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This paper studies the wave-breaking criterion for the generalized weakly dissipative two-component Hunter-Saxton system in the
periodic setting. We get local well-posedness for the generalized weakly dissipative two-component Hunter-Saxton system. We
study a wave-breaking criterion for solutions and results of wave-breaking solutions with certain initial profiles.

1. Introduction

In recent years, the Hunter-Saxton equation [1]

𝑢
𝑡𝑥𝑥

+ 2𝑢
𝑥
𝑢
𝑥𝑥
+ 𝑢𝑢
𝑥𝑥𝑥

= 0 (1)

models the propagation of weakly nonlinear orientation
waves in a massive nematic liquid crystal. In Hunter and
Saxton [1], 𝑥 is the space variable in a reference framemoving
with the linearized wave velocity, 𝑡 is a slow-time variable,
and 𝑢(𝑡, 𝑥) is a measure of the average orientation of the
medium locally around 𝑥 at time 𝑡. In order to be more
precise, the orientation of the molecules is described by the
field of unit vectors (cos 𝑢(𝑡, 𝑥), sin 𝑢(𝑡, 𝑥)) [2]. The Hunter-
Saxton equation also arises in a different physical context
as the high-frequency limit [3, 4] of the Camassa-Holm
equation for shallow water waves [5, 6] and a reexpression
of the geodesic flow on the diffeomorphism group of the
circle [7] with a bi-Hamiltonian structure [1, 8] which is
completely integrable [4, 9]. Hunter and Saxton [1] explored
the initial value problem for the Hunter and Saxton equation
on the line (nonperiodic case) and on the unit circle 𝑆 =

𝑅/𝑍 by using the method of characteristics, while Yin [2]
studied it by using the Kato semigroup method. In addition,
the two classes of admissible weak solutions, dissipative and
conservative solutions, and their stability were investigated
in [10–12]. Lenells [13] confirmed that the Hunter-Saxton
equation also describes the geodesic flows on the quotient

space of the infinite-dimensional group 𝐷
𝑠
(𝑆) modulo the

subgroup of rotations Rot(𝑆).
The Camassa-Holm equation admits many integrable

multicomponent generalizations. So many authors studied
the two-component Camassa-Holm system [14, 15]. Inspired
by this, recently, the researchers have made a study of the
global existence of solutions to a two-component generalized
Hunter-Saxton system in the periodic setting as follows:

𝑢
𝑡𝑥𝑥

+ 2𝜎𝑢
𝑥
𝑢
𝑥𝑥
+ 𝜎𝑢𝑢

𝑥𝑥𝑥
− 𝜌𝜌
𝑥
+ 𝐴𝑢
𝑥
= 0,

𝑡 > 0, 𝑥 ∈ 𝑅,

𝜌
𝑡
+ (𝜌𝑢)

𝑥
= 0, 𝑡 > 0, 𝑥 ∈ 𝑅,

𝑢 (𝑡, 𝑥 + 1) = 𝑢 (𝑡, 𝑥) , 𝜌 (𝑡, 𝑥 + 1) = 𝜌 (𝑡, 𝑥) ,

𝑡 ≥ 0, 𝑥 ∈ 𝑅,

𝑢 (0, 𝑥) = 𝑢
0
(𝑥) , 𝜌 (0, 𝑥) = 𝜌

0
(𝑥) , 𝑥 ∈ 𝑅.

(2)

The authors of [16] have explored the particular choice of
the parameter 𝜎 = 1. The authors of [17] have further studied
the wave breaking and global existence for the system for the
parameter 𝜎 ∈ R to determine a wave-breaking criterion
for strong solutions by using the localization analysis in the
transport equation theory.

In general, avoiding energy dissipation mechanisms in a
real world is not so easy.Wu and Yin [18, 19] have investigated
the blow-up phenomena and the blow-up rate of the strong
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solutions of the weakly dissipative CH equation and DP
equation. Inspired by the results mentioned above, we are
going to discuss the initial value problem associated with
the generalized weakly dissipative periodic two-component
Hunter-Saxton system

𝑢
𝑡𝑥𝑥

+ 2𝜎𝑢
𝑥
𝑢
𝑥𝑥
+ 𝜎𝑢𝑢

𝑥𝑥𝑥
− 𝜌𝜌
𝑥
+ 𝐴𝑢
𝑥

+ 𝜆 (𝑢 − 𝑢
𝑥𝑥
) = 0, 𝑡 > 0, 𝑥 ∈ 𝑅,

𝜌
𝑡
+ (𝜌𝑢)

𝑥
= 0, 𝑡 > 0, 𝑥 ∈ 𝑅,

𝑢 (𝑡, 𝑥 + 1) = 𝑢 (𝑡, 𝑥) , 𝜌 (𝑡, 𝑥 + 1) = 𝜌 (𝑡, 𝑥) ,

𝑡 ≥ 0, 𝑥 ∈ 𝑅,

𝑢 (0, 𝑥) = 𝑢
0
(𝑥) , 𝜌 (0, 𝑥) = 𝜌

0
(𝑥) , 𝑥 ∈ 𝑅,

(3)

where 𝜎 ∈ 𝑅 is the new free parameter and 𝐴 ≥ 0, 𝜆 < 0.
Our major results of this paper are Theorems 11 and

12 (wave-breaking criterion). The remainder of the paper
is organized as follows. Section 2 establishes the local well-
posedness for (3) with the initial data in 𝐻

𝑠
× 𝐻
𝑠−1, 𝑠 ≥ 2.

