
Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2013, Article ID 975798, 7 pages
http://dx.doi.org/10.1155/2013/975798

Research Article
Time-Free Solution to Hamilton Path Problems Using
P Systems with d-Division

Tao Song,1 Xun Wang,2 and Hongjiang Zheng3

1 School of Automation, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
2Graduate School of Systems and Information Engineering, University of Tsukuba, Tsukuba, Ibaraki 3050006, Japan
3 School of Information Engineering, Tarim University, Akesu, Xinjiang 843300, China

Correspondence should be addressed to Hongjiang Zheng; zhjwhut@gmail.com

Received 25 June 2013; Accepted 14 August 2013

Academic Editor: Michael Meylan

Copyright © 2013 Tao Song et al.This is an open access article distributed under the Creative CommonsAttribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

P systems with d-division are a particular class of distributed and parallel computing models investigated in membrane computing,
which are inspired from the budding behavior of Baker’s yeast (a cell can generate several cells in one reproducing cycle). In
previous works, such systems can theoretically generate exponential working space in linear time and thus provide a way to solve
computational hard problems in polynomial time by a space-time tradeoff, where the precise execution time of each evolution rule,
one time unit, plays a crucial role. However, the restriction that each rule has a precise same execution time does not coincide with
the biological fact, since the execution time of biochemical reactions can vary because of external uncontrollable conditions. In this
work, we consider timed P systems with d-division by adding a time mapping to the rules to specify the execution time for each
rule, as well as the efficiency of the systems. As a result, a time-free solution to Hamiltonian path problem (HPP) is obtained by a
family of such systems (constructed in a uniformway), that is, the execution time of the rules (specified by different timemappings)
has no influence on the correctness of the solution.

1. Introduction

Membrane computing, introduced in [1], is one of the recent
branches of natural computing. The computing systems
investigated in membrane computing are distributed and
parallel computing devices, usually called P systems.The aim
is to abstract computing concepts and ideas (i.e., models, data
structures, data manipulation operations, operation control
modes, etc.) from the structure and the functioning of living
cells, considered both individually and as part of complexes,
such as tissues and organs like the brain. There are two
main classes of P systems investigated: cell-like P systems [1]
and tissue-like P systems [2]. In the cell-like P systems, the
membrane structure graphically represented by a tree and in
tissue-like P systems, the membrane structure is a general
graph. In tissue-like P systems, we can find tissue P systems,
neural P systems, and numerical P systems. Such three
models have different alphabets, rules, and semantics, but all
three keep the samemembrane structure [3]. During the past
years, many variants of P systems have been developed and

proved to be universal (do what Turing machine can do) [4–
6], and a particular class of P systems with cell reproduction
properties (such as P systems with active membranes [7],
tissue P systems with cell division [8], and spiking neural
P systems with budding [5]) that can theoretically generate
exponential working space in linear time have been used to
solve computational hard problems in polynomial (even in
linear) time [8–10]. An introduction to the area of membrane
computing can be found in [7], while an overview of this
field can be found in [3, 11], with up-to-date information
available at the membrane computing website [12]. In the
presentwork, we deal with a variant of cell-like P systemswith
active membranes, called P systems with 𝑑-division, which
was inspired from the budding behavior of Baker’s yeast (a
cell can generate several new cells in a reproducing cycle) [7].

Briefly, a P system with 𝑑-division consists of a hierarchi-
cal membrane structure, a number of objects and evolution
rules. In every membrane, objects (represented by multisets
over a given alphabet) and evolution rules are present, where
objects correspond to the chemical compounds that exist

2 Journal of Applied Mathematics

inside the cells, and the evolution rules correspond to the
chemical reactions taking place in the cells. By using the
evolution rules, objects can evolve to other objects, and the
membrane structure can change. The membranes can also
have an electrical charge, positive (+), negative (−), or neutral
(0). A global clock is assumed tomark the time for the system.
In each instant, if a rule is applicable over objects existing
inside a membrane, the rule must be applied on the tick
of the clock. If more than one rule is applicable at certain
moment, one of these rules is nondeterministically chosen to
use. Each cell in the systemsworks in a sequential way; in each
time unit only one evolution can be used, but; for different
cells, they work in a synchronous way. The configuration
of the systems at a given instant of time is described by
both the membrane structure and the multisets of objects
present in each membrane. The systems can proceed from
one configuration to another by applying evolution rules (it
is said that a transition takes place from one configuration to
the next one), which takes exactly one time unit. A sequence
of transitions between configurations define a computation.
A computation halts if it reaches a configuration where no
rule can be applied in any membrane. In this case, the result
of the computation can be interpreted as the number of
objects inside a specified output membrane. P systems with
𝑑-division (𝑑 ≥ 2) can theoretically generate exponential
working space in linear time and thus provide a way to
solve computational hard problems in polynomial time by a
time-space tradeoff, where the precise execution time of each
evolution rule (one time unit) plays a crucial role [7].

In [8], inspired by the mitosis function of living cells,
tissue P systems with cell division were proposed.The system
can generate working space (cells) by using cell division rules
and thus can generate exponential working space in linear
steps. The newly generated working space provides a rich
source for computation, particular for solving computational
hard problems. In [8], tissue P systems with cell division can
solve SAT problem in a polynomial time.

