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We propose a simple and efficient method for solving highly nonlinear systems of boundary layer flow problems with exponentially
decaying profiles.The algorithm of the proposedmethod is based on an innovative idea of linearizing and decoupling the governing
systems of equations and reducing them into a sequence of subsystems of differential equations which are solved using spectral
collocation methods. The applicability of the proposed method, hereinafter referred to as the spectral local linearization method
(SLLM), is tested on somewell-known boundary layer flow equations.The numerical results presented in this investigation indicate
that the proposed method, despite being easy to develop and numerically implement, is very robust in that it converges rapidly to
yield accurate results and is more efficient in solving very large systems of nonlinear boundary value problems of the similarity
variable boundary layer type. The accuracy and numerical stability of the SLLM can further be improved by using successive
overrelaxation techniques.

1. Introduction

The important properties and applications of the boundary
layer flows in many engineering areas are well documented
and have been widely researched in the last few decades. The
mathematical model of the boundary layer flow system is
described, in general, by a set of nonlinear partial differen-
tial equations which cannot be solved exactly. A common
approach that is employed in the solution of boundary layer
flow problems is the reduction of the governing partial differ-
ential equations into a set of ordinary differential equations
(ODEs) after using appropriate assumptions and a set of
transformations based on the so-called similarity variables
and using the so-called stream function formulations. The
transformed ODEs with the corresponding boundary con-
ditions becomes a system of highly nonlinear boundary
value problems (BVP) which, in most cases, does not have
closed form solutions. The solution of these nonlinear BVPs
continues to fascinate and inspire researchers to develop
methods of obtaining solutions to these equations which
elucidate the intricate properties of the underlying boundary
layer flow problem under different conditions.

The standard way of solving the transformed similarity
variable boundary layer equations is the numerical approach
based on the shooting algorithm with the Runge-Kutta
scheme [1, 2]. Other numerical approaches that have been
preferred by some researchers include the finite difference
method [3], Keller-Box method [4, 5], spectral homotopy
analysis method [6, 7], element free Galerkin method [8],
and Newton-Raphson based methods such as the quasilin-
earization method of [9, 10] and the successive lineariza-
tion method [11–13]. Some analytical approaches have also
been found to be very useful in solving boundary layer
equations. Examples include the homotopy analysis method
[14–16], the homotopy perturbation method [17–19], the
differential transformation method [20–22], the Lie-group
shooting method [23], the parameter iteration method [24],
and the variational iteration method [25], among many
other approaches. However, analytical methods are limited
in their applications and can only be used in simple systems
with few equations. Most real life applications in fluid
mechanics involve multiple interacting physical processes
and are modelled using complex multiple equation systems.
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For such problems, it is impractical to use analytical methods
because their solution process becomes too cumbersome, and
convergence to the true solution can be very slow or not
possible at all. For, this reason numerical methods are by far
the most practical way of seeking solutions to the boundary
layer flow type of highly nonlinear systems. Numerical
solution methods also have their own disadvantages such as
the stability and convergence issues, difficulty in dealing with
singularities, and limiting cases. In addition, some numerical
solutions are difficult to interpret such as the occurrence of
multiple solutions.The quest for the most optimal method of
solving nonlinear problems in fluidmechanics is what drives,
ever growing interest in the development of newmethods and
the modification and improvement of existing analytical and
numerical methods.

The prime objective of this paper is to present a new
numerical method of solving boundary layer equations that
seeks to address some of the aforementioned numerical
difficulties. We propose a very simple, yet very accurate and
convergent iterative algorithm for solving nonlinear systems
of equations that model boundary layer flow problems. The
proposed method, hereinafter referred to as spectral local
linearization method (SLLM), is based on, decoupling and
linearizing systems of equations using a combination of a
univariate linearization technique and a spectral collocation
discretization. The key feature of the SLLM algorithm is
that it breaks down a large coupled system of equations
into a sequence of smaller subsystems which can be solved
sequentially in a very computationally efficient manner. The
applicability of the proposed method is tested on the well-
known Blasius boundary layer problem and a three-equation
coupled system that models the problem of unsteady free
convective heat andmass transfer which are used as test cases
to compare the performance of the proposed SLLM when
compared to other existing methods. The computed SLLM
results demonstrate that the method is easy to develop, accu-
rate, convergent, stable, and very efficient when compared
with other existing methods of solving some large systems of
boundary value problems.

2. Description of the Methods of Solution

This section presents a brief description of how the proposed
iterative methods of solution are developed for a general
system of 𝑚 nonlinear ordinary differential equations in 𝑚

unknown functions.

2.1. Spectral Local Linearization Method (SLLM). Here, we
describe the development of the spectral local linearization
method (SLLM). Consider a system of𝑚 nonlinear ordinary
differential equations in 𝑚 unknown functions 𝑍

𝑖
(𝜂) 𝑖 =

1, 2, . . . , 𝑚, where 𝜂 ∈ [𝑎, 𝑏] is the dependent variable. The
system can be written in terms of𝑍

𝑖
as a sum of its linear (𝐿

𝑖
)

and nonlinear components (𝑁
𝑖
) as

𝐿
𝑖
[𝑍
1
, 𝑍
2
, . . . , 𝑍

𝑚
] + 𝑁
𝑖
[𝑍
1
, 𝑍
2
, . . . , 𝑍

𝑚
] = 0,

𝑖 = 1, . . . , 𝑚.

(1)

To develop the iteration scheme, we apply local lineariza-
tion of 𝑁

𝑖
about 𝑍

𝑖,𝑟
(the previous iteration) to the 𝑖th

nonlinear equation assuming that all other 𝑍
𝑘,𝑟

(𝑘 ̸= 𝑖) are
known. Thus, at the 𝑖th equation,𝑁

𝑖
is linearized as follows:

𝑁
𝑖
[𝑍
1
, 𝑍
2
, . . . , 𝑍

𝑚
]

= 𝑁
𝑖
[𝑍
1,𝑟

, 𝑍
2,𝑟

, . . . , 𝑍
𝑚,𝑟

]

+

𝜕𝑁
𝑖

𝜕𝑍
𝑖

[𝑍
1,𝑟

, 𝑍
2,𝑟

, . . . , 𝑍
𝑚,𝑟

] (𝑍
𝑖
− 𝑍
𝑖,𝑟
) .

(2)

Thus, at the current iteration with 𝑍
𝑖
= 𝑍
𝑖,𝑟+1

, (1) becomes

𝐿
𝑖
[𝑍
1,𝑟+1

, . . . , 𝑍
𝑚,𝑟+1

] +

𝜕𝑁
𝑖

𝜕𝑍
𝑖

[⋅ ⋅ ⋅ ] 𝑍𝑖,𝑟+1

=

𝜕𝑁
𝑖

𝜕𝑍
𝑖

[⋅ ⋅ ⋅ ] 𝑍𝑖,𝑟
− 𝑁
𝑖
[𝑍
1,𝑟

, . . . , 𝑍
𝑚,𝑟

] ,

(3)

where [⋅ ⋅ ⋅ ] denotes [𝑍
1,𝑟

, 𝑍
2,𝑟

, . . . , 𝑍
𝑚,𝑟

] and 𝑍
𝑖,𝑟+1

and 𝑍
𝑖,𝑟

are the approximations of 𝑍
𝑖
at the current and the previ-

ous iteration, respectively. To obtain a decoupled iteration
scheme, we appeal to the Gauss-Seidel approach of decou-
pling linear algebraic systems in linear algebra applications.
We therefore arrange the equations in a particular order and
solve them in a chronological order. In seeking the solution
of 𝑍
𝑖
in the current iteration level, 𝑍

𝑖,𝑟+1
, we use updated

solutions of 𝑍
𝑠
(𝑠 < 𝑖) obtained as solutions of the previous

𝑖 = 1, 2, . . . , 𝑠 equations. Thus, for a system of 𝑚 equations,
the local linearization iteration scheme becomes

𝐿
1
[𝑍
1,𝑟+1

, 𝑍
2,𝑟

, . . . , 𝑍
𝑚,𝑟

] +

𝜕𝑁
1

𝜕𝑍
1
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1
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1
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− 𝑁
1
[𝑍
1,𝑟

, . . . , 𝑍
𝑚,𝑟

] ,

𝐿
2
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1,𝑟+1

, 𝑍
2,𝑟+1

, 𝑍
3,𝑟

, . . . , 𝑍
𝑚,𝑟

] +

𝜕𝑁
2

𝜕𝑍
2

[⋅ ⋅ ⋅ ] 𝑍2,𝑟+1

=

𝜕𝑁
2

𝜕𝑍
2

[⋅ ⋅ ⋅ ] 𝑍2,𝑟
− 𝑁
2
[𝑍
1,𝑟+1

, 𝑍
2,𝑟

, . . . , 𝑍
𝑚,𝑟

] ,

...

