X
where k is a positive integer. In this paper, we propose
a generalized quadratic-form identity for fractional soliton
hierarchy from (7).
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3. Fractional Exterior Differential and
Hamiltonian Equations

Since Adda proposed the fractional generalization of differ-
ential forms [56, 57], several versions of fractional exterior
differential approaches and applications related to different
forms of fractional derivatives appeared in some parts of
the open literature [58, 59]. The properties of fractional
derivatives are discussed in [60].

The exterior derivative is defined as
! 0
= > dx,,—. (8)
mZ'l 0x,,

The exterior derivative map k forms into k + 1 forms and has
the following algebraic results. Let y and A be k forms, and let
y be an m form; we have

d(y+A)=dy+da,

(dy) A+ (—l)ky Ady, 9)
d(dy) = 0.

d(ynu) =

The last identity is called the Poincaré lemma. A form y is
called closed if dy = 0. A form 7y is called exact if there exists
a form y such that dy = y. The order of y is one less than the
order of y. Exact forms are always closed, closed forms are not
always exact.

Next, we introduce the fractional exterior derivative

= (dx;)"D5 . (10)
A differential 1-form is defined by
w, = F (x) (dx;)", (11)

with the vector field F(x) that can be represented as
F(x) = —D“V and V(x) is a continuously differentiable
function. Usmg (10), the exact fractional form can be
expressed as

W, = —d*V = —(dx;)* DS V. (12)
Note that (11) is a fractional generalization of the differential
form (8). It is easy to find that fractional 1-form w, can be
closed when the differential 1-form w = w, is not closed.
Then, we define the fractional functional

Pl - | toota-r @ pal@os 03

_
I'l+a)

hence, we can readily derive the generalized Poincare-Cartan
1-form, which reads

w = pd*q - H(dt)". (14)
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From (14), one has
d*w = py(dt)* Nd*q+d*p ndq
oH oH
- —d" dt)* — —d“g A (dt)”
ap pA(dt) 2q q A/ (dr)
« oH « o« (15)
:[pt+a:|(dt) /\dq

aH o 4 [
+ [g(dt) —d q]/\d p.

In the previous derivation, p and g are fractional differen-
tiable functions with respect to ¢.

The fractional closed condition d*@w = 0 admits the
fractional Hamilton’s equations [40]

oH oH
() _ @ _ =21
q: p’ Py aq (16)
which can be generalized to the following case [31]:
OH OH
(e) (ex)
@)= —, W) = ——,
a?W=5  AY0=-3 17)

4. The Fractional Quadratic-Form Identity

Guo and Zhang once proposed quadratic-form identity
[61], which is very efficient tool to systematically generate
integrable couplings and their Hamiltonian structures. In the
following, the fractional quadratic-form identity is presented.
Set G to be an s-dimensional Lie algebra with the basis

€165, .. €5 (18)

whose corresponding loop algebra G possesses the following
basis:

m=0,x1,+2,..., 19)
[ei (m),e; (m)] = [e,», ej] AT
In terms of G, we construct the following isospectral problem:

v =yl v =yl (20)

The compatibility condition of (20) gives rise to the general-
ized zero curvature equation:

uP -v@ v =o. (21)

Taking o = 8 = 1 (21) reduces to the classical zero curvature
equation. For A and u; (i = 1,2,...,p) inU = Ul u) =
Z; Uje;, defining rank(A) = deg(A), then rank(e;(1)) = o,
0 < i < s can be presented. If the ranks of u; are taken as
(- a; 1 <i<s, then each term in U has the homogeneous
rank o which is denoted by

rank (U) = rank( o > =(. (22)

ox%

SetV =3 .0V,A"V, =Z_V,e €G,as asolution

m=0 "'m
of the stationary zero curvature equation

V@4 v]=o, (23)
and rank(V,,), is assumed to be given so that rank(V,,), = ¢,

m > 0; each team in V has the same rank as follows:

P
rank (V) = rank (ﬁ) =& (24)

Let the two arbitrary solutions V; and V; of (23) with the same
rank be linearly related by

V=9V, y = const. (25)
In the following, relation (25) will be used when deducing the

fractional quadratic-form identity. For a,b € G, the s-order
matrix R(b) is determined by

[a.b]" =a"R(b), (26)
and constant matrix F = (f;;), is determined by
F=F', R®F=-R®EF". (27)
Defining functional {a, b} = a’ Fb satisfies the symmetry
{a,b} = {b,a}, (28)
and the bilinear relation
{ca; + qay, b} = ¢ {a;, b} + ¢, {a,, b} . (29)

In the sense of the local fractional derivative, the gradient
V,{a, b} of the functional {a, b} is defined by

82 {a,b+eV}=(8,{a,b},V), abV eGqG, (30)
€

where 6, is variational derivative with respect to b. With the
fractional variational derivative (7), one can have

8, {a, b8} = (~1)fa, (31)
where k is a positive integer and D** = D%...D?. The
k

communication relationship of {a, b} can be given as

{[a,b],c} ={a,[b,c]}, abceG. (32)
Introduce a functional
W= (VU b +{A v - U v} (33)



where U, V meet (23), while A(¢ G) is to be determined;
using (7), we can obtain the following fractional variation
constraint conditions:

W oW
—-v9_yv], =
sa =V IOV %

=U, - A9+ [UA]; (34)
according to the Jacobi identity and the previous equations,
we can have

[AVIE = [Un V] [U A V], (35)
Z = [A, V] =V, and V/A are solutions of (23); using (25)
and rank(Z) = rank(V,) = rank(V/1), due to V/A satisfying
(34), we canhave Z = (y/A)V.From (23) and (33), a fractional
quadratic-form identity is firstly presented as follows:

