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We give explicit expressions of (𝑃 ± 𝑄)𝑑 of two matrices 𝑃 and 𝑄, in terms of 𝑃, 𝑄, 𝑃𝑑, and 𝑄𝑑, (𝑃 ± 𝐼)𝑑, under the condition that
𝑃𝑄 = 𝑃, and apply the result to finding an explicit representation for the Drazin inverse of some 2 × 2 block matrix.

1. Introduction

In recent years, the representations and perturbation analysis
of the Drazin inverse for matrices or operators have been
investigated (see [1–6]). In [7], the author presented the
presentations of theDrazin inverse of sum and product of two
operators over Banach spaces on the condition of the commu-
tativity up to a factor. And, in [8], the same author discussed
explicit representations of Drazin inverses of sums and
differences of two idempotents over Hilbert spaces.

These investigations motivate us to deal with an explicit
expression of the Drazin inverse of differences and sums
of two matrices. The paper is organized as follows. In this
section, we will introduce some notions and lemmas. In
Section 2, we will present these explicit expressions of differ-
ences and sums of two matrices 𝑃 and𝑄 under the condition
𝑃𝑄 = 𝑃. In Section 3, we will deduce an explicit representa-
tion for the Drazin inverse of the 2 × 2 block matrix [ 𝐴 𝐵

𝐶 𝐷
]

with 𝐴 = 𝐵𝐶 and 𝐵 = 𝐵𝐷 in terms of its subblocks and their
Drazin inverses and (𝐴 + 𝐼)𝑑. In Section 4, we will present
a numerical example to demonstrate the main result in
Section 2.

Throughout this paper the symbolC𝑚×𝑛 stands for the set
of 𝑚 × 𝑛 complex matrices, and 𝐼 ∈ C𝑛×𝑛 stands for the unit
matrix. Let 𝐴 ∈ C𝑛×𝑛; the Drazin inverse, denoted by 𝐴𝑑, of
matrix 𝐴 is defined as the unique matrix satisfying

𝐴
𝑘+1

𝐴𝑑 = 𝐴
𝑘
, 𝐴𝑑𝐴𝐴𝑑 = 𝐴𝑑, 𝐴𝐴𝑑 = 𝐴𝑑𝐴, (1)

where 𝑘 = Ind(𝐴) is the index of 𝐴. In particular, if Ind(𝐴) =

1, then 𝐴𝑑 is called the group inverse, denoted by 𝐴𝑔, of 𝐴.
Apparently, if 𝐴 is nonsingular, then Ind(𝐴) = 0; otherwise,
Ind(𝐴) ≥ 1, especially Ind(0) = 1. If𝐴 is nilpotent, then𝐴𝑑 =

0. If 𝑋 is nonsingular and 𝐵 = 𝑋𝐴𝑋−1, then 𝐵𝑑 = 𝑋𝐴𝑑𝑋
−1

(see [6, 9, 10]). For convenience, we write 𝐴𝜋 = 𝐼 − 𝐴𝐴𝑑 and
use the convention∑

𝑚

𝑖=𝑛
= 0, if𝑚 < 𝑛.

Before we start the discussion, we need some prepara-
tions.

Lemma 1 (see [11, Theorem 3.2]). Let 𝑀 = [ 𝐴 𝐵
0 𝐷

] with 𝑡 =

Ind(𝐴) and 𝑙 = Ind(𝐷). Then,

𝑀𝑑 = [
𝐴𝑑 𝑆

0 𝐷𝑑
] , (2)

where

𝑆 = 𝐴
𝜋

𝑡−1

∑
𝑛=0

𝐴
𝑛
𝐵𝐷
𝑛+2

𝑑
+

𝑙−1

∑
𝑛=0

𝐴
𝑛+2

𝑑
𝐵𝐷
𝑛
𝐷
𝜋
− 𝐴𝑑𝐵𝐷𝑑. (3)

Lemma 2. Let 𝑃,𝑄 ∈ C𝑚×𝑚 with Ind(𝑄) = 𝑠. If 𝑃𝑄 = 𝑃, then

𝑃𝑄𝑑 = 𝑃,

(𝑄𝑑𝑄𝑃)
𝑘
= 𝑄𝑑𝑄𝑃

𝑘
, (𝑄𝑃

𝜋
)
𝑘
= 𝑄
𝑘
𝑃
𝜋
,

(𝑄𝑑𝑃
𝜋
)
𝑘
= 𝑄
𝑘

𝑑
𝑃
𝜋
, 𝑘 ≥ 1.

(4)
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Proof. Since 𝑃𝑄 = 𝑃 and Ind(𝑄) = 𝑠,

𝑃 = 𝑃𝑄
𝑠
= 𝑃𝑄
𝑠+1

𝑄𝑑 = 𝑃𝑄𝑑, (5)

and then𝑃𝑄𝑄𝑑 = 𝑃. So from this, by induction, it follows that
(𝑄𝑑𝑄𝑃)

𝑘
= 𝑄𝑑𝑄𝑃𝑘 for 𝑘 ≥ 1.

Now, we will show inductively that (𝑄𝑃
𝜋
)
𝑘

= 𝑄
𝑘
𝑃
𝜋. It

holds for 𝑘 = 1. Assume it holds for 𝑘 = 𝑛; that is, (𝑄𝑃
𝜋
)
𝑛
=

𝑄𝑛𝑃𝜋. Then,

(𝑄𝑃
𝜋
)
𝑛+1

= (𝑄𝑃
𝜋
) (𝑄𝑃

𝜋
)
𝑛
= 𝑄 (𝐼 − 𝑃𝑑𝑃)𝑄

𝑛
𝑃
𝜋
= 𝑄
𝑛+1

𝑃
𝜋
.