𝐿
𝑚
[𝑍
1,𝑟+1

, 𝑍
2,𝑟+1

, . . . , 𝑍
𝑚,𝑟+1

] +

𝜕𝑁
𝑚

𝜕𝑍
𝑚

[⋅ ⋅ ⋅ ] 𝑍𝑚,𝑟+1

=

𝜕𝑁
𝑚

𝜕𝑍
𝑚

[⋅ ⋅ ⋅ ] 𝑍𝑚,𝑟
− 𝑁
𝑚
[𝑍
1,𝑟+1

, . . . , 𝑍
𝑚−1,𝑟+1

, 𝑍
𝑚,𝑟

] ,

(4)

where, at the 𝑖th equation, [⋅ ⋅ ⋅ ] ≡ [𝑍
1,𝑟+1

, 𝑍
2,𝑟+1

, . . . , 𝑍
𝑖−1,𝑟+1

,

𝑍
𝑖,𝑟
, . . . , 𝑍

𝑚,𝑟
].

Thus, starting from an initial approximation 𝑍
1,0

, 𝑍
2,0

,

. . . , 𝑍
𝑚,0

, the proposed iterative scheme (4) is then solved
as a loop until the system converges at a consistent solution
for all the variables. To solve the iteration scheme (4), it is
convenient to use the Chebyshev pseudospectralmethod. For
this reason the proposed method is referred to as the spectral
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local linearization iteration method (SLLM) in this work.
Spectral methods are now becoming the preferred tools for
solving ordinary and partial differential equations because of
their elegance and high accuracy in resolving problems with
smooth functions.

For brevity, we omit the details of the spectral methods
and refer interested readers to [26, 27]. Before applying the
spectral method, it is convenient to transform the domain
on which the governing equation is defined to the interval
[−1, 1] on which the spectral method can be implemented.
We use the transformation 𝜂 = (𝑏 − 𝑎)(𝜏 + 1)/2 to map the
interval [𝑎, 𝑏] on [−1, 1]. The basic idea behind the spectral
collocation method is the introduction of a differentiation
matrix 𝐷 which is used to approximate the derivatives of
the unknown variables 𝑍

𝑖
(𝜂) at the collocation points as the

matrix vector product

𝑑𝑍
𝑖

𝑑𝜂

=

𝑁

∑

𝑘=0

D
𝑙𝑘
𝑍
𝑖
(𝜏
𝑘
) = DZ

𝑖
, 𝑙 = 0, 1, . . . , 𝑁, (5)

where 𝑁 + 1 is the number of the collocation points (grid
points), D = 2𝐷/(𝑏 − 𝑎), and Z = [𝑧(𝜏

0
), 𝑧(𝜏
1
), . . . , 𝑧(𝜏

𝑁
)]
𝑇

is the vector function at the collocation points. Higher order
derivatives are obtained as powers ofD, that is

𝑍
(𝑝)

𝑗
= D𝑝Z

𝑗
, (6)

where 𝑝 is the order of the derivative.

2.2. Spectral Quasilinearization Method (SQLM). In this sec-
tion, we describe a quasilinearization method that does not
use the decoupling approach described in the previous sec-
tion. This quasilinearization method (QLM) is a generalisa-
tion of the Newton-Raphson method and was first proposed
by Bellman and Kalaba [28] for solving nonlinear boundary
value problems. To obtain the QLM iteration scheme the
nonlinear component of a differential equation is linearized
using the multivariable Taylor series expansion as opposed
to the local linearization approach used in the previous
section. The QLM scheme is solved using the Chebyshev
pseudospectral method as described in the previous section.
Consequently, the method is referred to as the spectral
quasilinearization method (SQLM) in this work.

To develop the SQLM scheme we consider a system of
𝑚 nonlinear ordinary differential equations in 𝑚 unknowns
functions 𝑧

𝑖
(𝜂) 𝑖 = 1, 2, . . . , 𝑚, where 𝜂 is the dependent

variable. The system can be written as a sum of its linear L
and nonlinear components𝑁 as

L [𝑧
1
(𝜂) , 𝑧

2
(𝜂) , . . . , 𝑧

𝑚
(𝜂)]

+N [𝑧
1
(𝜂) , 𝑧

2
(𝜂) , . . . , 𝑧

𝑚
(𝜂)] = 0, (𝜂) ∈ (𝑎, 𝑏) ,

(7)

subject to the separated boundary conditions

𝐴
𝑖
[𝑧
1 (

𝑎) , 𝑧2 (
𝑎) , . . . , 𝑧𝑚 (

𝑎)] = 𝐾
𝑎,𝑖
,

𝐵
𝑏
[𝑧
1 (

𝑏) , 𝑧2 (
𝑏) , . . . , 𝑧𝑚 (

𝑏)] = 𝐾
𝑏,𝑖
,

(8)

where 𝐴
𝑖
and 𝐵

𝑖
are linear operators and 𝐾

𝑎,𝑖
and 𝐾

𝑏,𝑖
are

constants for 𝑖 = 1, 2, . . . , 𝑚. Define the vector 𝑍
𝑖
to be the

vector of the derivatives of the variable 𝑧
𝑖
with respect to the

dependent variable 𝜂, that is,

𝑍
𝑖
= [𝑧
(0)

𝑖
, 𝑧
(1)

𝑖
, . . . , 𝑧

(𝑛𝑖)

𝑖
] , (9)

where 𝑧
(0)

𝑖
= 𝑧
𝑖
, 𝑧(𝑝)
𝑖

is the 𝑝th derivative of 𝑧
𝑖
with respect to

𝜂 and 𝑛
𝑖
(𝑖 = 1, 2, . . . , 𝑚) is the highest derivative order of the

variable 𝑧
𝑖
appearing in the system of equations. In addition,

we define 𝐿
𝑖
and𝑁

𝑖
to be the linear and nonlinear operators,

respectively, that operate on the 𝑍
𝑖
for 𝑖 = 1, 2, . . . , 𝑚. With

these definitions, (7) and (8) can be written as

𝐿
𝑖
[𝑍
1
, 𝑍
2
, . . . , 𝑍

𝑚
] + 𝑁
𝑖
[𝑍
1
, 𝑍
2
, . . . , 𝑍

𝑚
]

=

𝑚

∑

𝑗=1

𝑛𝑗

∑

𝑝=0

𝛼
[𝑝]

𝑖,𝑗
𝑧
(𝑝)

𝑗
+ 𝑁
𝑖
[𝑍
1
, 𝑍
2
, . . . , 𝑍

𝑚
] = 0,

(10)

where 𝛼
[𝑝]

𝑖,𝑗
are the constant coefficients of 𝑧

(𝑝)

𝑗
, and the

derivative of 𝑧
𝑗
(𝑗 = 1, 2, . . . , 𝑚) that appears in the 𝑖th

equation for 𝑖 = 1, 2, . . . , 𝑚.
Noting that, for each variable 𝑧

𝑖
, the derivatives in the

boundary conditions can at most be one less than the highest
derivative of 𝑧

𝑖
in the governing system (7), we define the

vector ̃
𝑍
𝑖
to be the vector of the derivatives of the variable 𝑧

𝑖

with respect to the dependent variable 𝜂 from 0 up to 𝑛
𝑖
− 1,

that is,

̃
𝑍
𝑖
= [𝑧
(0)

𝑖
, 𝑧
(1)

𝑖
, . . . , 𝑧

(𝑛𝑖−1)

𝑖
] . (11)