In [7, 12], many variants of P systems with different
strategies of generating working space have been reported,
such as P systems with cell separation and SN P systems
with budding. These systems can expand working space (by
generating new cells or neurons) during the computation
and thus can be used to solve computation hard problems in
feasible (polynomial or even linear) time.

In the results, the time cost of a computation is obtained
by counting the steps used in the computation to solve the
problem. In the systems, a global clock is assumed to mark
the time of the systems, and there is a restriction that each
biological operation should be completed in exactly one
time unit, even for different operations. In P systems, each
operation usually corresponds to a particular biochemical
reaction, so it is not natural to impose that different operation
should cost the same time.

However, programming living things cannot assume nei-
ther general restrictions on execution time nor the presence
of global clocks synchronizing the execution of different
parallel processes. Moreover, the time of execution of certain

biological processes could vary because of external uncon-
trollable conditions. Therefore, it seems crucial to investigate
P systems when such timing assumption is not used.

In this work, we consider P systems with 𝑑-division
without the time assumption, which is achieved by adding a
time mapping to specify the execution time of all the rules in
the systems. The obtained systems are close to the biological
fact, and their computational properties, particularly in
computational efficiency, need to be investigated.The systems
with 𝑑-division are considered by adding a time mapping
to the rules to specify the execution time of each rule. The
obtained systems are called timed tissue P systems with
𝑑-division. Particularly interesting are time-free P systems
with 𝑑-division where, given an arbitrary time mapping for
a system, results computed by the system are always the
same, independent of the assigned time mapping. Following
this line of work, finding solutions for hard computational
problems by means of time-free systems was explored in [13]
from a theoretical point of view. In this paper, we prove (in
a constructive way) that we can solveNP-complete problems
by means of time-free P systems with 𝑑-division. Specifically,
a family of time-free P systems with 𝑑-division, constructed
in a uniform way, capable of solving HPP problem are pre-
sented.

2. Preliminaries

In what follows some required concepts of formal language
theory are presented as the necessary background for the
topics covered in subsequent sections of this paper. Readers
needing additional background can refer to works such as
[14].

For an alphabet 𝑉, 𝑉∗ denotes the set of all finite strings
of symbols from 𝑉, while the empty string is denoted by 𝜆,
and the set of all nonempty strings over 𝑉 is denoted by 𝑉+.

By N we denote the set of nonpositive integers. Let 𝑈
be arbitrary set. A multiset (over 𝑈) is a mapping 𝑀 :

𝑈 → N. The multiplicity of 𝑎 in the multiset 𝑀 can be
denoted by 𝑀(𝑎) with any 𝑎 ∈ 𝑈. It can be expressed
by the pair (𝑎,𝑀(𝑎)). If the set 𝑈 = {𝑎

1
, 𝑎
2
, . . . , 𝑎

𝑛
} is

finite, a multiset 𝑀 over 𝑈, represented by the set of
mappings {(𝑎

1
,𝑀(𝑎
1
)), (𝑎
2
,𝑀(𝑎
2
)), . . . , (𝑎

𝑛
,𝑀(𝑎
𝑛
))} can also

be represented by a string 𝑤 = 𝑎
𝑀(𝑎
1
)

1
𝑎
𝑀(𝑎
2
)

2
⋅ ⋅ ⋅ 𝑎
𝑀(𝑎
𝑛
)

𝑛
or by

any of its permutations.
In what concern to the rest of this paper, we will not

distinguish between the representation of multiset in map-
ping form or string form.

3. Time-Free Solutions to Decision Problems
by Means of P Systems with 𝑑-Division

It is started by briefly recalling the formal definition of
P systems with 𝑑-division introduced in [7], and then a
timed extension of such systems is reviewed, followed by a
description of time-free P systems with 𝑑-division. Finally,
some notions of time-free solutions to decision problems by
means of such systems are discussed.

Journal of Applied Mathematics 3

3.1. P Systems with 𝑑-Division. A P system with 𝑑-division
(𝑑 ≥ 2) of degree𝑚 is a construct

Π = (𝑂,𝐻, 𝜇, 𝑤
1
, . . . , 𝑤

𝑚
, 𝑅) , where (1)

(i) 𝑚 ≥ 1 is the initial number of membranes of the
system;

(ii) 𝑂 is the alphabet of objects;
(iii) 𝐻 is a finite set of labels for membranes;
(iv) 𝜇 is the initial membrane structure, consisting of 𝑚

membranes; membranes are labelled (not necessarily
in an injective way) with elements of 𝐻 and are
electrically polarized, being possible charge positive
(+), negative (−), or neutral (0);

(v) 𝑤
1
, . . . , 𝑤

𝑚
are strings over 𝑂, describing the initial

multisets of objects placed in the𝑚 regions of 𝜇;
(vi) 𝑅 is a finite set of evolution rules, of the following

types:

(a) [𝑎 → V]𝛼
ℎ
, ℎ ∈ 𝐻, 𝛼 ∈ {+, −, 0}, 𝑎 ∈ 𝑂, V ∈ 𝑂∗;

(b) 𝑎[]𝛼1
ℎ
→ [𝑏]