(6)

So it holds for any 𝑘 ≥ 1.
From 𝑃𝑄𝑑 = 𝑃, we can similarly show that (𝑄𝑑𝑃

𝜋)
𝑘

=

𝑄𝑘
𝑑
𝑃𝜋.

Lemma 3. Let 𝑃 be nilpotent of index 𝑡 > 1 and 𝑆 =

∑
𝑡−1

𝑖=0
𝑎
[1]

𝑖
𝑃𝑖. If 𝑎[1]

𝑖
= 1, then

𝑆
𝑛
=

𝑡−1

∑
𝑖=0

𝑎
[𝑛]

𝑖
𝑃
𝑖
, 𝑛 ≥ 2, (7)

where 𝑎[𝑛]
𝑖

= ∑
𝑖

𝑢=0
𝑎[𝑛−1]
𝑢

, 𝑖 = 0, . . . , 𝑡 − 1.

Proof. Since 𝑃𝑡 = 0, we can easily write 𝑆𝑛 as

𝑆
𝑛
=

𝑡−1

∑
𝑖=0

𝑎
[𝑛]

𝑖
𝑃
𝑖
, 𝑛 ≥ 2. (8)

We will prove the relationship

𝑎
[𝑛]

𝑖
=

𝑖

∑
ℎ=0

𝑎
[𝑛−1]

ℎ
, 𝑖 = 0, . . . , 𝑡 − 1 (9)

by induction on 𝑛. Obviously, (9) holds for 𝑛 = 2. Assume
inductively that (9) holds for 𝑛 = 𝑘.

Since 𝑎[1]
𝑖

= 1 and 𝑃𝑡 = 0,

𝑆
𝑘+1

= 𝑆
𝑘
𝑆 =

𝑡−1

∑
𝑖=0

𝑎
[𝑘]

𝑖
𝑃
𝑖

𝑡−1

∑
𝑗=0

𝑃
𝑗

=

𝑡−1

∑
ℎ=0

∑
𝑖+𝑗=ℎ

𝑎
[𝑘]

𝑖
𝑃
𝑖+𝑗

=

𝑡−1

∑
ℎ=0

ℎ

∑
𝑖=0

𝑎
[𝑘]

𝑖
𝑃
ℎ
.

(10)

On the other hand,

𝑆
𝑘+1

=

𝑡−1

∑
𝑖=0

𝑎
[𝑘+1]

𝑖
𝑃
𝑖
. (11)

So, (9) holds for 𝑛 = 𝑘 + 1. Hence, (9) holds for 𝑛 ≥ 2.

Lemma 4 (see [9, Lemma 7.7.2]). Let

𝑁 = [
𝐴 𝐵

0 0
] 𝑜𝑟 𝑁 = [

0 0

𝐵 𝐴
] . (12)

Then, Ind(𝐴) ≤ Ind(𝑁) ≤ Ind(𝐴) + 1.

2. The Drazin Inverse of Differences and
Sums of Two Matrices

In this section, we will investigate how to express 𝑃 ± 𝑄 as a
function of 𝑃, 𝑄, 𝑃𝑑, and 𝑄𝑑, (𝑃 ± 𝐼)𝑑, under the condition
𝑃𝑄 = 𝑃. We begin with the following theorem, in which 𝑃 is
assumed to be nilpotent.

Theorem 5. Let 𝑃,𝑄 ∈ C𝑛×𝑛 with Ind(𝑄) = 𝑠. If 𝑃𝑄 = 𝑃 and
𝑃 is nilpotent of index 𝑡, then

(𝑃 − 𝑄)𝑑 =

𝑠−1

∑
𝑛=0

𝑡−2

∑
𝑖=0

(𝑎
[𝑛+2]

𝑖
𝐼 − 𝑎
[𝑛+1]

𝑖
𝑄𝑑)𝑄

𝑛
𝑃
𝑖+1

− 𝑄𝑑𝑄
𝑠

𝑡−2

∑
𝑖=0

𝑎
[𝑠+1]

𝑖
𝑃
𝑖+1

− 𝑄𝑑,

(13)

where 𝑎[𝑛]
𝑖

= ∑
𝑖

𝑘=0
𝑎
[𝑛−1]

𝑘
and 𝑎

[1]

𝑖
= 1, 𝑖 = 0, . . . , 𝑡 − 1.

Proof. If 𝑡 = 1, then, from the convention in Section 1, (13)
clearly holds. Now assume 𝑡 > 1. From 𝑠 = Ind(𝑄), there
exists a nonsingular matrix𝑊1 such that

𝑄 = 𝑊1 [
𝑄1 0

0 𝑄2
]𝑊
−1

1
,

𝑄𝑑 = 𝑊1 [
𝑄−1
1

0

0 0
]𝑊
−1

1
,

(14)

where𝑄1 is nonsingular and𝑄2 is nilpotent of index 𝑠. Parti-
tioning𝑊−1

1
𝑃𝑊1 conformably with𝑊−1

1
𝑄𝑊1, we have

𝑃 = 𝑊1 [
𝑃1 𝑃4
𝑃3 𝑃2

]𝑊
−1

1
. (15)

Since𝑃𝑄 = 𝑃,𝑃𝑄𝑑 = 𝑃 by Lemma 2, and then𝑃2 = 0,𝑃4 = 0,
and 𝑃𝑖𝑄1 = 𝑃𝑖, 𝑖 = 1, 3. Let 𝑡 be the index of nilpotent matrix
𝑃. Then,

𝑃
𝑡
= 𝑊1 [

𝑃𝑡
1

0

𝑃3𝑃
𝑡−1

1
0
]𝑊
−1

1
= 0, (16)

and therefore 𝑃1 is also nilpotent, and (𝑃1 − 𝐼)
−1

= −∑
𝑡−1

𝑖=0
𝑃𝑖
1
.