The boundary conditions (8) can be written as

𝐴] [
̃
𝑍
1 (

𝑎) ,
̃
𝑍
2 (

𝑎) , . . . ,
̃
𝑍
𝑚 (

𝑎)]

=

𝑚

∑

𝑗=1

𝑛𝑗−1

∑

𝑝=0

𝛽
[𝑝]

],𝑗 𝑧
(𝑝)

𝑗
(𝑎) = 𝐾

𝑎,], ] = 1, 2, . . . , 𝑚
𝑎
,

𝐵
𝜎
[
̃
𝑍
1 (

𝑏) ,
̃
𝑍
2 (

𝑏) , . . . ,
̃
𝑍
𝑚 (

𝑏)]

=

𝑚

∑

𝑗=1

𝑛𝑗−1

∑

𝑝=0

𝛾
[𝑝]

𝜎,𝑗
𝑧
(𝑝)

𝑗
(𝑏) = 𝐾

𝑏,𝜎
, 𝜎 = 1, 2, . . . , 𝑚

𝑏
,

(12)

where 𝛽
[𝑝]

],𝑗 (𝛾
[𝑝]

𝜎,𝑗
) are the constant coefficients of 𝑧(𝑝)

𝑗
in the

boundary conditions and 𝑚
𝑎
, 𝑚
𝑏
are the total number of

prescribed boundary conditions at 𝑥 = 𝑎 and 𝑥 = 𝑏,
respectively. We remark that the sum𝑚

𝑎
+ 𝑚
𝑏
is equal to the

sum of the highest orders of the derivatives corresponding to
the dependent variables 𝑧

𝑖
, that is

𝑚
𝑎
+ 𝑚
𝑏
=

𝑚

∑

𝑖=1

𝑛
𝑖
. (13)

Assume that the solution 𝑧
𝑖
(𝜂) of (10) at the (𝑟 + 1)th

iteration is 𝑧
𝑖,𝑟+1

. If the solution at the previous iteration 𝑧
𝑖,𝑟
(𝜂)

is sufficiently close to 𝑧
𝑖,𝑟+1

, the nonlinear component 𝑁
𝑖
of
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(10) can be linearized using the one-term Taylor series for
multiple variables so that (10) can be approximated as

𝐿
𝑖
[𝑍
1,𝑟+1

, . . . , 𝑍
𝑚,𝑟+1

] + 𝑁
𝑖 [
⋅ ⋅ ⋅ ]

+

𝑚

∑

𝑗=1

𝑛𝑗

∑

𝑝=0

(𝑧
(𝑝)

𝑗,𝑟+1
− 𝑧
(𝑝)

𝑗,𝑟
)

𝜕𝑁
𝑖

𝜕𝑧
(𝑝)

𝑗

[⋅ ⋅ ⋅ ] = 0,

(14)

subject to

𝑚

∑

𝑗=1

𝑛𝑗−1

∑

𝑝=0

𝛽
[𝑝]

],𝑗 𝑧
(𝑝)

𝑗,𝑟+1
(𝑎) = 0,

] = 1, 2, . . . , 𝑚
𝑎
,

𝑚

∑

𝑗=1

𝑛𝑗−1

∑

𝑝=0

𝛾
[𝑝]

𝜎,𝑗
𝑧
(𝑝)

𝑗,𝑟+1
(𝑏) = 0,

𝜎 = 1, 2, . . . , 𝑚
𝑏
,

(15)

where

[⋅ ⋅ ⋅ ] = [𝑍
1,𝑟

, 𝑍
2,𝑟

, . . . , 𝑍
𝑚,𝑟

] . (16)

Equation (14) can be rewritten as

𝐿
𝑖
[𝑍
1,𝑟+1

, . . . , 𝑍
𝑚,𝑟+1

] +

𝑚

∑

𝑗=1

𝑛𝑗

∑

𝑝=0

𝑧
(𝑝)

𝑗,𝑟+1

𝜕𝑁
𝑖

𝜕𝑧
(𝑝)

𝑗

[⋅ ⋅ ⋅ ]

=

𝑚

∑

𝑗=1

𝑛𝑗

∑

𝑝=0

𝑧
(𝑝)

𝑗,𝑟

𝜕𝑁
𝑖

𝜕𝑧
(𝑝)

𝑗

[⋅ ⋅ ⋅ ] − 𝑁
𝑖 [
⋅ ⋅ ⋅ ] .

(17)

The initial approximation, 𝑧
𝑗,0

(𝜂), required to start the
iteration scheme (17) is chosen to be a function that satisfies
the boundary conditions (8). Applying the Chebyshev spec-
tral collocation on the recursive iteration scheme (17) gives

𝑚

∑

𝑗=1

[Λ
𝑖,𝑗

+ Π
𝑖,𝑗
]Z
𝑗,𝑟+1

= Φ
𝑖,𝑟
, 𝑖, 𝑗 = 1, 2, . . . , 𝑚, (18)

where Z
𝑖,𝑟+1

= [𝑧
𝑖,𝑟+1

(𝜏
0
), 𝑧
𝑖,𝑟+1

(𝜏
1
), . . . , 𝑧

𝑖,𝑟+1
(𝜏
𝑁
)]
𝑇, Λ
𝑖,𝑗
, Π
𝑖,𝑗

and Φ
𝑖
are given by

Λ
𝑖,𝑗

=

𝑛𝑗

∑

𝑝=0

𝛼
𝑝

𝑖,𝑗
D𝑝, Π

𝑖,𝑗
=

𝑛𝑗

∑

𝑝=0

[

[

𝜕𝑁
𝑖

𝜕𝑧
(𝑝)

𝑗

]

]𝑑

D𝑝,

𝑖, 𝑗 = 1, 2, . . . , 𝑚,

Φ
𝑖,𝑟

=

𝑚

∑

𝑗=1

𝑛𝑗

∑

𝑝=0

𝑧
(𝑝)

𝑗,𝑟

𝜕𝑁
𝑖

𝜕𝑧
(𝑝)

𝑗

[⋅ ⋅ ⋅ ]

− 𝑁
𝑖
[𝑍
1,𝑟

, 𝑍
2,𝑟

, . . . , 𝑍
𝑚,𝑟

] ,

(19)

respectively, where [⋅ ⋅ ⋅ ]
𝑑
means denote diagonal matrix.

Defining Δ = Λ + Π, we can write (18) in matrix form as

[

[

[

[

[

Δ
1,1

Δ
1,2

⋅ ⋅ ⋅ Δ
1,𝑚

Δ
2,1

Δ
2,2

⋅ ⋅ ⋅ Δ
2,𝑚

...
...

...
Δ
𝑚,1

Δ
𝑚,2

⋅ ⋅ ⋅ Δ
𝑚,𝑚

]

]

]

]

]

[

[

[

[

[

Z
1,𝑟+1

Z
2,𝑟+1

...
Z
𝑚,𝑟+1

]

]

]

]

]

=

[

[

[

[

[

Φ
1,𝑟

Φ
2,𝑟

...
Φ
𝑚,𝑟

]

]

]

]

]

,

(20)

where Z
𝑖,𝑟
, Φ
𝑖,𝑟

are vectors of size (𝑁 + 1) × 1 and Δ
𝑖,𝑗

are
(𝑁 + 1) × (𝑁 + 1) matrices. Starting from 𝑍

𝑖,0
, the recursive

sequence (20) is solved iteratively for 𝑟 = 0, 1, 2, 3, . . ..
Thus, the size of the coefficient matrix in (20) is 𝑚(𝑁 +

1) × 𝑚(𝑁 + 1) and the column vector on the right-hand side
has the dimension𝑚(𝑁 + 1) × 1.

3. Numerical Experiments

In this section, we discuss the implementation of the SLLM
and SQLM approaches on two examples of boundary layer
flow systems. We consider the Blasius boundary layer prob-
lem and a three-equation system that models the problem
of unsteady free convective heat and mass transfer on a
stretching surface in a porous medium in the presence of a
chemical reaction.