𝛼
2

ℎ
, ℎ ∈ 𝐻, 𝛼

1
, 𝛼
2
∈ {+, −, 0}, 𝑎, 𝑏 ∈

𝑂;
(c) [𝑎]𝛼1

ℎ
→ []
𝛼
2

ℎ
𝑏, ℎ ∈ 𝐻, 𝛼

1
, 𝛼
2
∈ {+, −, 0}, 𝑎, 𝑏 ∈

𝑂;
(d) [𝑎]𝛼

ℎ
→ 𝑏, ℎ ∈ 𝐻, 𝛼 ∈ {+, −, 0}, 𝑎, 𝑏 ∈ 𝑂;

(e) [𝑎]𝛼
ℎ
→ [𝑏

1
]
𝛼
1

ℎ
[𝑏
2
]
𝛼
2

ℎ
⋅ ⋅ ⋅ [𝑏
𝑑
]
𝛼
𝑑

ℎ
, ℎ ∈ 𝐻, 𝛼

1
, 𝛼
2
,

. . . , 𝛼
𝑑
∈ {+, −, 0}, 𝑎, 𝑏

1
, 𝑏
2
, . . . , 𝑏

𝑑
∈ 𝑂;

(f) [[]𝛼1
ℎ
1

⋅ ⋅ ⋅ []
𝛼
1

ℎ
𝑘

[]
𝛼
2

ℎ
𝑘+1

⋅ ⋅ ⋅ []
𝛼
2

ℎ
𝑛

]
𝛼
0

ℎ
0

→ [[]
𝛼
3

ℎ
1

⋅ ⋅ ⋅ []
𝛼
3

ℎ
𝑘

]
𝛼
5

ℎ
0

[[]
𝛼
4

ℎ
𝑘+1

⋅ ⋅ ⋅ []
𝛼
4

ℎ
𝑛

]
𝛼
6

ℎ
0

, 𝑘 ≥ 1, 𝑛 > 𝑘, ℎ
𝑖
∈ 𝐻, 0 ≤

𝑖 ≤ 𝑛, and 𝛼
0
, . . . , 𝛼

6
∈ {+, −, 0} with {𝛼

1
, 𝛼
2
} =

{+, −}.

Rules of type (a) are objects evolution rules, whose
application is controlled by both the label and the charge of
the membranes. Rules of type (b) and (c) are communication
rules, by which an object can be sent into or out of the
membrane. The objects can be possibly modified during this
process, as well as the polarization of the membrane can
be changed, but not its label. The dissolving rules are of
type (d), by which a membrane can be dissolved, while the
object specified in the rule can be modified. The division
rules for elementary membranes are of type (e). In reaction
with an object, the elementary membrane can be divided
into 𝑑 membranes with the same labels, possibly of different
polarizations; the object specified in the rule is replaced by
some newly generated objects in the newly membranes. As
shown in rules of type (f), if a membrane contains other
membranes that have charges + or − but have globally
neutral charge, these membranes with same charges can be
be separated into twonewmembranes.Theprevious rules can
be considered as “standard” rules; two possible extensions for
rules of type (e) can be also considered:

(e󸀠) [𝑎]𝛼
ℎ
→ [𝑏
1
]
𝛼
1

ℎ
1

[𝑏
2
]
𝛼
2

ℎ
2

⋅ ⋅ ⋅ [𝑏
𝑑
]
𝛼
𝑑

ℎ
𝑑

, ℎ, ℎ
1
, ℎ
2
, . . . ℎ
𝑑
∈ 𝐻, 𝛼,

𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑑
∈ {+, −, 0}, 𝑎, 𝑏

1
, 𝑏
2
, . . . , 𝑏

𝑑
∈ 𝑂, 𝑑 ≥ 2;

(e󸀠󸀠) [𝑎]𝛼1
ℎ
→ [𝑏
1
]
𝛼
2

ℎ
[𝑏
2
]
𝛼
2

ℎ
⋅ ⋅ ⋅ [𝑏
𝑑
]
𝛼
𝑑

ℎ
, ℎ ∈ 𝐻, 𝛼

1
, 𝛼
2
, . . . , 𝛼

𝑑
∈

{+, −, 0}, 𝑎, 𝑏
1
, 𝑏
2
, . . . , 𝑏

𝑑
∈ 𝑂, 𝑑 ≥ 2.

By rules of type (e󸀠), themembranes produced by division
possibly have different labels with the divided membrane,
and the polarizations of the new membranes can be different
from the polarization of the initial one. Division rules (e󸀠󸀠)
allow the division of nonelementary membranes, where all
membranes from the initialmembraneswill be replicated and
will appear in the new copies of this membrane.

In each time unit (a global clock is assumed, marking the
time for the whole system), the selected rules to be executed
in each cell are applied on the tick of the clock, taking
exactly one time unit to complete their execution. In a given
time, if an object can evolve by more than one rules, only
one of the rules is nondeterministically selected. All objects
and membranes not specified in any executed rule remain
unchanged.

If a membrane is dissolved, all the objects contained
in the region delimited by such membrane are left free in
the surrounding region. If in a given computation step a
membrane is divided and there are objects in this membrane
which can evolve, it is assumed that evolution of objects takes
place first; thus, the evolved objects will be present in the
dividedmembranes. Objects that do not evolve are replicated.
Thus, rules are applied “bottom-up”; that is, rules in the
innermost membrane are applied first and, subsequently,
level by level up to the region of the skin membrane. The
skin membrane can never divide, but it can be “electrically
charged.”