Thus,

𝑃 − 𝑄 = 𝑊1 [
𝑃1 − 𝑄1 0

𝑃3 −𝑄2
]𝑊
−1

1

= 𝑊1 [
(𝑃1 − 𝐼)𝑄1 0

𝑃3 −𝑄2
]𝑊
−1

1
.

(17)

By Lemma 1, we have

(𝑃 − 𝑄)𝑑 = 𝑊1 [
𝑄−1
1
(𝑃1 − 𝐼)

−1
0

𝑋 0
]𝑊
−1

1

= 𝑊1
[

[

−𝑄−1
1

𝑡−1

∑
𝑖=0

𝑃𝑖
1

0

𝑋 0

]

]

𝑊
−1

1
,

(18)
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where

𝑋 =

𝑠−1

∑
𝑛=0

(−1)
𝑛
𝑄
𝑛

2
𝑃3[(𝑃1 − 𝐼)𝑄1]

−(𝑛+2)
. (19)

By Lemma 3,

(−1)
𝑛
𝑃3[(𝑃1 − 𝐼)𝑄1]

−(𝑛+2)
= 𝑃3(𝑄

−1

1

𝑡−1

∑
𝑖=0

𝑃
𝑖

1
)

𝑛+2

= 𝑃3(

𝑡−1

∑
𝑖=0

𝑃
𝑖

1
)

𝑛+2

= 𝑃3

𝑡−1

∑
𝑖=0

𝑎
[𝑛+2]

𝑖
𝑃
𝑖

1

=

𝑡−2

∑
𝑖=0

𝑎
[𝑛+2]

𝑖
𝑃3𝑃
𝑖

1
.

(20)

Thus,

𝑊1 [
0 0

𝑋 0
]𝑊
−1

1
=

𝑠−1

∑
𝑛=0

𝑡−2

∑
𝑖=0

𝑊1 [
0 0

𝑎
[𝑛+2]

𝑖
𝑄𝑛
2
𝑃3𝑃
𝑖

1
0
]𝑊
−1

1

=

𝑠−1

∑
𝑛=0

𝑡−2

∑
𝑖=0

𝑎
[𝑛+2]

𝑖
𝑄
𝜋
𝑄
𝑛
𝑃
𝑖+1

.

(21)

So, by (18),

(𝑃 − 𝑄)𝑑 = −

𝑡−1

∑
𝑖=0

𝑄𝑑𝑃
𝑖
+ 𝑄
𝜋

𝑠−1

∑
𝑛=0

𝑡−2

∑
𝑖=0

𝑎
[𝑛+2]

𝑖
𝑄
𝑛
𝑃
𝑖+1

= −

𝑡−2

∑
𝑖=0

𝑄𝑑𝑃
𝑖+1

− 𝑄𝑑

+

𝑠−1

∑
𝑛=0

𝑡−2

∑
𝑖=0

𝑎
[𝑛+2]

𝑖
𝑄
𝑛
𝑃
𝑖+1

− 𝑄𝑑

𝑠

∑
𝑛=1

𝑡−2

∑
𝑖=0

𝑎
[𝑛+1]

𝑖
𝑄
𝑛
𝑃
𝑖+1

= − 𝑄𝑑 +

𝑠−1

∑
𝑛=0

𝑡−2

∑
𝑖=0

𝑎
[𝑛+2]

𝑖
𝑄
𝑛
𝑃
𝑖+1

− 𝑄𝑑

𝑠

∑
𝑛=0

𝑡−2

∑
𝑖=0

𝑎
[𝑛+1]

𝑖
𝑄
𝑛
𝑃
𝑖+1

=

𝑠−1

∑
𝑛=0

𝑡−2

∑
𝑖=0

(𝑎
[𝑛+2]

𝑖
𝐼 − 𝑎
[𝑛+1]

𝑖
𝑄𝑑)𝑄

𝑛
𝑃
𝑖+1

− 𝑄𝑑𝑄
𝑠

𝑡−2

∑
𝑖=0

𝑎
[𝑠+1]

𝑖
𝑃
𝑖+1

− 𝑄𝑑.

(22)

If 𝑃𝑄 = 𝑃, then (−𝑃)𝑄 = −𝑃. So, it immediately follows
from the above theorem.

Corollary 6. Let 𝑃,𝑄 ∈ C𝑛×𝑛 with Ind(𝑄) = 𝑠. If 𝑃𝑄 = 𝑃 and
𝑃 is nilpotent of index 𝑘, then

(𝑃 + 𝑄)𝑑 =

𝑠−1

∑
𝑛=0

𝑡−2

∑
𝑖=0

(−1)
𝑖
(𝑎
[𝑛+2]

𝑖
𝐼 − 𝑎
[𝑛+1]

𝑖
𝑄𝑑)𝑄

𝑛
𝑃
𝑖+1

− 𝑄𝑑𝑄
𝑠

𝑡−2

∑
𝑖=0

(−1)
𝑖
𝑎
[𝑠+1]

𝑖
𝑃
𝑖+1

+ 𝑄𝑑,

(23)

where 𝑎[𝑛]
𝑖

= ∑
𝑖

𝑘=0
𝑎
[𝑛−1]

𝑘
, 𝑎[1]
𝑖

= 1, 𝑖 = 0, . . . , 𝑡 − 1.

If the nilpotency of 𝑃 is taken out in Theorem 5, then we
can obtain our main result, a more general result.