Section 3 deals with the wave breaking of this new system.
Theorem 11, using transport equation theory, states a wave-
breaking criterion which says that the wave breaking only
depends on the slope of 𝑢, not the slope of 𝜌. Theorem 12
improves the blow-up criterion with a more precise condi-
tion.

Notation. Throughout this paper, 𝑆 = 𝑅/𝑍 will denote the
unit circle. By𝐻𝑠, 𝑠 ≥ 0, we will represent the Sobolev spaces
of equivalence classes of functions defined on the unit circle
𝑆 which have square-integrable distributional derivatives up
to order 𝑠. The𝐻𝑠-norm will be designated by ‖ ⋅ ‖

𝐻
𝑠 , and the

norm of a vector V ∈ 𝐻𝑠 × 𝐻𝑠−1 will be written as ‖V‖
𝐻
𝑠
×𝐻
𝑠−1 .

Also, the Lebesgue spaces of order 𝑝 ∈ [1,∞]will be denoted
by 𝐿
𝑝
(𝑆), and the norm of their elements will be denoted

by ‖𝑓‖
𝐿
𝑝
(𝑆)
. Finally, if 𝑝 = 2, we agree on the convention

‖ ⋅ ‖
𝐿
2
(𝑆)

= ‖ ⋅ ‖.

2. Preliminaries

In this part, we will establish the local well-posedness for
the Cauchy problem of system (3) by using Kato’s theory. To
pursue our goal, we give the results we wanted in brief.

We now provide the framework in which we will refor-
mulate (3). To do this, we observe that we can write the first
equation of (3) in the following integrated form:

𝑢
𝑡𝑥
+

𝜎

2

𝑢
2

𝑥
+ 𝜎𝑢𝑢

𝑥𝑥
−

1

2

𝜌
2
+ 𝐴𝑢 + 𝜆𝜕

−1

𝑥
𝑢 − 𝜆𝑢

𝑥
= 𝑔 (𝑡) ,

(4)

where 𝜕−1
𝑥
𝑓(𝑥) = ∫

𝑥

0
𝑓(𝑦)𝑑𝑦 and 𝑔(𝑡) is determined by the

periodicity of 𝑢 to be

𝑔 (𝑡) = −∫

𝑆

(

𝜎

2

𝑢
2

𝑥
+

1

2

𝜌
2
− 𝐴𝑢)𝑑𝑥. (5)

Integrating both sides of (4) with respect to variable 𝑥,
we get

𝑢
𝑡
+ 𝜎𝑢𝑢

𝑥
= 𝜕
−1

𝑥
(

𝜎

2

𝑢
2

𝑥
+

1

2

𝜌
2
− 𝐴𝑢 + 𝑔 + 𝜆𝑢

𝑥
− 𝜆𝜕
−1

𝑥
𝑢)

+ ℎ (𝑡) ,

(6)

where ℎ(𝑡) : [0,∞) → 𝑅 is an arbitrary continuous function.
Therefore, (3) can be written in the “transport” form as
follows:

𝑢
𝑡
+ 𝜎𝑢𝑢

𝑥
= 𝜕
−1

𝑥
(

𝜎

2

𝑢
2

𝑥
+

1

2

𝜌
2
− 𝐴𝑢 − 𝜆𝜕

−1

𝑥
𝑢 + 𝜆𝑢

𝑥
+ 𝑔)

+ ℎ (𝑡) , 𝑡 > 0, 𝑥 ∈ 𝑅,

𝜌
𝑡
+ 𝑢𝜌
𝑥
= −𝑢
𝑥
𝜌, 𝑡 > 0, 𝑥 ∈ 𝑅,

𝑢 (𝑡, 𝑥 + 1) = 𝑢 (𝑡, 𝑥) , 𝜌 (𝑡, 𝑥 + 1) = 𝜌 (𝑡, 𝑥) ,

𝑡 ≥ 0, 𝑥 ∈ 𝑅,

𝑢 (0, 𝑥) = 𝑢
0
(𝑥) , 𝜌 (0, 𝑥) = 𝜌

0
(𝑥) , 𝑥 ∈ 𝑅,

(7)

where ℎ(𝑡) : [0,∞) → 𝑅 is an arbitrary continuous function.
Next, we apply Kato’s theory to establish the local well-

posedness for the system (3). Consider the abstract quasi-
linear evolution equation