Note that every cell in the systems works in a sequential
way, in each time unit only one evolution can be used, but, for
different cells, they work in a synchronous way.

The configuration of the system at a given time unit is
described by both the membrane structure and the multisets
of objects present in each cell. By applying the rules specified
above, one can define a transition between configurations. A
sequence of transitions starting from the initial configuration
are called a computation. A computation halts if it reaches
a configuration such that no rules can be applied in any
membrane. During a computation, objects can leave the
skin membrane and pass to the environment. The result of
a halting computation is defined as the number of objects
that are sent out of the system during the computation. A
nonhalting computation provides no result.

3.2. Timed and Time-Free P Systems with 𝑑-Division. Given a
P system with 𝑑-division

Π = (𝑂,𝐻, 𝜇, 𝑤
1
, . . . , 𝑤

𝑚
, 𝑅) (2)

and a mapping 𝑒 : 𝑅 → N, it is said that

Π (𝑒) = (𝑂,𝐻, 𝜇, 𝑤
1
, . . . , 𝑤

𝑚
, 𝑅, 𝑒) (3)

is a timed P system with 𝑑-division such that 𝑒 : 𝑅 → N

specifies the execution time of each rule of the system.
A timed P system with 𝑑-division Π(𝑒) works in the

following way. An external clock is assumed, which marks
time units of equal length, starting from instant 0. According

4 Journal of Applied Mathematics

to this clock, the step 𝑡 of computation is defined by the
period of time that goes from instant 𝑡 − 1 to instant 𝑡. If a
membrane 𝑖 contains some rule 𝑟 from types (a)–(e󸀠󸀠) selected
to be executed, execution of such rule takes 𝑒(𝑟) time units to
complete.Therefore, if the execution is started at instant 𝑗, the
rule is completed at instant 𝑗 + 𝑒(𝑟) and the resulting objects
and membranes become available only at the beginning of
step 𝑗 + 𝑒(𝑟) + 1.

For a given P systems with 𝑑-division, by adding different
time mappings, we can obtain a family of timed P systems
with 𝑑-division. The systems obtained, although in the same
family, may produce different computation results for having
different time mapping. A timed P system with 𝑑-division
Π(𝑒) is said to be time-free if and only if, for any timemapping
𝑒, the system Π(𝑒) produces the same computation result (if
any); that is, the execution time of the rules has no influence
on the computation result of such systems.

Time-free P systems with 𝑑-division are particularly
interesting because they allowmodelling biological phenom-
ena where the execution time of the processes involved can
vary unexpectedly. Similarly, a system like that, if imple-
mented, would be robust against environmental changes that
could affect, in an unpredicted manner, the execution time of
the evolution rules of the system.

3.3. Uniform Time-Free Solutions to Decision Problems by
Timed P Systems with 𝑑-Division. In order to formally define
the concept of uniform time-free solution to decision prob-
lems by timed P systems (in our case with 𝑑-division), fol-
lowing from [9, 13], some notions related to solving decision
problems with P systems with 𝑑-division are reviewed. It is
started by introducing recognizer timed P systems with 𝑑-
division.

A recognizer P systemwith 𝑑-division is the one such that
(i) the working alphabet contains two distinguished elements
yes and no; (ii) all computations halt; and (iii) if 𝐶 is a
computation of the system, either object yes or object no
(but not both) must have been released into the environment
when the system halts. The recognizer P systems with 𝑑-
division can be used to solve decision problems as follows.
For an instance 𝛾 of the problem 𝑋, the computations of the
systems start from an initial configuration by adding the code
of the problem cod(𝛾) to the systems. If the computations
of the systems finally halt with object yes (no) present in
the environment, we say that the problem has a positive
(negative) answer. In recognizer P systems with 𝑑-division, a
computation is said to be accepting (rejecting) if the object
yes (no) appears in the environment associated with the
corresponding halting configuration.

In the following description, we will formally describe the
notions of solutions to decision problems by P systems with
𝑑-division. Let 𝑋 = (𝐼

𝑋
, Θ
𝑋
) be a decision problem, where

𝐼
𝑋
is a set of instances and Θ

𝑋
is a predicate over 𝐼

𝑋
, and let

Π = {Π(𝑛) | 𝑛 ∈ N} be a family of recognizer P systems with
𝑑-division. We say that the decision problem 𝑋 is solvable in
polynomial time by a (countable) family of P systems with
𝑑-division Π if the following holds.

(i) The family Π is polynomial uniform by Turing
machine; that is, there exists a deterministic Turing

machine constructing the system Π(𝑛) for 𝑛 ∈ N in
polynomial time.