Theorem 7. Let 𝑃,𝑄 ∈ C𝑛×𝑛 with Ind(𝑄𝑃𝜋) = 𝑠, Ind(𝑃) = 𝑡,
Ind[(𝑃 − 𝐼)𝑃𝑃𝑑] = 𝑙, and Ind[(𝑃 −𝑄)𝑃𝜋] = 𝑘. If 𝑃𝑄 = 𝑃, then

(𝑃 − 𝑄)𝑑 =

𝑠−1

∑
𝑛=0

𝑡−2

∑
𝑖=0

(𝑎
[𝑛+2]

𝑖
𝐼 − 𝑎
[𝑛+1]

𝑖
𝑄𝑑)𝑄

𝑛
𝑃
𝑖+1

𝑃
𝜋
− 𝑄𝑑𝑃

𝜋

−

𝑘−1

∑
𝑛=0

(−1)
𝑛
𝑄
𝑛
𝑄
𝜋
(𝑄 − 𝐼) 𝑃𝑃𝑑(𝑃 − 𝐼)

𝑛+2

𝑑

+ (𝑄
𝜋
+ 𝑄𝑑) 𝑃𝑃𝑑(𝑃 − 𝐼)𝑑

+

𝑙−1

∑
𝑛=0

(−1)
𝑛+1

𝑄
𝑛

𝑑
(𝑄𝑑 − 𝑄

2

𝑑
) 𝑃𝑃𝑑(𝑃 − 𝐼)

𝑛
(𝑃 − 𝐼)

𝜋

− 𝑄𝑑𝑄
𝑠

𝑡−2

∑
𝑖=0

𝑎
[𝑠+1]

𝑖
𝑃
𝜋
𝑃
𝑖+1

,

(24)

where 𝑎[𝑛]
𝑖

= ∑
𝑖

𝑘=0
𝑎
[𝑛−1]

𝑘
, 𝑎[1]
𝑖

= 1, 𝑖 = 0, . . . , 𝑡 − 1.

Proof. There exists a nonsingular matrix𝑊1 such that

𝑃 = 𝑊1 [
𝑃1 0

0 𝑃2
]𝑊
−1

1
, 𝑄 = 𝑊1 [

𝑄1 𝑄3
𝑄4 𝑄2

]𝑊
−1

1
, (25)

where 𝑃1 is nonsingular and 𝑃2 is nilpotent of index 𝑡. From
𝑃𝑄 = 𝑃, we get

𝑄 = 𝑊1 [
𝐼 0

𝑄4 𝑄2
]𝑊
−1

1
, (26)

where 𝑃2𝑄4 = 0 and 𝑃2𝑄2 = 𝑃2. So

𝑃 − 𝑄 = 𝑊1 [
𝑃1 − 𝐼 0

−𝑄4 𝑃2 − 𝑄2
]𝑊
−1

1
. (27)

By Lemma 1, we have

(𝑃 − 𝑄)𝑑 = 𝑊1 [
(𝑃1 − 𝐼)

𝑑
0

𝑋 (𝑃2 − 𝑄2)𝑑
]𝑊
−1

1
, (28)
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where

𝑋 =

𝑙−1

∑
𝑛=0

(𝑃2 − 𝑄2)
𝑛+2

𝑑
(−𝑄4) (𝑃1 − 𝐼)

𝑛
(𝑃1 − 𝐼)

𝜋

+ (𝑃2 − 𝑄2)
𝜋
𝑘−1

∑
𝑛=0

(𝑃2 − 𝑄2)
𝑛
(−𝑄4) (𝑃1 − 𝐼)

𝑛+2

𝑑

− (𝑃2 − 𝑄2)𝑑 (−𝑄4) (𝑃1 − 𝐼)
𝑑
,

(29)

and 𝑘 = Ind(𝑃2 −𝑄2) = Ind[(𝑃−𝑄)𝑃𝜋] and 𝑙 = Ind(𝑃1 − 𝐼) =

Ind[(𝑃 − 𝐼)𝑃𝑃𝑑].
Since 𝑃2𝑄4 = 0 and 𝑃2𝑄2 = 𝑃2, by Theorem 5 and

Lemma 2,

(𝑃2 − 𝑄2)𝑑(𝑄2)
𝑗

𝑑
𝑄4 = −

𝑡−1

∑
𝑛=0

(𝑄2)𝑑𝑃
𝑛

2
(𝑄2)
𝑗

𝑑
𝑄4

+

𝑠−1

∑
𝑛=0

𝑄
𝜋

2
𝑄
𝑛

2
𝑃2(

𝑡−2

∑
𝑖=0

𝑃
𝑖

2
)

𝑛+2

(𝑄2)
𝑗

𝑑
𝑄4

= − (𝑄2)
𝑗+1

𝑑
𝑄4, 𝑗 ≥ 0,

(𝑃2 − 𝑄2)
𝜋
𝑄4 = 𝑄4 + (𝑃2 − 𝑄2) (𝑄2)𝑑𝑄4

= 𝑄4 − 𝑄2(𝑄2)𝑑𝑄4

= 𝑄
𝜋

2
𝑄4,

𝑃2𝑄
𝜋

2
= 0,

(30)

and then

(𝑃2 − 𝑄2)
𝜋
𝑘−1

∑
𝑛=0

(𝑃2 − 𝑄2)
𝑛
(−𝑄4)

= −

𝑘−1

∑
𝑛=0

(𝑃2 − 𝑄2)
𝑛
𝑄
𝜋

2
𝑄4

= −

𝑘−1

∑
𝑛=0

(−𝑄2)
𝑛
𝑄
𝜋

2
𝑄4.

(31)

Thus,

𝑋 =

𝑙−1

∑
𝑛=0

(−1)
𝑛+1

(𝑄2)
𝑛+2

𝑑
𝑄4(𝑃1 − 𝐼)

𝑛
(𝑃1 − 𝐼)

𝜋

−

𝑘−1

∑
𝑛=0

(−1)
𝑛
𝑄
𝑛

2
𝑄
𝜋

2
𝑄4(𝑃1 − 𝐼)

𝑛+2

𝑑

− (𝑄2)𝑑𝑄4(𝑃1 − 𝐼)
𝑑
.