3.1. Blasius Boundary Layer Equation. The Blasius boundary
layer flow equation, in a dimensionless form, is expressed in
terms of the similarity variable 𝜂 ∈ [0,∞) and function 𝑓(𝜂)

as

𝑓
󸀠󸀠󸀠

(𝜂) +

1

2

𝑓 (𝜂) 𝑓
󸀠󸀠
(𝜂) = 0, 𝑓 (0) = 0,

𝑓
󸀠
(0) = 0, 𝑓

󸀠
(∞) = 1,

(21)

where the primes denote differentiation with respect to 𝜂.
To apply the proposed SLLM iterative method on (21), it is
convenient to reduce the order of the governing equations by
one through setting𝑓󸀠(𝜂) = 𝑔(𝜂).This results in the following
system:

𝑓
󸀠
= 𝑔, 𝑓 (0) = 0, (22)

𝑔
󸀠󸀠
+

1

2

𝑓 (𝜂) 𝑔
󸀠
(𝜂) = 0, 𝑔 (0) = 0, 𝑔 (∞) = 1.

(23)

We observe that (23) is essentially a differential equation
whose unknown is 𝑔(𝜂), but the equation requires 𝑓(𝜂)

which can be considered to be a known input function.Thus,
assuming that 𝑓(𝜂) is known at a particular iteration level,
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the local linearization iteration scheme can be expressed by
the following iteration formula;

𝑔
󸀠󸀠

𝑟+1
+

1

2

𝑓
𝑟
𝑔
󸀠

𝑟+1
= 0, 𝑔

𝑟+1 (
0) = 0,

𝑔
𝑟+1 (

∞) = 1,

𝑓
󸀠

𝑟+1
= 𝑔
𝑟+1

, 𝑓
𝑟+1 (

0) = 0.

(24)

Applying the Chebyshev pseudospectral method on (24),
we obtain the following decoupled system of equations:

𝐴
1
g
𝑟+1

= 𝐵
1
, 𝑔

𝑟+1
(𝜏
𝑁
) = 0,

𝑔
𝑟+1

(𝜏
0
) = 1,

Df
𝑟+1

= g
𝑟+1

, 𝑓
𝑟+1

(𝜏
𝑁
) = 0,

(25)

where

𝐴
1
= D2 + 1

2

diag [f
𝑟
]D, 𝐵

1
= O
1
, (26)

where O
1
is an (𝑁 + 1) × 1 vector on which the boundary

conditions are imposed and f and g are the values of functions
𝑓 and 𝑔, respectively, when evaluated at the collocation
points. Equation (25) constitutes the SLLM iteration scheme.

The initial approximation required to start the itera-
tion process can be chosen as a function that satisfies the
governing boundary conditions and from known physical
considerations of the flow properties. For most boundary
layer flow problems it is well known that the flow velocity
tends to the mainstream flow exponentially. Thus, a suitable
initial approximation for the boundary layer problem (21) is

𝑓
0
(𝜂) = 𝜂 − 1 + 𝑒

−𝜂
, 𝑔

0
(𝜂) = 1 − 𝑒

−𝜂
. (27)

To obtain the SQLM iterative scheme for the Blasius
problem (21), we set

𝐿 = 𝑓
󸀠󸀠󸀠
, 𝑁 =

1

2

𝑓𝑓
󸀠󸀠
,

[𝑓, 𝑓
󸀠
, 𝑓
󸀠󸀠
, 𝑓
󸀠󸀠󸀠
] = [𝑧, 𝑧

(1)
, 𝑧
(2)

, 𝑧
(3)

] .

(28)

Thus, using (17), we obtain

𝑓
󸀠󸀠󸀠

𝑟+1
+

1

2

𝑓
𝑟
𝑓
󸀠󸀠

𝑟+1
+

1

2

𝑓
󸀠󸀠

𝑟
𝑓
𝑟+1

=

1

2

𝑓
󸀠󸀠

𝑟
𝑓
𝑟
, (29)

subject to

𝑓
𝑟+1 (

0) = 0, 𝑓
󸀠

𝑟+1
(0) = 0, 𝑓

󸀠

𝑟+1
(∞) = 1. (30)

Applying the spectral method, with derivative matrices
on the iteration scheme (29) and the corresponding boundary
conditions, gives the following matrix system:

A
𝑟
F
𝑟+1

= Φ
𝑟
, (31)

with the boundary conditions

𝑓
𝑟+1

(𝜏
𝑁
) = 0,

𝑁

∑

𝑘=0

D
𝑁𝑘

𝑓
𝑟+1

(𝜏
𝑘
) = 0,

𝑁

∑

𝑘=0

D
0𝑘
𝑓
𝑟+1

(𝜏
𝑘
) = 1,

(32)

where

A
𝑟
= D3 + 1

2

diag (f
𝑟
)D2 + 1

2

diag (f󸀠󸀠
𝑟
) ,

Φ
𝑟
=

1

2

f
𝑟
f󸀠󸀠
𝑟
.

(33)

3.2. Unsteady Free Convective Heat and Mass Transfer on a
Stretching Surface in a Porous Medium with Suction/Injection.
In this section we consider a three-equation system that
models the problem of unsteady free convective heat and
mass transfer on a stretching surface in a porous medium in
the presence of a chemical reaction.The governing equations
[29, 30] for this problem are given as the following dimen-
sionless system of equations and boundary conditions:

𝑓
󸀠󸀠󸀠

+ 𝑓𝑓
󸀠󸀠
− (𝑓
󸀠
)

2

− 𝐾𝑓
󸀠
− 𝐴(𝑓

󸀠
+

𝜂

2

𝑓
󸀠󸀠
)

+ Gr𝜃 + Gc𝜙 = 0,

1

Pr
𝜃
󸀠󸀠
− 𝑓
󸀠
𝜃 + 𝑓𝜃

󸀠
− 𝐴(𝜃 +

1

2

𝜂𝜃
󸀠
) = 0,

1

Sc
𝜙
󸀠󸀠
− 𝑓
󸀠
𝜙 + 𝑓𝜙

󸀠
− 𝐴(𝜙 +

1

2

𝜂𝜙
󸀠
) − 𝛾𝜙 = 0,

(34)

𝑓 (0) = 𝑓
𝑤
, 𝑓

󸀠
(0) = 1,

𝜃 (0) = 1, 𝜙 (0) = 1,

𝑓
󸀠
(∞) = 0, 𝜃 (∞) = 0, 𝜙 (∞) = 0,

(35)

where𝑓(𝜂), 𝜃(𝜂), and𝜙(𝜂) are, respectively, the dimensionless
velocity, temperature, and concentration, 𝑓

𝑤
is the suc-

tion/injection parameter, 𝛾 is the chemical reaction constant,
Pr is the Prandtl number, Sc is the Schmidt number, 𝐾 is the
permeability parameter, and Gr and Gc are the temperature
and concentration dependent Grashof numbers, respectively.

To apply the proposed SLLM iterativemethod on (34), we
set 𝑓󸀠(𝜂) = 𝑔(𝜂) to obtain

𝑓
󸀠
= 𝑔, (36)

𝑔
󸀠󸀠
+ 𝑓𝑔
󸀠󸀠
− 𝑔
2
− 𝐾𝑔 − 𝐴(𝑔 +

𝜂

2

𝑔
󸀠
)

+ Gr𝜃 + Gc𝜙 = 0,

(37)

1

Pr
𝜃
󸀠󸀠
− 𝑔𝜃 + 𝑓𝜃

󸀠
− 𝐴(𝜃 +

1

2

𝜂𝜃
󸀠
) = 0, (38)

1

Sc
𝜙
󸀠󸀠
− 𝑔𝜙 + 𝑓𝜙

󸀠
− 𝐴(𝜙 +

1

2

𝜂𝜙
󸀠
) − 𝛾𝜙 = 0. (39)
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We observe that the energy equation (38) requires only 𝑓

and𝑔 to resolve the solution of 𝜃.The same applies to themass
transfer equation (39) for 𝜙. Equation (37), on the other hand,
requires the solutions of 𝑓, 𝜃 and 𝜙. In developing the SLLM
iteration scheme we solve (38) and (39) for 𝜃, and 𝜙 first, then
use their updated solutions in the (37) for 𝑔. Thus, assuming
that 𝑓(𝜂) and 𝑔(𝜂) are known at a particular iteration level,
the local linearization iteration algorithm can be expressed as