(ii) There is a pair of polynomial computable functions
(cod, 𝑠) over the problem𝑋 such that

(a) for each instance 𝑢 ∈ 𝐼
𝑋
, cod(𝑢) is the input of

the system Π and 𝑠(𝑢) ∈ N;
(b) the family Π is sound with respect to 𝑋, cod, 𝑠;

that is, for each instance of the problem 𝑢 ∈ 𝐼
𝑋
if

there exists an accepting computation ofΠ(𝑠(𝑢))
with input cod(𝑢), we have Θ

𝑋
(𝑢) = 1;

(c) the family Π is complete with respect to
𝑋, cod, 𝑠; that is, for each instance of the prob-
lem 𝑢 ∈ 𝐼

𝑋
if Θ
𝑋
(𝑢) = 1, every computation of

Π(𝑠(𝑢)) is an accepting computation;
(d) the family Π is polynomial bounded if there

exists a polynomial function 𝑝 such that, for
each 𝑢 ∈ 𝐼

𝑋
, all computations in Π(𝑠(𝑢)) halt

in, at most, 𝑝(|𝑢|) steps.
The notions of soundness and completeness
described above can be extended to timed P
systems with 𝑑-division, with the exception that
the polynomially bounding needs to be recon-
sidered. In timed P systems with 𝑑-division,
execution of time of rules is determined by the
time mapping 𝑒; thus, the existence of rules
whose execution time is inherently exponential
is possible. Therefore, the polynomial bounded
restriction on the computation time cannot be
assured any more.
To circumvent this, another way to define com-
putation steps in timed P systems is considered,
based on rule starting steps (RS steps for short).
Hence, although there exists an external clock
ticking, marking the time for the system, only
those ticks of the clock in which at least one
rule starts its execution are considered as the
beginning of a computation step. The ticks
in which no object “begins” to evolve or no
membrane “begins” to change, are omitted from
computation steps.
With the previous definitionswe can then define
the concepts of timed soundness, timed com-
pleteness and timed polynomially bounding for
recognizer timed P systems with 𝑑-division. Let
Π = {Π(𝑛, 𝑒) | 𝑛 ∈ N} be a family of timed
recognizer P systems with 𝑑-division;

(e) the family Π is timed sound with respect to
𝑋, cod, 𝑠; that is, for each instance of the prob-
lem 𝑢 ∈ 𝐼

𝑋
and a given time mapping 𝑒, if there

exists an accepting computation of Π(𝑠(𝑢), 𝑒)
with input cod(𝑢), we have Θ

𝑋
(𝑢) = 1;

(f) the family Π is timed complete with respect
to 𝑋, cod, 𝑠; that is, for each instance of the
problem 𝑢 ∈ 𝐼

𝑋
and a given time mapping 𝑒,

if Θ
𝑋
(𝑢) = 1, every computation of Π(𝑠(𝑢), 𝑒) is

an accepting computation;

Journal of Applied Mathematics 5

(g) the family Π is timed polynomial bounded if
there exists a polynomial function 𝑝 such that,
for each 𝑢 ∈ 𝐼

𝑋
and given time mapping 𝑒,

all computations in Π(𝑠(𝑢), 𝑒) halt in, at most,
𝑝(|𝑢|) RS-steps.
Similarly, we can define the concepts defined
above for recognizer time-free P systemswith𝑑-
division. Let Π = {Π(𝑛, 𝑒) | 𝑛 ∈ N} be a family
of timed recognizer P systems with 𝑑-division;

(h) the family Π is time-free sound with respect
to 𝑋, cod, 𝑠; that is, for each instance of the
problem 𝑢 ∈ 𝐼

𝑋
and any timemapping 𝑒, if there

exists an accepting computation of Π(𝑠(𝑢), 𝑒)
with input cod(𝑢), then we have Θ

𝑋
(𝑢) = 1;

(i) the family Π is time-free complete with respect
to 𝑋, cod, 𝑠; that is, for each instance of the
problem 𝑢 ∈ 𝐼

𝑋
and any time mapping 𝑒, if

Θ
𝑋
(𝑢) = 1, every computation of Π(𝑠(𝑢), 𝑒) is

an accepting computation;
(j) the family Π is time-free polynomial bounded

if there exists a polynomial function 𝑝 such
that, for each 𝑢 ∈ 𝐼

𝑋
and any time mapping

𝑒, computations in Π(𝑠(𝑢), 𝑒) halt in, at most,
𝑝(|𝑢|) RS-steps.
Finally, we define the concept of uniform time-
free solution to decision problems.
Let 𝑋 = (𝐼

𝑋
, Θ
𝑋
) be a decision problem. A

family of timed recognizer P systems Π =

{Π(𝑠(𝑢), 𝑒) | 𝑢 ∈ 𝐼
𝑋
} is a uniform time-free

solution to decision problem 𝑋 if the following
statements are true:

(k) the family Π is polynomially uniform with
respect to Turing machines; that is, there exists
a deterministic Turing machine working in
polynomial time which constructs the system
Π(𝑒) with knowledge involving only the size of
the problem𝑋 for every instance of𝑋;

(l) The familyΠ is time-free polynomially bounded
(halts in a polynomial number of RS-steps);

(m) the family Π is time-free sound and time-free
complete.

Given a decision problem 𝑋, if there exists a family of
timed P system Π = {Π(𝑠(𝑢), 𝑒) | 𝑢 ∈ 𝐼

𝑋
} which computes

a solution of the instance 𝑢 of 𝑋, and the correctness of the
solution does not depend on the execution time of the rules
involved in the computation, then the solution is called a
time-free solution to problem𝑋 computed by the systemsΠ.