) oU, ou
Vv, VvV, —= AV
5u,{ Uil = { aui} {[ ¥ ,.}
ou, oul vy { BU}
{V ou; } {VA’ au,} i) v u;
(36)
-2 [ (2 0) )
~a {V’ au,.} i <A AN
0 ou
—_ 77 Y 1 ;
=1 aa(k{ ay}) <i<p.
5. Application of the Fractional
Quadratic-Form Identity
Introduce a loop algebra G, = {a = (a,,a,...,a) ,a, =
Y., A}, with the commuting relations
[a,b] = (ayb — a3b,, 2a,b, — 2a,by, 2a5b,
- 2a,bs, a,b; — agb, + asby — asbs, 2a,bs
(37)
- 2asb, +2a,b, — 2a,b,,2a4b,
—2a,bs + 2a5b, - 2a4b3)T.
Consider the following spectral problem:
v = 0],
v T
U= <—)L+ E,l,—w,ul,O,uz) (38)
=(a,b,c,d,e, f)T

Solving equation

V@4 [u,vi=0 (39)
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leads to

(“)—c +wb,,

b = —2b,,., + b, - 2a,,

=2¢,1 — VC, — 2wa,,,
() _
dmx - fm +wey, - qum’

(a) _
Crnx =

-2e,,., + ve,, —2d,, +2ub,,

vf,, —2wd,, - 2u,c,, +2u,a,,

(o)
fmvjc = 2fm+1 -

a=d,=e =¢=0, b =1, ¢ =-w,

1
fi=uy, a2=—5w,

1 1
b =-v, d, =~-u,,
2= 5 2= 5
1 @ 1
e, = uy, fz—zuz‘; S CUGL LN
(40)
Set
C T
= Z(am’bm’cm’dm’em’fm) An "
m=0 (41)

+(b,,1,0,0,0,0,0)";

then the generalized zero curvature equation, Df U—DzV(") +
[U, V"] = 0, gives rise to a system

B) ()
th bn?—l X
(B) (o)
B wl‘,1 —2an(11 x
T BTN (@)
ultn en+1 X
) (ex)
“gli dnlil X
o 0 o0 2D°
o
[ 0o 0 -Dp oo (42)
0 -D% 0 -D"
2D 0 -D* 0
A1 + dn+1
_bn+1 ~ €nt1
x =JPu1
2’a'n+1
bn+1

where ] is a Hamiltonian operator. From (40), we have a
recurrence operator
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1 1 1
EDz + ED;"‘ng 3 (w+ D *wDY)
1
1 3 (v-D7)
L =
0 0
0 0

which meets P,
written as

LP,. Hence, expression (42) can be

Miﬁ) = B = ]Ln . (44)

From expression (37), we have

0 2b, -2b, 0 2b, -2b
b, -2b, 0 b, -2b, 0

b, 0 2b, -b; 0 2b,

[a,b]T=aT
0 0 0 0 2b -2b (45)
0 0 0 b -2b 0
0 0 0 -b 0 2b
=a"R(b).
Solving the matrix equation (27) for F leads to
200200
001001
010010
F= 200000 (46)
001000
010000O0
Let
{a,b} = 2(a, + a,) by + (a5 + ag) b, + (a, + as) by 47)

+2a,b, + azbs + ayb;

5
1 — (44 ]' — (v
EDX ule E (u2 + Dx MZDx)
0 —U,
1 (43)
> (D +D.*vD}) -w-D_*wD
1 1 .
-3 2 (v-D7)
we have
oUu oUu
‘/a — = d) ‘/) = = _b -6
{ ov } “r { aw} ¢
{V, a—U} - 2a, {V, a—U} -, (48)
Ju, ou,

oU
V,— = —2a-2d.
{ aA} ¢

Substituting the previous results into the fractional quadratic-
form identity (36) gives

a+d
1 _, 0 -b-e
— (-2a-2d) = A" =) 4
6u( a-2d)=2\ aA)L a (49)
b

Comparing the coefficients of A on both sides of (49)
yields

a,+d,
8 -b, e,
a (_2an+1 - 2dn+1) = (y - H) zan . (50)

b

n

It is easy to find that y = 0; then we obtain the fractional
Hamiltonian structure of (42)

Vif) Gy +
P - “’fg)) _y b e | _ JLLic A
' Uy, 20,4, Ou
u;/:) by



where H, = (2a,,, + 2d,,)/nand (n = 0,1,2,....) is the
fractional Hamiltonian function. When taking n = 2, we have
an integrable coupling of a fractional BK hierarchy

1
szv = —EDzDzv +vDv + Djw,

1
Déw = EDzDZw + DS (wv),
(52)
B | R o I«
Diu, = —EDxDxul + DS (uyv) - EDxuz,

1
D u, = S DDy + DY () = 2D (wu ).

Reduction Cases

Casel. Whena = §=1,u; = u, =0,t, = t; (52) reduces to
the BK hierarchy

1
Ve = SV Wt Wy
(53)

1
w,=(vw+ -w, | .
! ( 2 ")x

Case 2. Letv=—q,w=r+1+ (1/2)v,, (53) is transformed
to the classical Boussinesq equation

dr = =99 — T
X (54)
= _quxx - (q (1’ + 1))x'

6. Conclusion

A way to construct the Hamiltonian structure of integrable
coupling of fractional soliton equation hierarchy is presented.
As an application, the Hamiltonian structure of an integrable
coupling of the fractional BK hierarchy is obtained by use
of the fractional quadratic-form identity. The method can be
generalized to other fractional integrable couplings.
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