1

Pr
𝜃
󸀠󸀠

𝑟+1
− 𝑔
𝑟
𝜃
𝑟+1

+ 𝑓
𝑟
𝜃
󸀠

𝑟+1
− 𝐴(𝜃

𝑟+1
+

𝜂

2

𝜃
󸀠

𝑟+1
) = 0,

1

Sc
𝜙
󸀠󸀠

𝑟+1
− 𝑔
𝑟
𝜙
𝑟+1

+ 𝑓
𝑟
𝜙
󸀠

𝑟+1

− (𝐴 + 𝛾) 𝜙
𝑟+1

− 𝐴

𝜂

2

𝜙
󸀠

𝑟+1
= 0,

𝑔
󸀠󸀠

𝑟+1
+ 𝑓
𝑟
𝑔
󸀠

𝑟+1
− (𝐴 + 𝐾) 𝑔𝑟+1

+

𝜂𝐴

2

𝑔
󸀠

𝑟+1

− 2𝑔
𝑟
𝑔
𝑟+1

+ Gr𝜃
𝑟+1

+ Gc𝜙
𝑟+1

= −𝑔
2

𝑟
,

𝑓
󸀠

𝑟+1
= 𝑔
𝑟+1

, 𝑓
𝑟+1 (

0) = 𝑓
𝑤
,

(40)

subject to

𝑔
𝑟+1 (

0) = 1, 𝑔
𝑟+1 (

∞) = 0,

𝜃
𝑟+1 (

0) = 1, 𝜃
𝑟+1 (

∞) = 0,

𝜙
𝑟+1 (

0) = 1, 𝜙
𝑟+1 (

∞) = 0.

(41)

Applying the Chebyshev pseudospectral method on
(40)-(41), we obtain the following decoupled matrix system
of equations:

𝐴
1
Θ
𝑟+1

= 𝐵
1
, 𝜃

𝑟+1
(𝜏
𝑁
) = 1, 𝜃

𝑟+1
(𝜏
0
) = 0,

𝐴
2
Φ
𝑟+1

= 𝐵
2
, 𝜙

𝑟+1
(𝜏
𝑁
) = 1, 𝜙

𝑟+1
(𝜏
0
) = 0,

𝐴
3
g
𝑟+1

= 𝐵
3
− GrΘ

𝑟+1
− GcΦ

𝑟+1
, 𝑔

𝑟+1
(𝜏
𝑁
) = 1,

𝑔
𝑟+1

(𝜏
0
) = 0,

Df
𝑟+1

= g
𝑟+1

, 𝑓
𝑟+1

(𝜏
𝑁
) = 𝑓
𝑤
,

(42)

where

𝐴
1
=

1

Pr
D2 + diag [f

𝑟
− 𝐴

𝜂

2

]D − diag [g
𝑟
] − 𝐴I,

𝐵
1
= O
1
,

𝐴
2
=

1

Sc
D2 + diag [f

𝑟
− 𝐴

𝜂

2

]D − diag [g
𝑟
] − (𝐴 + 𝛾) I,

𝐵
2
= O
1
,

𝐴
3
= D2 + diag [f

𝑟
− 𝐴

𝜂

2

]D − diag [2g
𝑟
] − (𝐾 + 𝐴) I,

𝐵
3
= −g2
𝑟
,

(43)

where I is an (𝑁 + 1) × (𝑁 + 1) identity matrix, O
1
is an

(𝑁 + 1) × 1 vector, and Θ, Φ, g, and f are the approximate
values of 𝜃, 𝜙, 𝑔, and 𝑓 evaluated at the collocation points.
After incorporating the boundary conditions in the matrices
in (42), the approximate solutions of 𝜃, 𝜙, 𝑔, and 𝑓 at each
iteration level can be obtained by solving (42) in the order in
which they are listed. A suitable initial approximation for the
SLLM scheme is

𝑓
0
(𝜂) = 𝑓

𝑤
+ 1 − 𝑒

−𝜂
, 𝜃

0
(𝜂) = 𝑒

−𝜂
,

𝜙
0
(𝜂) = 𝑒

−𝜂
.

(44)

To obtain the SQLM iterative scheme for the system (34),
we set

𝐿
1
= 𝑓
󸀠󸀠󸀠

− 𝐴(𝑓
󸀠
+

𝜂

2

𝑓
󸀠󸀠
) + Gr𝜃 + Gc𝜙,

𝑁
1
= 𝑓𝑓
󸀠󸀠
− (𝑓
󸀠
)

2

,

𝐿
2
=

1

Pr
𝜃
󸀠󸀠
− 𝐴(𝜃 +

1

2

𝜂𝜃
󸀠
) , 𝑁

2
= −𝑓
󸀠
𝜃 + 𝑓𝜃

󸀠
,

𝐿
3
=

1

Sc
𝜙
󸀠󸀠
− 𝐴(𝜙 +

1

2

𝜂𝜙
󸀠
) − 𝛾𝜙, 𝑁

3
= −𝑓
󸀠
𝜙 + 𝑓𝜙

󸀠
.

(45)

To use formula (17) we define the following variables:

[𝑓, 𝑓
󸀠
, 𝑓
󸀠󸀠
, 𝑓
󸀠󸀠󸀠
] = [𝑧

1
, 𝑧
(1)

1
, 𝑧
(2)

1
, 𝑧
(3)

1
] ,

[𝜃, 𝜃
󸀠
, 𝜃
󸀠󸀠
] = [𝑧

2
, 𝑧
(1)

2
, 𝑧
(2)

2
] ,

[𝜙, 𝜙
󸀠
, 𝜙
󸀠󸀠
] = [𝑧

3
, 𝑧
(1)

3
, 𝑧
(2)

3
] .

(46)

Thus, using (45)-(46) in (17), we obtain

𝑓
󸀠󸀠󸀠

𝑟+1
+ (𝑓
𝑟
−

𝐴𝜂

2

)𝑓
󸀠󸀠

𝑟+1
− (2𝑓

󸀠

𝑟
+ 𝐴)𝑓

󸀠

𝑟+1

+ 𝑓
󸀠󸀠

𝑟
𝑓
𝑟+1

+ Gr𝜃
𝑟+1

+ Gc𝜙
𝑟+1

= 𝑓
𝑟
𝑓
󸀠󸀠

𝑟
− 𝑓
󸀠2

𝑟
,

1

Pr
𝜃
󸀠󸀠

𝑟+1
+ (𝑓
𝑟
−

𝐴𝜂

2

) 𝜃
󸀠

𝑟+1
− (𝑓
󸀠

𝑟
+ 𝐴) 𝜃

𝑟+1

− 𝜃
𝑟
𝑓
󸀠

𝑟+1
+ 𝜃
󸀠

𝑟
𝑓
𝑟+1

= 𝑓
𝑟
𝜃
󸀠

𝑟
− 𝜃
𝑟
𝑓
󸀠

𝑟
,

1

Sc
𝜙
󸀠󸀠

𝑟+1
+ (𝑓
𝑟
−

𝐴𝜂

2

) 𝜙
󸀠

𝑟+1
− (𝑓
󸀠

𝑟
+ 𝐴 + 𝛾) 𝜙

𝑟+1

− 𝜙
𝑟
𝑓
󸀠

𝑟+1
+ 𝜙
󸀠

𝑟
𝑓
𝑟+1

= 𝑓
𝑟
𝜙
󸀠

𝑟
− 𝜙
𝑟
𝑓
󸀠

𝑟
,

(47)

𝑓
𝑟+1 (

0) = 𝑓
𝑤
, 𝑓

󸀠

𝑟+1
(0) = 1,

𝜃
𝑟+1 (

0) = 1, 𝜙
𝑟+1 (

0) = 1,

𝑓
󸀠

𝑟+1
(∞) = 0, 𝜃

𝑟+1 (
∞) = 0,

𝜙
𝑟+1 (

∞) = 0.