4. A Uniform Time-Free Solution to HPP

In this section, we prove that a family of timed P systems with
𝑑-division can solve HPP in polynomial RS-steps, and the
systems are constructed in a uniform way. It is noticed that
in our systems we extend the number of objects involved in
the rules of type (a). Specifically, the extended rules of type

(a) are of the form

(a󸀠) [𝑢 → V]𝛼
ℎ
, ℎ ∈ 𝐻, 𝛼 ∈ {+, −, 0}, 𝑢, V ∈ 𝑂∗,

by which a multiset of objects can evolve. After that, we will
prove that the correctness of our solution does not depend on
the execution time of the rules; that is, for any time mapping
𝑒, we will obtain the same answer to the instances of the
problems.

Hamiltonian Path Problem (HPP) is one of the best
knownNP-complete problems, which askswhether or not for
a given graph 𝛾 = (𝑁, 𝐸) (𝑁 is the set of nodes and 𝐸 is the
set of edges in 𝛾) contains a Hamiltonian path, that is a path
of length 𝑛 that visits all nodes from 𝛾 exactly once; we do
not specify the first and last nodes of a path, and each node
in node set𝑁 can be the first node or the last one.

Theorem 1. The HPP can be solved in polynomial RS steps
with respect to the number of nodes of a directed graph by a
family of timed P systems with 𝑑-division using rules of types
(𝑎󸀠), (b), (c), and (𝑒󸀠).

Proof. Let us consider a directed graph 𝛾 = (𝑁, 𝐸), where
𝑁 = {V

1
, V
2
, . . . , V

𝑛
} is the set of vertices and 𝐸 is the set of

edges. We codify 𝛾 by multiset cod(𝛾) = 𝑎
1
𝑎
2
⋅ ⋅ ⋅ 𝑎
𝑛
, where

variable 𝑎
𝑖
represents vertex V

𝑖
. In this way, we pass from 𝛾 to

cod(𝛾) in linear steps with respect to 𝑛. The instance 𝛾will be
processed by timed P systems with 𝑑-division Π(𝑠(𝛾)) with
input cod(𝛾), where 𝑠(𝛾) = 𝑛.

We construct the family of timedP systemwith𝑑-division
of degree 2:

Π (𝑛, 𝑒) = (𝑂,𝐻, 𝜇, 𝑤
0
, 𝑤
𝑝
, 𝑅, 𝑒) , where (4)

(i) 𝑂 = {𝑎
𝑖
| 1 ≤ 𝑖 ≤ 𝑛} ∪ {𝑏

𝑖
| 1 ≤ 𝑖 ≤ 𝑛} ∪ {yes, no, 𝑐, 𝑐󸀠,

𝑑, 𝑡, 𝑡
󸀠

} is the alphabet, and each object 𝑎
𝑖
corresponds

to node V
𝑖
, 1 ≤ 𝑖 ≤ 𝑛;

(ii) 𝐻 = {0, 1, 2, . . . , 2𝑛 + 1, 𝑝} is the set of labels of the
membranes;

(iii) 𝜇 = [[]
0
]
𝑝
is the initial membrane structure;

(iv) 𝑤
0
= 𝑑𝑐𝑏

𝑛−1 and 𝑤
𝑝
= no;

(v) 𝑅 is the set evolution rules;
(vi) 𝑒 : 𝑅 → N is the time mapping for the rules from 𝑅.

In what follows, a detailed explanation of how the
system Π(𝑛, 𝑒) computes a solution to HPP is present. Three
stages in the computation process are considered: generating,
checking, and outputting.

Generating stage:

𝐺
1
: [no]

𝑝
→ []

𝑝
no,

𝐺
2
: [𝑑]
0
→ [𝑎
1
]
1
[𝑎
2
]
1
⋅ ⋅ ⋅ [𝑎
𝑛
]
1
.

At the beginning of the computation, object no can be
ejected to the environment after 𝑒(𝐺

1
) steps by the rule 𝐺

1
.

By using the rule 𝐺
2
, we start to create the paths in 𝛾 starting

fromall the nodes V
𝑖
, 1 ≤ 𝑖 ≤ 𝑛.This processwill be completed

in 𝑒(𝐺
2
) time units, costing only one RS step.

6 Journal of Applied Mathematics

𝐺
3𝑖
: [𝑏]
𝑖
→ [𝑎
1
]
𝑖+1
[𝑎
2
]
𝑖+1
⋅ ⋅ ⋅ [𝑎
𝑛
]
𝑖+1
, 1 ≤ 𝑖 ≤ 𝑛 − 1.

Prolonging the paths with one node, where all the nodes
are assumed to have an edge between each node. For the
membrane with same label, the rule 𝐺

3𝑖
will be used in

parallel; thus, for each 𝑖, the application of rule 𝐺
3𝑖
costs one

RS step to prolong one node to all the nodes:

𝐺
4𝑖
: [𝑎
𝑘
𝑎
ℎ
→ 𝜆]

𝑖
with 1 ≤ 𝑖 ≤ 𝑛 and 𝑘, ℎ ∈ {1, 2, . . . , 𝑛} if

there is no edge between node V
𝑘
and V
ℎ
.