(32)

Since

𝑃 − 𝐼 = 𝑊1 [
𝑃1 − 𝐼 0

0 𝑃2 − 𝐼
]𝑊
−1

1
, (33)

we have that, for 𝑛 ≥ 0,

𝑃𝑃𝑑(𝑃 − 𝐼)
𝑛

𝑑
= 𝑊1 [

(𝑃1 − 𝐼)
𝑛

𝑑
0

0 0
]𝑊
−1

1
,

(𝑃 − 𝐼)
𝑛
𝑃𝑃𝑑(𝑃 − 𝐼)

𝜋
= 𝑊1 [

(𝑃1 − 𝐼)
𝑛
(𝑃1 − 𝐼)

𝜋
0

0 0
]𝑊
−1

1
.

(34)
Obviously,

(𝑄𝑃
𝜋
)
𝑑
= 𝑊1 [

0 0

0 (𝑄2)𝑑
]𝑊
−1

1
= 𝑄𝑑𝑃

𝜋
,

(𝑄 − 𝐼) 𝑃𝑃𝑑 = 𝑊1 [
0 0

𝑄4 0
]𝑊
−1

1
,

𝑌
𝑛
𝑃
𝜋
= 𝑊1 [

0 0

0 𝑌
𝑛

2

]𝑊
−1

1
, 𝑛 ≥ 0,

(35)

where the symbol 𝑌 denotes 𝑄 or 𝑃. Also,
𝑃
𝜋
(𝑄𝑃
𝜋
)
𝜋
= 𝑃
𝜋
− 𝑃
𝜋
𝑄𝑃
𝜋
𝑄𝑑𝑃
𝜋
= 𝑃
𝜋
− 𝑄𝑄𝑑𝑃

𝜋
= 𝑄
𝜋
𝑃
𝜋
.

(36)

Note that 𝑃𝜋(𝑄 − 𝐼) = (𝑄 − 𝐼). Then, by (32),

𝑊1 [
0 0

𝑋 0
]𝑊
−1

1

=

𝑙−1

∑
𝑛=0

(−1)
𝑛+1

𝑄
𝑛+2

𝑑
𝑃
𝜋
(𝑄 − 𝐼) 𝑃𝑃𝑑(𝑃 − 𝐼)

𝑛
𝑃𝑃𝑑(𝑃 − 𝐼)

𝜋

−

𝑘−1

∑
𝑛=0

(−1)
𝑛
𝑄
𝑛
𝑃
𝜋
(𝑄𝑃
𝜋
)
𝜋
(𝑄 − 𝐼) 𝑃𝑃𝑑(𝑃 − 𝐼)

𝑛+2

𝑑

− 𝑄𝑑𝑃
𝜋
(𝑄 − 𝐼) 𝑃𝑃𝑑(𝑃 − 𝐼)𝑑

=

𝑙−1

∑
𝑛=0

(−1)
𝑛+1

𝑄
𝑛+2

𝑑
(𝑄 − 𝐼) 𝑃𝑃𝑑(𝑃 − 𝐼)

𝑛
(𝑃 − 𝐼)

𝜋

−

𝑘−1

∑
𝑛=0

(−1)
𝑛
𝑄
𝑛
𝑄
𝜋
(𝑄 − 𝐼) 𝑃𝑃𝑑(𝑃 − 𝐼)

𝑛+2

𝑑

− 𝑄𝑑 (𝑄 − 𝐼) 𝑃𝑃𝑑(𝑃 − 𝐼)𝑑.

(37)

Note that 𝑃𝜋𝑄𝑛𝑃𝜋 = 𝑄𝑛𝑃𝜋. So, by Theorem 5,

𝑊1 [
0 0

0 (𝑃2 − 𝑄2)𝑑
]𝑊
−1

1

=

𝑠−1

∑
𝑛=0

𝑡−2

∑
𝑖=0

(𝑎
[𝑛+2]

𝑖
𝐼 − 𝑎
[𝑛+1]

𝑖
𝑄𝑑𝑃
𝜋
)𝑄
𝑛
𝑃
𝜋
𝑃
𝑖+1

𝑃
𝜋

− 𝑄𝑑𝑃
𝜋
− 𝑄𝑑𝑃

𝜋
𝑄
𝑠
𝑃
𝜋

𝑡−2

∑
𝑖=0

𝑎
[𝑠+1]

𝑖
𝑃
𝑖+1

𝑃
𝜋

=

𝑠−1

∑
𝑛=0

𝑡−2

∑
𝑖=0

(𝑎
[𝑛+2]

𝑖
𝐼 − 𝑎
[𝑛+1]

𝑖
𝑄𝑑)𝑄

𝑛
𝑃
𝑖+1

𝑃
𝜋

− 𝑄𝑑𝑃
𝜋
− 𝑄𝑑𝑄

𝑠

𝑡−2

∑
𝑖=0

𝑎
[𝑠+1]

𝑖
𝑃
𝜋
𝑃
𝑖+1

.

(38)

Hence, putting (34), (37), and (38) into (28) yields (24).
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Corollary 8. Let 𝑃,𝑄 ∈ C𝑛×𝑛 with Ind(𝑄𝑃𝜋) = 𝑠, Ind(𝑃) = 𝑡,
Ind[(𝑃 + 𝐼)𝑃𝑃𝑑] = 𝑙, and Ind[(𝑃 +𝑄)𝑃𝜋] = 𝑘. If 𝑃𝑄 = 𝑃, then

(𝑃 + 𝑄)𝑑

=

𝑠−1

∑
𝑛=0

𝑡−2

∑
𝑖=0

(−1)
𝑖
(𝑎
[𝑛+2]

𝑖
𝐼 − 𝑎
[𝑛+1]

𝑖
𝑄𝑑)𝑄

𝑛
𝑃
𝑖+1

𝑃
𝜋
+ 𝑄𝑑𝑃

𝜋

+

𝑘−1

∑
𝑛=0

𝑄
𝑛
𝑄
𝜋
(𝑄 − 𝐼) 𝑃𝑃𝑑(𝑃 + 𝐼)