(48)
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Applying the Chebyshev pseudospectral method on (47)
we obtain the following SQLM scheme in a matrix form:

[

[

Δ
1,1

Δ
1,2

Δ
1,3

Δ
2,1

Δ
2,2

Δ
2,3

Δ
3,1

Δ
3,2

Δ
3,3

]

]

[

[

Z
1,𝑟+1

Z
2,𝑟+1

Z
3,𝑟+1

]

]

=
[

[

Φ
1,𝑟

Φ
2,𝑟

Φ
3,𝑟

]

]

(49)

subject to the boundary conditions

𝑓
𝑟+1

(𝜏
𝑁
) = 0,

𝑁

∑

𝑘=0

D
𝑁𝑘

𝑓
𝑟+1

(𝜏
𝑘
) = 0,

𝑁

∑

𝑘=0

D
0𝑘
𝑓
𝑟+1

(𝜏
𝑘
) = 1,

𝜃
𝑟+1

(𝜏
𝑁
) = 1, 𝜃

𝑟+1
(𝜏
0
) = 0,

𝜙
𝑟+1

(𝜏
𝑁
) = 1, 𝜙

𝑟+1
(𝜏
0
) = 0,

(50)

where

Δ
1,1

= Λ
1,1

+ Π
1,1

= D3 − 𝐴𝜂

2

D2

− (𝐾 + 𝐴)D + [f󸀠󸀠
𝑟
]
𝑑
− [2f󸀠
𝑟
]
𝑑
D + [f

𝑟
]
𝑑
D2,

Δ
1,2

= Λ
1,2

+ Π
1,2

= Gr I,

Δ
1,3

= Λ
1,3

+ Π
1,3

= Gc I,

Δ
2,1

= Λ
2,1

+ Π
2,1

= [Θ
󸀠
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𝑟
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𝑑
D − [f󸀠

𝑟
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𝑑
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Δ
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= Λ
2,3

+ Π
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󸀠

𝑟
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Δ
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1
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D2 − 𝐴𝜂

2

D

− (𝐴 + 𝛾) I + [f
𝑟
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𝑑
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𝑟
]
𝑑
,

Φ
1,𝑟
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𝑟
f󸀠󸀠
𝑟

− f󸀠2
𝑟
, Φ

2,𝑟
= f
𝑟
Θ
󸀠

𝑟
− f󸀠
𝑟
Θ,

Φ
3,𝑟

= f
𝑟
Φ
󸀠

𝑟
− f󸀠
𝑟
Φ,

Z
1,𝑟

= f
𝑟
, Z

2,𝑟
= Θ
𝑟
, Z

3,𝑟
= Φ
𝑟
,

(51)

and [ ]
𝑑
denotes diag( ); that is, the vector elements are placed

on the main diagonal of a matrix whose entries everywhere
else are zero. Starting from the initial approximations (44),
the approximate SQLM solutions for𝑓(𝜂), 𝜃(𝜂), and 𝜙(𝜂) are
obtained by solving (49).
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Figure 1: Comparison of Logarithm of error 𝐸
𝑑
for the Blasius

boundary layer computed using the SLLMwithout SOR, SLLMwith
SOR (𝜔 = 1.2), and SQLM results.

4. Numerical Convergence, Error, and Stability
Analysis of the Iteration Schemes

The convergence and stability of the iteration schemes can
be assessed by considering the norm of the difference in the
values of functions between two successive iterations. Thus,
for each iteration scheme, we define the following maximum
error (𝐸

𝑑
) at the (𝑟 + 1)th iteration:

𝐸
𝑑
= Max (

󵄩
󵄩
󵄩
󵄩
𝑧
1,𝑟+1

− 𝑧
1,𝑟

󵄩
󵄩
󵄩
󵄩∞

,
󵄩
󵄩
󵄩
󵄩
𝑧
2,𝑟+1

− 𝑧
2,𝑟

󵄩
󵄩
󵄩
󵄩∞

, . . . ,

󵄩
󵄩
󵄩
󵄩
𝑧
𝑚,𝑟+1

− 𝑧
𝑚,𝑟

󵄩
󵄩
󵄩
󵄩∞

) ,

(52)

where 𝑧
𝑖
; 𝑖 = 1, . . . , 𝑚 are the governing unknown functions

in the nonlinear system. If the iteration scheme converges,
the error 𝐸

𝑑
is expected to decrease with an increase in

the number of iterations. In this paper, the unknowns were
calculated, for a given number of collocation points 𝑁, until
the following criteria for convergence was fulfilled at iteration
𝑟:

𝐸
𝑑
≤ 𝜀, (53)

where 𝜀 is the convergence tolerance level. In this study, the
convergence tolerance is set to be 𝜀 = 10

−9. The effect of the
number of collocation points 𝑁 was examined in order to
select the smallest value of𝑁which gives a consistent solution
to the 𝜀 error level. This is achieved by repeatedly solving the
governing equations using the proposed iteration schemes
with different values of 𝑁 until the consistent solution is
reached.

5. Improving the Convergence of the Spectral
Local Linearization Method (SLLM)

In numerical linear algebra, successive overrelaxation (SOR)
methods are used to accelerate the convergence rates of the
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Figure 2: Effect of varying parameters on the Logarithm of the SLLM error.

Gauss-Seidel method in the solution of the linear systems
of equation. In this section we propose a similar method to
improve the convergence of the spectral relaxation method
(SLLM) described in the previous section. If the SLLM
scheme for solving the function 𝑋 at the (𝑟 + 1)th iteration
is

𝐴𝑋
𝑟+1

= 𝐵, (54)

then the modified version of the SLLM is defined as

𝐴𝑋
𝑟+1

= (1 − 𝜔)𝐴𝑋
𝑟
+ 𝜔𝐵, (55)

where 𝐴, 𝐵 are matrices and 𝜔 is the convergence controlling
relaxation parameter. We observe that when 𝜔 = 1 (55)
reduces to the original SLLMmethod.The results in the next
section will show that, for certain values of 𝜔, solving the
modified SLLM results in improved efficiency and accuracy.

6. Results and Discussion

We solved the governing systems of (21) and (34) we solved
using the spectral local linearization method (SLLM) and
spectral quasilinearization method (SQLM) as described in
the previous section. In this section, we present the results
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Table 1: Comparison between the basic SLLM computed values of
𝑓
󸀠󸀠
(0) for the Blasius flow against the results of [31, 32].

Iter.
1 0.403512726
2 0.350208935
3 0.337194863
4 0.333547347
5 0.332492283
6 0.332184532
7 0.332094553
8 0.332068227
9 0.332060524
10 0.332058269
11 0.332057609
12 0.332057416
13 0.332057360
14 0.332057343
15 0.332057338
16 0.332057337
17 0.332057336
18 0.332057336
20 0.33205733621949529
25 0.33205733621520553
26 0.33205733621519900
28 0.33205733621519653
30 0.33205733621519632
31 0.33205733621519630
32 0.33205733621519630
... 0.33205733621519630 (see [31])
(52) 0.3320573362151965 (see [32])

of the numerical computations for the velocity, temperature,
and concentration profiles for various input parameters.
Values of other flow properties such as skin friction 𝑓

󸀠󸀠
(0),

surface heat transfer rate at the 𝜃
󸀠
(0), and mass transfer rate

at the wall 𝜙
󸀠
(0) are also discussed in order to illustrate

some special features of the solution and to compare the
accuracy, convergence, and efficiency of the SQLMand SLLM
algorithms proposed in this study.The accuracy of the present
results was verified by comparing them with other results
from literature which have been reported to be accurate to
within a certain number of decimal digits. Further validation
of the solution was established by comparing the present
results with the numerical solutions obtained using the
MATLAB inbuilt routine bvp4c which is a finite difference
code that implements the three-stage Lobatto III formula
[33]. In the calculations presented here, the values of the
governing physical parameters were chosen deliberately to
match some of the results from published literature in order
to enable effective comparison.

In Figure 1 we give a comparison of the SLLM and
SQLM for the plot of the Logarithm of the error 𝐸

𝑑
against

the number of iterations in the Blasius boundary layer
problem. It can be seen from the figure that the spectral

Table 2: Comparison between the SOR improved SLLM (𝜔 = 1.2)
values of 𝑓󸀠󸀠(0) for the Blasius flow against the results of [31, 32].