By using rules𝐺
4𝑖
, the objects representing the edges that

are not in 𝛾 can evolve into empty string (thus are removed
out of the systems), and only the objects representing the
edges in 𝛾 are left in the system. In the worst case, each pair
of (V
𝑘
, V
ℎ
) is not in 𝐸, so the membrane with label 𝑖 will use

at most 𝑛2 rules in parallel, so this process will cost at most
𝑛
2 RS-steps for each 𝑖 ∈ {1, 2, . . . , 𝑛}. Note that it is assumed

that when division rules and evolutions can both be used (in
our case it is possible that rules 𝐺

3𝑖
and 𝐺

4𝑖
can be applied

at the same time), evolution of objects takes place first; thus,
the objects evolved by rule 𝐺

3𝑖
will be present in the divided

membranes by rule 𝐺
4𝑖
for any 𝑖 ∈ {1, 2, . . . , 𝑛}:

𝐺
5
: [𝑐]
𝑛
→ [𝑐
󸀠

]
𝑛+1
[𝑐
󸀠

]
𝑛+1

.

Since the length of Hamiltonian path is 𝑛, we need to
check all the paths in 𝛾 with length 𝑛. After the application of
rules𝐺

4𝑖
is completed, themembraneswith label 𝑛 containing

object 𝑐 can divide. The generating stage will finish when
membranes with label 𝑛 + 1 are generated.

Checking stage:

𝐶
1𝑖
: [𝑎
𝑖
]
𝑛+𝑖

→ [𝑎]
𝑛+𝑖+1

[𝑎]
𝑛+𝑖+1

with 𝑖 = 1, 2, . . . , 𝑛 − 1,
𝐶
2
: [𝑎
𝑛
]
2𝑛
→ [𝑡
󸀠

]
2𝑛+1

[𝑡]
2𝑛+1

.

After generating all the possible paths with length not
more than 𝑛 (each in a separated membrane with label 𝑛),
we need to check whether there exist some paths that contain
all the nodes V

1
, V
2
, . . . , V

𝑛
. This process is started by checking

object 𝑎
1
in the membranes 𝑛+1. For eachmembrane 𝑛+1, if

it contains object 𝑎
1
, rule 𝐶

11
can be applied, and after 𝑒(𝐶

11
)

steps, membranes with label 𝑛 + 2 are produced. Membranes
𝑛+1without object 𝑎

1
can not evolve anymore, andno further

rule can be used over them. After membranes labelled with
𝑛+2 are generated, object 𝑎

2
in the membranes can evolve by

using the rule𝐶
12
, and so forth.The checking stage will cost 𝑛

RS steps at most (in case there is at least one membrane 𝑛 + 1
that contains all the objects 𝑎

1
, 𝑎
2
, . . . , 𝑎

𝑛
).

If there is no membrane 𝑛 + 1 containing all the objects
𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
, the checking stage halts and cannot go to

outputting stage.There are the following two cases. If the rule
𝐺
1
has completed its application, that is object no presents

in the environment. In this case, we get object no in the
environment when system halts; hence, the answer to the
decision problem is negative. When the computation of the
system halts the application of rule 𝐺

1
does not complete. In

this case, the system halts as soon as the application of rule𝐺
1

is finished. We also get object no in the environment, hence
the answer of the problem is negative.

If there exists at least one membrane 𝑛 + 1 that contains
all the objects 𝑎

1
, 𝑎
2
, . . . , 𝑎

𝑛
, the computation proceeds to the

outputting stage.

Outputting stage:

𝑂
1
: [𝑡]
2𝑛+1

→ []
0

2𝑛+1
yes

𝑂
2
: no[yes]

𝑝
→ [no]

𝑝
yes.

Membranes with label 2𝑛 + 1 that contains object 𝑡 will
be produced. Object 𝑡 in membrane 2𝑛 + 1 can be sent out
of the membrane and evolves into object yes. This process
costs one RS step. In this way, object yes passes to membrane
𝑝. Subsequently, by using rule 𝑂

2
, object yes in membrane

𝑝 is sent out to the environment and object no goes into
membrane 𝑝. After that, the system halts with object yes
placed in the environment, so the answer to the decision
problem is positive.

We can easily check that the presented systemΠ(𝑛, 𝑒) can
be built in polynomial time with respect to 𝑛 (the number
of nodes in 𝑁 of 𝛾). Specifically, the necessary resources to
build the system Π(𝑛, 𝑒) are shown as follows: the size of the
alphabet, 2𝑛 + 7 ∈ 𝑂(𝑛); the initial number of cells, 2 ∈ 𝑂(1);
the initial number of objects, 2𝑛 + 2 ∈ 𝑂(𝑛); and the number
of rules (in the most case), 𝑛3 + 2𝑛 + 4 ∈ 𝑂(𝑛3).

Therefore, there exists a deterministic Turing machine
working in polynomial time which constructs the system
with knowledge only of the number of nodes in the graph;
that is, the family of P systems with 𝑑-division Π(𝑛, 𝑒)

is constructed in a uniform way. It is easy to check that
the family of systems Π(𝑛, 𝑒) are timed sound and timed
complete.