𝑛+2

𝑑

+ (𝑄
𝜋
+ 𝑄𝑑) 𝑃𝑃𝑑(𝑃 + 𝐼)𝑑

+

𝑙−1

∑
𝑛=0

𝑄
𝑛

𝑑
(𝑄𝑑 − 𝑄

2

𝑑
) 𝑃𝑃𝑑(𝑃 + 𝐼)

𝑛
(𝑃 + 𝐼)

𝜋

− 𝑄𝑑𝑄
𝑠

𝑡−2

∑
𝑖=0

(−1)
𝑖
𝑎
[𝑠+1]

𝑖
𝑃
𝜋
𝑃
𝑖+1

,

(39)

where 𝑎[𝑛]
𝑖

= ∑
𝑖

𝑘=0
𝑎
[𝑛−1]

𝑘
, 𝑎[1]
𝑖

= 1, 𝑖 = 0, . . . , 𝑡 − 1.

3. The Drazin Inverse of Some 2 × 2
Block Matrix

In this section, we will apply the results in Section 2 to study-
ing the representation for the Drazin inverse of a 2 × 2 block
matrix, in terms of its subblocks.

Theorem 9. Let 𝑀 = [ 𝐴 𝐵
𝐶 𝐷

] ∈ C𝑛×𝑛 with Ind[(𝐶𝐵)
𝜋
𝐷] =

𝑠 − 1, Ind(𝐴) = 𝑡 − 1, Ind[(𝐴 + 𝐼)𝐴𝐴𝑑] = 𝑙 − 1, and
Ind [[ 𝐴

𝜋

0

0 (𝐶𝐵)
𝜋 ]𝑀] = 𝑘. If 𝐴 = 𝐵𝐶 and 𝐵 = 𝐵𝐷, then

𝑀
𝑑

= [
(𝐼 − (𝐴 + 𝐼)

𝑑
) (𝐴 + 𝐼)

𝑑
𝐴
𝑑

0

(𝐷
𝑑
+𝐷𝜋) 𝐶(𝐴+𝐼)

2

𝑑
𝐴
𝑑
+(𝐷2
𝑑
− 𝐷
𝑑
) 𝐶(𝐴 + 𝐼)

𝑑
𝐴
𝑑

𝐷2
𝑑
(𝐶𝐵)
𝜋]𝑀

+

𝑠−1

∑
𝑛=1

𝑡−2

∑
𝑖=0

(−1)
𝑖

[
0 0

(𝑎
[𝑛+2]

𝑖
𝐼 − 𝑎
[𝑛+1]

𝑖
𝐷
𝑑
)𝐷𝑛−1𝐶𝐴𝑖𝐴𝜋 0

]𝑀

+

𝑘−1

∑
𝑛=1

[
0 0

𝐷𝜋 (𝐷𝑛 − 𝐷𝑛−1) 𝐶(𝐴 + 𝐼)
𝑛+2

𝑑
𝐴
𝑑

0
]𝑀

+

𝑙−1

∑
𝑛=0

[
0 0

(𝐷𝑛+2
𝑑

− 𝐷𝑛+3
𝑑

) 𝐶(𝐴 + 𝐼)
𝑛

(𝐴 + 𝐼)
𝜋

𝐴
𝑑

0
]𝑀

+

𝑡−2

∑
𝑖=0

(−1)
𝑖 [
[

[

𝑎
[2]

𝑖
𝐴𝑖𝐴𝜋 0

− (𝑎
[1]

𝑖
𝐷2
𝑑
+ 𝑎
[𝑠+1]

𝑖
𝐷
𝑑
𝐷𝑠−1) 𝐶𝐴𝑖𝐴𝜋 0

]
]

]

𝑀,

(40)

where 𝑎[𝑛]
𝑖

= ∑
𝑖

𝑘=0
𝑎
[𝑛−1]

𝑘
, 𝑎[1]
𝑖

= 1, 𝑖 = 0, . . . , 𝑡 − 1.

Proof. Let

𝑃 = [
𝐴 𝐵

0 0
] , 𝑄 = [

0 0

𝐶 𝐷
] . (41)

Then,𝑀 = 𝑃 + 𝑄, and, for 𝑛 ≥ 1,

𝑄
𝑛
= [

0 0

𝐷𝑛−1𝐶 𝐷𝑛
] , 𝑄

𝑛

𝑑
= [

0 0

𝐷𝑛+1
𝑑

𝐶 𝐷𝑛
𝑑

] ,

𝑄
𝜋
= [

𝐼 0

−𝐷𝑑𝐶 𝐷𝜋
] , 𝑃

𝑛
= [

𝐴𝑛 𝐴𝑛−1𝐵

0 0
] ,

𝑃𝑑 = [
𝐴𝑑 𝐴2

𝑑
𝐵

0 0
] , 𝑃𝑃𝑑 = [

𝐴𝐴𝑑 𝐴𝑑𝐵

0 0
] = [

𝐴𝑑 0

0 0
]𝑀,

𝑃
𝜋
= [

𝐴𝜋 −𝐴𝑑𝐵

0 𝐼
] , (𝑃 + 𝐼)

𝑛

𝛼
= [

(𝐴 + 𝐼)
𝑛

𝛼
∗

0 𝐼
] ,

(42)

where the subscript 𝛼 stands for 𝑑 or its absence.
Since 𝑊𝑊𝑑(𝑊 + 𝐼) = (𝑊 + 𝐼)𝑊𝑊𝑑, 𝑊𝑊𝑑(𝑊 + 𝐼)

𝑛

𝑑
=

(𝑊 + 𝐼)
𝑛

𝑑
𝑊𝑊𝑑 where𝑊 denotes 𝑃 or 𝐴. Thus,

𝑃𝑃𝑑(𝑃 + 𝐼)
𝑛

𝛼
= (𝑃 + 𝐼)