1 0.284215262
2 0.350088883
3 0.329960091
4 0.332654418
5 0.331973067
6 0.332078099
7 0.332054014
8 0.332058085
9 0.332057206
10 0.332057364
11 0.332057331
12 0.332057337
13 0.332057336
14 0.332057336
15 0.332057336
16 0.332057336
17 0.332057336
18 0.332057336
19 0.33205733621518464
20 0.33205733621519862
21 0.33205733621519584
22 0.33205733621519639
23 0.33205733621519628
24 0.33205733621519630
25 0.33205733621519630
... 0.33205733621519630 (see [31])
(52) 0.3320573362151965 (see [32])

Table 3: SQLM computed results for the skin friction 𝑓
󸀠󸀠
(0) of the

Blasius flow.

Iter. 𝑓
󸀠󸀠
(0)

1 0.36124527510805664
2 0.33293906079206191
3 0.33205878995514977
4 0.33205733621994973
5 0.33205733621519630
6 0.33205733621519630
... 0.33205733621519630 (see [31])
(52) 0.3320573362151965 (see [32])

quasi-linearization method converges much faster than the
spectral local linearization method. The fast convergence
rate of the quasilinearization method was established by
many researchers including [9, 10, 34–36] who extended the
application of the quasilinearizationmethod to a wide variety
of nonlinear boundary value problems and established that
the method converges quadratically. The convergence rate of
the proposed SLLM is seen to be linear in this case.The effect
of introducing successive overrelaxation with 𝜔 = 1.2 has the
beneficial effect of increasing the convergence speedwhich, in
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Table 4: Effect of varying 𝑁 on 𝑓
󸀠󸀠
(0) and 𝜃

󸀠
(0) using the SLLM,

when 𝐾 = 1, Gr = Gc = 𝐴 = 1, and 𝑓
𝑤
= 2, 𝛾 = 0.

Iter. 𝑁 𝑓
󸀠󸀠
(0) 𝜃

󸀠
(0)

(SLLM)
8 30 −2.31812851 −2.62227419
8 40 −2.31812936 −2.62228212
8 50 −2.31812942 −2.62228134
8 100 −2.31812942 −2.62228134
8 150 −2.31812942 −2.62228134
8 200 −2.31812942 −2.62228134

(SQLM)
5 30 −2.31691806 −2.62229791
5 40 −2.31816177 −2.62228177
5 50 −2.31813338 −2.62228131
5 100 −2.31812953 −2.62228134
100 150 −2.31811874 −2.62228134
100 200 −2.31821552 −2.62228134

bvp4c −2.31812942 −2.62228134
[30] −2.3181294 −2.6222813
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Figure 3: Comparison of the Logarithm of the error 𝐸
𝑑
for the

unsteady boundary layer problem between the SLLM and SQLM
results when 𝑁 = 150.

this case, can be characterized by the steeper line. To obtain
the optimal value of𝜔 that yields the best accuracy, the results
obtained using several values of 𝜔 > 1 and 𝜔 < 1 near
𝜔 = 1 were compared. It was found that underrelaxation
(𝜔 < 1) slows down the convergence, whereas overrelaxation
with 1 < 𝜔 ≤ 1.2 improves the convergence of the SLLM
iteration scheme. The best results for the Blasius boundary
layer problemwere obtainedwith𝜔 ≈ 1.2.We remark that the
optimal 𝜔was obtained through numerical experimentation.

To further illustrate how the solution converges with an
increase in iterations, we give the SLLM computed results
for the skin friction 𝑓

󸀠󸀠
(0) in Tables 1 and 2 (with SOR).

The results are compared with the recently reported sixteen
decimal digit accurate results of [31, 32]. Ganapol [32] used
an algorithm based on a Maclaurin series with a Wynn-
epsilon convergence acceleration and analytical continuation
to obtain highly accurate skin friction coefficients for the
Blasius layer flows. It can be seen from Table 1 that full
convergence to 9-digit accurate results is achieved after 17
iterations. The 17-digit accurate results of [31] are matched
exactly after 31 iterations. We remark that this value was
reached after 52 iterations as reported in the work of [32].
This shows that the basic SLLM is more efficient than the
method used in [32].

Table 2 gives the SOR-improved SLLM results (with 𝜔 =

1.2) for the skin friction at different iterations. The table
indicates that 9-digit accurate results are obtained after only
13 iterations and 17-digit accurate results are reached after 24
iterations.This clearly shows that using the SOR improves the
convergence and efficiency of the basic SLLM.

Table 3 gives the SQLM results for the skin friction of
the Blasius flow. It can be seen that the SQLM converges
very rapidly compared to the SLLM in this example. Full
convergence to the 17-digit accurate results reported in [31]
is achieved after only 5 iterations. We remark that the results
presented in Tables 1–3 were generated using 𝑁 = 120 and
𝜂
∞

= 16.Thus, under the same conditions, the SQLM ismore
efficient than the SLLM in this case.

The SLLM Log-error plots for the problem of unsteady
free convective heat andmass transfer on a stretching surface
are given in Figure 2 for varying input parameters. It can be
seen that the Logarithm of the error strictly decreases with an
increase in the number of iterations when all the parameters
are varied.This demonstrates the convergence and stability of
the SLLM in solving the three-equation coupled system (34)
for varying physical constants. It can also be seen that the
convergence speed increases with an increase in 𝐴, 𝑓

𝑤
, and

𝐾 but decreases with an increase in Gr.
In Table 4 we give a comparison of the values of 𝑓󸀠󸀠(0)

and 𝜃
󸀠
(0) computed using the SLLM and SQLM approaches

at fixed values of the governing input parameters. The table
shows the effects of the number of the collocation points 𝑁

on the convergence with respect to the benchmark bvp4c
numerical results. We remark that the stopping criteria used
in both methods are given by (52) where the running of the
computations is terminated when the maximum norm of the
difference between the values of the governing functions at
two successive iterations is less than the prescribed tolerance
level (set to be 10

−9 in this work). For the selected values
of 𝑁, the SLLM converged after 8 iterations. Increasing 𝑁

improved the accuracy, and the bvp4c results were matched
exactly when 𝑁 ≥ 50 for both 𝑓

󸀠󸀠
(0) and 𝜃

󸀠
(0). The

SQLM algorithm was found converge after only 5 iterations
when 𝑁 ≤ 100, but the results did not convergent to
the bvp4c results. Increasing the number of collocation
points slightly improved the accuracy but full convergence
to eight decimal digits was not achieved. Further increase
in 𝑁 led to the poor accuracy and convergence. This can
be seen in the results corresponding to 𝑁 ≥ 150 where
convergence was not reached even after 100 iterations. These
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Table 5: Effect of varying 𝐴, 𝑓
𝑤
, Gr, and 𝐾 on 𝑓

󸀠󸀠
(0) and 𝜃

󸀠
(0), when Pr = Sc = 𝛾 = Gc = 1.

𝐴 𝑓
𝑤

Gr 𝐾

Basic SLLM SLLM with SOR (𝜔)
Iter. 𝑓

󸀠󸀠
(0) 𝜃

󸀠
(0) 𝜔 Iter. 𝑓

󸀠󸀠
(0) 𝜃

󸀠
(0)