In the generating stage, the applications of rules 𝐺
1
and

𝐺
2
cost two RS steps; every membrane 𝑖 applies rules𝐺

3𝑖
, 1 ≤

𝑖 ≤ 𝑛 − 1 in parallel; thus, 𝑛 − 1 RS-steps are required to start
their execution; for any membrane 𝑖, the application of rule
𝐺
4𝑖
costs 𝑛2 RS steps at most to start their execution, (since

in each membrane 𝑖, in the worst case it contains all the rules
[𝑎
𝑘
𝑎
ℎ
→ 𝜆]

𝑖
with ℎ, 𝑘 = 1, 2, . . . , 𝑛); for all the 𝑛membranes,

totally we need 𝑛3 RS-steps for the execution of rules𝐺
4𝑖
; one

RS step is needed to start the execution of rule 𝐺
5
. In the

checking stage, it costs atmost 𝑛RS steps in the case that there
exists at least one membrane 𝑛 + 1, contains all the variables
𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
. Two RS steps are needed to output the object

yes (if any) to the environment.Therefore, 𝑛3+2𝑛+4RS-steps
are required at most to complete the computation of Π(𝑛, 𝑒),
which is polynomial.

As explained above, we can conclude that the family of
timed P systemsΠ(𝑛, 𝑒)with 𝑑-division is a uniform solution
toHPP.

Corollary 2. For any time mapping 𝑒, by means of the family
of P systems with 𝑑-division Π(𝑛, 𝑒) constructed in Theorem 1,
the same solution can be obtained for a given instance of the
HPP; that is, the correctness of the solution does not depend
on the execution time of the rules.

Proof. It is easy to check that (for any time mapping 𝑒) the
family of P systems with 𝑑-division Π(𝑛, 𝑒) constructed in

Journal of Applied Mathematics 7

Theorem 1 are time-free sound, time-free complete, and time-
free polynomially bounded. Therefore, the solution to HPP
by the family of timed P systems with 𝑑-division Π(𝑛, 𝑒) is
time-free.

5. Conclusions and Future Work

In this paper, inspired from the biological fact that execution
time of biochemical reactions can vary because of external
uncontrollable conditions, we consider timed P systems with
𝑑-division by adding a time mapping to each evolution
rule. In the systems, the general restriction on the constant
execution time of the rules as defined in classical P systems is
removed.We consider rule starting steps (RS-steps) as “valid”
computation steps; that is, only those ticks of the clock in
which at least one rule starts its execution are considered
as the beginning of a computation step. The ticks, in which
no object “begins” to evolve or no membrane “begins” to
change, are omitted from computation steps. In this way, we
can avoid the inherently possible exponential execution time
of the rules in such systems. We investigate the efficiency
of timed P systems with 𝑑-division. As a result, a time-free
uniform solution toHPP is obtained.

Acknowledgments

This work is supported by the National Natural Science
Foundation of China (51268051, 61074169, and 61033003),
Ph.D. Programs Foundation of Ministry of Education of
China (20100142110072), and the Natural Science Foundation
of Hubei Province (2011CDA027 and 2011CDB233).

References

[1] G. Păun, “Computing with membranes,” Journal of Computer
and System Sciences, vol. 61, no. 1, pp. 108–143, 2000.

[2] C. Mart́ın-Vide, G. Păun, J. Pazos, and A. Rodŕıguez-Patón,
“Tissue P systems,” Theoretical Computer Science, vol. 296, no.
2, pp. 295–326, 2003.

[3] G. Păun, G. Rozenberg, and A. Salomaa, Eds., Handbook of
Membrane Computing, Oxford University Press, Oxford, UK,
2010.

[4] T. Song, L. Pan, and G. Păun, “Asynchronous spiking neural P
systems with local synchronization,” Information Sciences, vol.
219, pp. 197–207, 2013.

[5] T. Song, L. Pan, J. Wang, I. Venkat, K. G. Subramanian, and R.
Abdullah, “Normal forms of spiking neural P systems with anti-
spikes,” IEEE Transactions on Nanobioscience, vol. 11, no. 4, pp.
352–359, 2012.

[6] T. Song, X. Wang, Z. Zhang, and Z. Chen, “Homogenous spik-
ing neural P systems with anti-spikes,” Neural Computing and
Applications, 2013.

[7] G. Păun, Membrane Computing. An Introduction, Springer,
Berlin, Germany, 2002.

[8] G. Păun, M. J. Perez-Jimenez, and A. Riscos-Nunez, “Tissue P
systems with cell division,” International Journal of Computers
Communications & Control, vol. 3, no. 3, 2008.

[9] L. Pan and C. Mart́ın-Vide, “Further remark on P systems with
activemembranes and twopolarizations,” Journal of Parallel and
Distributed Computing, vol. 66, no. 6, pp. 867–872, 2006.

[10] L. Pan, D. Dı́az-Pernil, and M. J. Pérez-Jiménez, “Computation
of Ramsey numbers by P systems with active membranes,”
International Journal of Foundations of Computer Science, vol.
22, no. 1, pp. 29–38, 2011.

[11] G.-X. Zhang and L.-Q. Pan, “A survey of membrane computing
as a new branch of natural computing,” Chinese Journal of
Computers, vol. 33, no. 2, pp. 208–214, 2010.

[12] The P System, http://ppage.psystems.eu.
[13] C. Matteo, “Time-free solution to hard computational prob-

lems,” in Proceeding of 10th Brainstorming Week on Membrane
Computing, vol. 1, Sevilla, Spain, 2012.

[14] G. Rozenberg and A. Salomaa, Eds., Handbook of Formal
Languages, Springer, Berlin, Germany, 1991.