𝑛

𝛼
𝑃𝑃𝑑 = [

(𝐴 + 𝐼)
𝑛

𝛼
𝐴𝑑 0

0 0
]𝑀,

(43)

𝑃𝑃𝑑(𝑃 + 𝐼)
𝜋
= (𝑃 + 𝐼)

𝜋
𝑃𝑃𝑑 = [

(𝐴 + 𝐼)
𝜋

∗

0 𝐼
]𝑃𝑃𝑑

= [
(𝐴 + 𝐼)

𝜋
𝐴𝑑 0

0 0
]𝑀,

𝑎
[𝑛+2]

𝑖
𝐼 − 𝑎
[𝑛+1]

𝑖
𝑄𝑑

= [
𝑎
[𝑛+2]

𝑖
𝐼 0

0 𝑎
[𝑛+2]

𝑖
𝐼
] − [

0 0

𝑎
[𝑛+1]

𝑖
𝐷
2

𝑑
𝐶 𝑎
[𝑛+1]

𝑖
𝐷𝑑

]

= [
𝑎
[𝑛+2]

𝑖
𝐼 0

−𝑎
[𝑛+1]

𝑖
𝐷2
𝑑
𝐶 𝑎
[𝑛+2]

𝑖
𝐼 − 𝑎
[𝑛+1]

𝑖
𝐷𝑑

] ,

𝑃
𝑖+1

𝑃
𝜋
= [

𝐴𝑖+1 𝐴𝑖𝐵

0 0
] [

𝐴
𝜋 −𝐴𝑑𝐵

0 𝐼
]

= [
𝐴
𝑖+1𝐴𝜋 𝐴𝑖𝐴𝜋𝐵

0 0
]

= [
𝐴
𝑖𝐴𝜋 0

0 0
]𝑀,

𝑄
𝑛
𝑃
𝑖+1

𝑃
𝜋
= [

0 0

𝐷𝑛−1𝐶 𝐷𝑛
]𝑃
𝑖+1

𝑃
𝜋

= [
0 0

𝐷𝑛−1𝐶𝐴𝑖𝐴𝜋 0
]𝑀.

(44)
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So, for 𝑛 ≥ 1,

(𝑎
[𝑛+2]

𝑖
𝐼 − 𝑎
[𝑛+1]

𝑖
𝑄𝑑)𝑄

𝑛
𝑃
𝑖+1

𝑃
𝜋

= [
0 0

(𝑎
[𝑛+2]

𝑖
𝐼 − 𝑎
[𝑛+1]

𝑖
𝐷𝑑)𝐷

𝑛−1𝐶𝐴𝑖𝐴𝜋 0
]𝑀,

(𝑎
[2]

𝑖
𝐼 − 𝑎
[1]

𝑖
𝑄𝑑) 𝑃

𝑖+1
𝑃
𝜋
= [

𝑎
[2]

𝑖
𝐴𝑖𝐴𝜋 0

−𝑎
[1]

𝑖
𝐷2
𝑑
𝐶𝐴𝑖𝐴𝜋 0

]𝑀,

𝑎
[𝑠+1]

𝑖
𝑄𝑑𝑄
𝑠
𝑃
𝜋
𝑃
𝑖+1

= 𝑎
[𝑠+1]

𝑖
[

0 0

𝐷
2

𝑑
𝐶 𝐷𝑑

] [
0 0

𝐷𝑠−1𝐶𝐴𝑖𝐴𝜋 0
]𝑀

= [
0 0

𝑎
[𝑠+1]

𝑖
𝐷𝑑𝐷
𝑠−1𝐶𝐴𝜋𝐴𝑖 0

]𝑀.

(45)

Also, for 𝑛 ≥ 1,

𝑄
𝜋
(𝑄
𝑛+1

− 𝑄
𝑛
) 𝑃𝑃𝑑(𝑃 + 𝐼)

𝑛+2

𝑑

= [
𝐼 0

−𝐷𝑑𝐶 𝐷𝜋
] [

0 0

(𝐷𝑛 − 𝐷𝑛−1) 𝐶 𝐷𝑛+1 − 𝐷𝑛
]

× [
(𝐴 + 𝐼)

𝑛+2

𝑑
𝐴𝑑 0

0 0
]𝑀

= [
0 0

𝐷𝜋 (𝐷𝑛 − 𝐷𝑛−1) 𝐶(𝐴 + 𝐼)
𝑛+2

𝑑
𝐴𝑑 0

]𝑀,

𝑄
𝜋
(𝑄 − 𝐼) 𝑃𝑃𝑑(𝑃 + 𝐼)

2

𝑑

= [
𝐼 0

−𝐷𝑑𝐶 𝐷𝜋
] [

−𝐼 0

𝐶 𝐷 − 𝐼
] [

(𝐴 + 𝐼)
2

𝑑
𝐴𝑑 0

0 0
]𝑀

= [
−(𝐴 + 𝐼)

2

𝑑
𝐴𝑑 0

(𝐷𝑑 + 𝐷𝜋) 𝐶(𝐴 + 𝐼)
2

𝑑
𝐴𝑑 0

]𝑀,

(𝑄
𝜋
+ 𝑄𝑑) 𝑃𝑃𝑑(𝑃 + 𝐼)𝑑

= [
𝐼 0

𝐷2
𝑑
𝐶 − 𝐷𝑑𝐶 𝐷𝜋 + 𝐷𝑑

] [
(𝐴 + 𝐼)𝑑𝐴𝑑 0

0 0
]𝑀

= [
(𝐴 + 𝐼)𝑑𝐴𝑑 0

(𝐷2
𝑑
− 𝐷𝑑) 𝐶(𝐴 + 𝐼)𝑑𝐴𝑑 0

]𝑀,

(46)

and, for 𝑛 ≥ 0,

(𝑄
𝑛+1

𝑑
− 𝑄
𝑛+2

𝑑
) 𝑃𝑃𝑑(𝑃 + 𝐼)

𝑛
(𝑃 + 𝐼)

𝜋

= [
0 0

(𝐷𝑛+2
𝑑

− 𝐷𝑛+3
𝑑

) 𝐶 𝐷𝑛+1 − 𝐷𝑛+2
]

× [
(𝐴 + 𝐼)

𝑛
𝐴𝑑 0

0 0
]𝑀[

(𝐴 + 𝐼)
𝜋
𝐴𝑑 0

0 0
]𝑀

= [
0 0

(𝐷𝑛+2
𝑑

− 𝐷𝑛+3
𝑑

) 𝐶(𝐴 + 𝐼)
𝑛
(𝐴 + 𝐼)

𝜋
𝐴𝑑 0

]𝑀.