0 1 1 1 11 −1.31052731 −1.65084042 0.95 7 −1.31052731 −1.65084042
1 1 1 1 10 −1.59363827 −1.89854697 0.95 7 −1.59363827 −1.89854697
2 1 1 1 8 −1.85550919 −2.12936888 0.95 7 −1.85550919 −2.12936888
5 1 1 1 6 −2.49344366 −2.70569628 1.00 6 −2.49344366 −2.70569628
10 1 1 1 6 −3.27938346 −3.44160771 1.00 6 −3.27938346 −3.44160771
1 0 1 1 10 −1.03558899 −1.34595467 0.95 7 −1.03558899 −1.34595467
1 2 1 1 8 −2.34393108 −2.61971104 0.95 6 −2.34393108 −2.61971104
1 4 1 1 6 −4.15359239 −4.35571036 1.00 6 −4.15359239 −4.35571036
1 6 1 1 6 −6.09385439 −6.24419885 1.00 6 −6.09385439 −6.24419885
1 10 1 1 5 −10.05256264 −10.14874633 1.00 5 −10.05256264 −10.14874633
1 1 0 1 8 −1.91528421 −1.87004601 1.00 8 −1.91528421 −1.87004601
1 1 1 1 10 −1.59363827 −1.89854697 0.95 7 −1.59363827 −1.89854697
1 1 5 1 13 −0.41099838 −1.98803325 0.90 9 −0.41099838 −1.98803325
1 1 6 1 15 −0.13374591 −2.00648856 0.90 9 −0.13374591 −2.00648856
1 1 10 1 19 0.92495170 −2.07084699 0.90 10 0.92495170 −2.07084699
1 1 1 0 12 −1.21175687 −1.93465038 0.95 8 −1.21175687 −1.93465038
1 1 1 2 9 −1.90764681 −1.87149682 0.95 7 −1.90764681 −1.87149682
1 1 1 4 8 −2.42217698 −1.83197529 0.95 7 −2.42217698 −1.83197529
1 1 1 6 7 −2.84650750 −1.80348579 0.95 7 −2.84650750 −1.80348579
1 1 1 10 7 −3.54376838 −1.76361252 0.95 7 −3.54376838 −1.76361252
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Figure 4: Effect of𝐾 on the velocity and temperature profiles.

results indicate that the SQLM is not ideal for solving very
large systems of equations.The poor accuracy of the SQLM is
caused by the numerical difficulties associated with solving
large matrix equations. The advantage of using the SLLM
in solving large coupled systems of differential equations is
that the SLLM algorithm leads to decoupled systems of sub-
matrix equations which can easily be solved using standard

direct methods in a sequential manner. With the SQLM
the coupled system leads to a coupled iteration scheme
which after discretization, using the spectral method, leads
to large matrices. The dimension of the coefficient matrices
and vectors to be solved in the SQLM algorithm is 𝑚(𝑁 ×

1) × 𝑚(𝑁 × 1), where 𝑚 is the number of unknowns in the
governing systems. For example, in the case when 𝑁 = 200,
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Figure 5: Effect of 𝐴 on the velocity and temperature profiles.
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Figure 6: Effect of 𝑓
𝑤
on the velocity and temperature profiles.

the dimension of the coefficient matrix used in the solution
for 𝑓, 𝜃, and 𝜙 is 603 × 603 in the SQLM, compared to
201×201 in the case of the SLLM. Furthermore, the displayed
accuracy and stability of the SLLM results for both small
and large values of 𝑁 suggest that the efficiency of SLLM
is due more to the algorithm behind the iteration scheme
than to the specific numerical method used to solve the
underlying differential equations of the scheme. The SQLM
accuracy and stability are strongly linked to the numerical
scheme used to solve the differential equations of the scheme.
The Chebyshev differentiation matrix is known to be very

susceptible to very large round off errors and ill-conditioning
for large numbers of collocation points 𝑁 (see e.g., [27, 37]),
that is why the SQLM results in Table 4 seem to be less
accurate when𝑁 becomes very large. Table 4 clearly indicates
that the SLLM is more practical to use for large systems of
equations than SQLM as it yields more accurate results using
only few collocation points, and there is no loss of accuracy
when the side of themesh is refined (when𝑁 becomes large).

In Figure 3 we give a comparison of the Log-error against
iterations plot (𝐸

𝑑
) between the SLLM and SQLM results for

a fixed number of collocation points. From Figure 3 it can
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Figure 7: Effect of Gr on the velocity and temperature profiles.

be seen that the SQLM rapidly converges but the accuracy
does not improve after 5 iterations. After 5 iterations the
error plot seems to plateau at a certain level and remains
at that level even when considering more iterations. The
SLLM results indicate strict convergence with the error
progressively reduced with an increase in the number of
iterations. This explains why the SLLM gives more accurate
results than the SQLM for larger systems as was observed in
Table 4.

In Table 5 we give a comparison between the basic SLLM
results and the results obtained using the SOR accelerated
version of the SLLM for the skin friction 𝑓

󸀠󸀠
(0) and wall heat

transfer rate 𝜃󸀠(0). It can be noted from Table 3 that introduc-
ing the convergence accelerating relaxation parameter𝜔 leads
to the improvement of the basic SLLM for some cases. It can
be seen that convergence improves with an increase in𝑓𝑤, 𝐴,
and 𝐾 and slows down with an increase in Gr. This result
is consistent with the observation made in Figure 2. In cases
where convergence is slow, underrelaxation with (0.9 ≤ 𝜔 <

1) accelerates the convergence.We also observe that the effect
of increasing the values of Gr results in an increase in the skin
friction and in the absolute values of the wall heat transfer
rate. The wall heat transfer rate decreases in absolute value
as 𝐾 increases. An increase in the unsteadiness parameter 𝐴
and the suction parameter 𝑓

𝑤
results in an increase in the

skin friction and the wall heat transfer rate. We remark that
the trends in the effect of the mass transfer rate at the wall
were found to be similar to the effects observed in the surface
heat transfer rate for all varied input parameters. The trends
observed in Table 5 are consistent with the observationsmade
in related studies [29, 30].

Figures 4, 5, 6, and 7 illustrate the effects of the input
parameters𝐾, 𝐴, 𝑓

𝑤
andGr, respectively, on the temperature

and concentration profiles. It is noted that the velocity

decreases with𝐾, 𝐴, and 𝑓
𝑤
but increases with the buoyancy

parameter Gr. The temperature decreases with 𝐴, 𝑓
𝑤
, and

Gr but increases with an increase in 𝐾. Again, the observed
trends are consistent with the observations reported in [29,
30]. The effect of the varied parameters on the concentration
was found to be similar to the trends observed in the
temperature profiles.

7. Conclusion

In this work we have introduced a new method for solving
systems of nonlinear boundary value equations. The pro-
posed method, called spectral local linearization method
(SLLM), is based on a simple idea of the decoupling systems
of equations using the linearization of the unknown functions
in a sequential manner according to the order of the listing
of the governing equations of the system. The linearized
equations, which now form a sequence of linear differential
equations with variable coefficients, were solved using the
Chebyshev spectral collocation method. The applicability
of the method was examined on similarity boundary layer
problems with exponentially decaying profiles. The Blasius
boundary layer problem and a three-equation coupled system
that models the problem of unsteady, free convective heat
and mass transfer were considered as test cases to examine
the applicability of the proposed SLLM. The accuracy of
the SLLM was confirmed against known accurate results
reported in the published literature and against numerical
results generated using Matlab’s bvp4c routine for solving
boundary value problems.The performance of the SLLMwas
measured against the spectral quasi-linearization method
(SQLM) which uses the Chebyshev collocation method to
discretize the quasilinearizationmethod (a Newton-Raphson
based iterationmethod for solving boundary value problem).
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From this preliminary study, the following observations
were made about the proposed SLLM.

(1) The algorithm of the SLLM is very easy to develop
and implement, as it is based on a simple univariate
linearization of nonlinear functions.

(2) Themethod is numerically efficient, since it results in
a series of equations which are solved in a sequential
manner by reusing the information from the solution
of one equation in the next equation.

(3) The method was found to converge rapidly to the
expected solutions for all the input parameters con-
sidered in this study.

(4) The convergence speed of the method can readily be
improved by using successive overrelaxation (SRM)
techniques. In the case of the Blasius boundary
layer, overrelaxation improved convergence, and in
the unsteady heat and mass transfer problem, the
convergence was improved by underrelaxation

(5) The convergence speed of the SLLM improves with an
increase in the values of the parameters𝐴, 𝑓

𝑤
, and 𝐾

and slows down with an increase in Gr.
(6) The method is more computationally efficient than

the SQLM in the sense that it gives accurate results
even with a few collocation points (small 𝑁). The
accuracy of the SQLM was seen to deteriorate when
the number of collocation points became very large.
This is due to the numerical difficulties associated
with solving large matrix systems. Unlike the SQLM,
the SLLM does not suffer from the loss of accuracy
when the number of collocation points is large.

Because of its demonstrated accuracy, efficiency, and
simplicity, it is envisaged that the proposed SLLM method
could be used as a viable method for solving some classes of
similarity variable boundary layer problems.
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