(47)

Since

𝐷 − 𝐶𝐴𝑑𝐵 = 𝐷 − 𝐶𝐵(𝐶𝐵)
2

𝑑
𝐶𝐵𝐷 = (𝐶𝐵)

𝜋
𝐷,

𝐶𝐴
𝜋
= 𝐶 − 𝐶𝐵𝐶𝐵(𝐶𝐵)

2

𝑑
𝐶 = (𝐶𝐵)

𝜋
𝐶,

(48)

we have

𝑄𝑑𝑃
𝜋
= [

0 0

𝐷2
𝑑
𝐶 𝐷𝑑

] [
𝐴𝜋 −𝐴𝑑𝐵

0 𝐼
]

= [
0 0

𝐷2
𝑑
(𝐶𝐵)
𝜋
𝐶 𝐷2
𝑑
(𝐶𝐵)
𝜋
𝐷
]

= [
0 0

0 𝐷2
𝑑
(𝐶𝐵)
𝜋]𝑀,

(49)

𝑄𝑃
𝜋
= [

0 0

𝐶𝐴
𝜋 𝐷 − 𝐶𝐴𝑑𝐵

] = [
0 0

(𝐶𝐵)
𝜋
𝐶 (𝐶𝐵)

𝜋
𝐷
] ,

𝑀𝑃
𝜋
= [

𝐴𝐴𝜋 𝐵 − 𝐴𝐴𝑑𝐵

𝐶𝐴𝜋 𝐷 − 𝐶𝐴𝑑𝐵
] = [

𝐴𝐴
𝜋 𝐵𝐴𝜋

(𝐶𝐵)
𝜋
𝐶 (𝐶𝐵)

𝜋
𝐷
]

= [
𝐴
𝜋 0

0 (𝐶𝐵)
𝜋]𝑀,

(50)

and then, by Lemma 4, Ind(𝑄𝑃𝜋) ≤ Ind[(𝐶𝐵)
𝜋
𝐷] + 1 = 𝑠,

and Ind[(𝑃 + 𝑄)𝑃𝜋] ≤ Ind [[ 𝐴
𝜋

0

0 (𝐶𝐵)
𝜋 ]𝑀] = 𝑘.

By Lemma 4, Ind(𝑃) ≤ Ind(𝐴) + 1 = 𝑡. Further, by (43),
Ind[(𝑃 + 𝐼)𝑃𝑃𝑑] ≤ Ind[(𝐴 + 𝐼)𝐴𝐴𝑑] + 1 = 𝑙.

Hence, putting (45)∼(49) into (39) yields (40).

4. Example

In this section, we present a numerical example to demon-
strate Theorem 7.

Example 1. Taking 𝑃,𝑄 as follows:

𝑃 =
[
[
[

[

0.1321 0.8459 0.2893 −0.0597

−0.2830 0.0802 0.0943 0.3066

−0.3396 0.1462 1.1132 0.6179

−0.6226 0.9764 0.2075 0.6745

]
]
]

]

,

𝑄 =
[
[
[

[

0.5472 1.5283 0.1509 −0.5094

0.0000 1.0000 −0.0000 0

0.1132 −0.3821 0.9623 0.1274

−0.4528 1.5283 0.1509 0.4906

]
]
]

]

,

(51)

we can get

𝑃𝑑 =
[
[
[

[

0.2830 0.0031 0.2390 −0.2233

−0.2830 0.0802 0.0943 0.3066

0.8491 0.0094 0.7170 −0.6698

−0.8491 0.2406 0.2830 0.9198

]
]
]

]

,

𝑃
𝜋
=

[
[
[

[

0.9057 −0.0566 −0.3019 0.0189

0.2830 0.9198 −0.0943 −0.3066

−0.2830 −0.1698 0.0943 0.0566

0.8491 −0.2406 −0.2830 0.0802

]
]
]

]

,
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𝑄𝑑 =
[
[
[

[

0.5472 1.5283 0.1509 −0.5094

0.0000 1.0000 −0.0000 0

0.1132 −0.3821 0.9623 0.1274

−0.4528 1.5283 0.1509 0.4906

]
]
]

]

,

𝑄
𝜋
=

[
[
[

[

0.4528 −1.5283 −0.1509 0.5094

0 0 0 0

−0.1132 0.3821 0.0377 −0.1274

0.4528 −1.5283 −0.1509 0.5094

]
]
]

]

,

(52)

and Ind(𝑄𝑃
𝜋) = 1, Ind(𝑃) = 2, Ind[(𝑃 − 𝐼)𝑃𝑃𝑑] = 2, and

Ind[(𝑃 − 𝑄)𝑃
𝜋
] = 1. By Theorem 7, we have

(𝑃 − 𝑄)𝑑 =
[
[
[

[

−0.2264 −0.7358 0.0755 0.2453

−0.2830 −0.9198 0.0943 0.3066

0.1132 0.3679 −0.0377 −0.1226

−0.1698 −0.5519 0.0566 0.1840

]
]
]

]

. (53)
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