𝑑V

𝑑𝑡

+ 𝐴 (V) V = 𝑓 (V) , 𝑡 ≥ 0, V (0) = V
0
. (8)

Proposition 1 (see [20]). Given the evolution equation (8),
assume that the Kato conditions hold. For a fixed V

0
∈ 𝑌, there

is a maximal 𝑇 > 0 depending only on ‖V
0
‖
𝑌
and a unique

solution V to the abstract quasi-linear evolution equation (8)
such that

V = V (⋅, V
0
) ∈ 𝐶 ([0, 𝑇) ; 𝑌) ∩ 𝐶

1
([0, 𝑇) ; 𝑋) . (9)

Moreover, the map V
0
→ V(⋅, V

0
) is continuous from 𝑌 to

𝐶 ([0, 𝑇) ; 𝑌) ∩ 𝐶
1
([0, 𝑇) ; 𝑋) . (10)

One may follow the similar argument as in [17] to obtain the
following local well-posedness for (3).

Theorem 2. Given any 𝑋
0
= (
𝑢
0

𝜌
0

) ∈ 𝐻
𝑠
× 𝐻
𝑠−1, 𝑠 ≥ 2, there

exist a maximal 𝑇 = 𝑇(𝜎, 𝐴; ‖𝑋
0
‖
𝐻
𝑠
×𝐻
𝑠−1) > 0 and a unique

solution𝑋 = (
𝑢

𝜌 ) to (3) such that

𝑋 = 𝑋 (⋅, 𝑋
0
) ∈ 𝐶 ([0, 𝑇) ;𝐻

𝑠
(𝑆) × 𝐻

s−1
(𝑆))

∩ 𝐶
1
([0, 𝑇) ;𝐻

𝑠−1
(𝑆) × 𝐻

𝑠−2
(𝑆)) .

(11)

Moreover, the solution depends continuously on the initial
data, that is, the mapping 𝑋

0
→ 𝑋(⋅, 𝑋

0
) : 𝐻

𝑠
× 𝐻
𝑠−1

→

𝐶([0, 𝑇);𝐻
𝑠
(𝑆) × 𝐻

𝑠−1
(𝑆)) ∩ 𝐶

1
([0, 𝑇); and 𝐻

𝑠−1
(𝑆) ×

𝐻
𝑠−2
(𝑆)) is continuous, and the maximal existence time 𝑇 can

be chosen independently of the Sobolev order 𝑠.
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Now, discuss the initial value problem for the Lagrangian flow
map as follows:

𝜕𝜑

𝜕𝑡

= 𝑢 (𝑡, 𝜑 (𝑡, 𝑥)) , 𝑡 ∈ [0, 𝑇) ,

𝜑 (0, 𝑥) = 𝑥, 𝑥 ∈ 𝑅,

(12)

where 𝑢 is the first component of the solution 𝑋 to (3). Using
classical results from ordinary differential equations, one can
acquire the following result on 𝜑which is of vital importance in
the proof of the blow-up scenarios.

Lemma 3 (see [17]). Let 𝑢 ∈ 𝐶([0, 𝑇);𝐻𝑠) ∩ 𝐶1([0, 𝑇);𝐻𝑠−1),
𝑠 ≥ 2. Then, initial value problem (12) admits a unique solu-
tion 𝜑 ∈ 𝐶

1
([0, 𝑇) × 𝑅, 𝑅). Moreover, {𝜑(𝑡, ⋅)}

𝑡∈[0,𝑇)
is increas-

ing diffeomorphism of 𝑅 with

𝜑
𝑥
(𝑡, 𝑥) = 𝑒

∫
𝑇

0

𝑢
𝑥
(𝜏,𝜑(𝜏,𝑥))𝑑𝜏

> 0, (𝑡, 𝑥) ∈ [0, 𝑇) × 𝑅. (13)

Remark 4. Since 𝜑(𝑡, ⋅) : 𝑅 → 𝑅 is a diffeomorphism of
the linear for every 𝑡 ∈ [0, 𝑇), the 𝐿∞-norm of any function
V(𝑡, ⋅) ∈ 𝐿

∞, 𝑡 ∈ [0, 𝑇) is preserved under the family of
diffeomorphisms 𝜑(𝑡, ⋅) with 𝑡 ∈ [0, 𝑇), that is,

‖V (𝑡, ⋅)‖
𝐿
∞
(𝑆)

=
󵄩
󵄩
󵄩
󵄩
V (𝑡, 𝜑 (𝑡, ⋅))󵄩󵄩󵄩

󵄩𝐿
∞
(𝑆)
, 𝑡 ∈ [0, 𝑇) . (14)

Similarly, we have

inf
𝑥∈𝑆

V (𝑡, 𝑥) = inf
𝑥∈𝑆

V (𝑡, 𝜑 (𝑡, 𝑥)) , 𝑡 ∈ [0, 𝑇) ,

sup
𝑥∈𝑆

V (𝑡, 𝑥) = sup
𝑥∈𝑆

V (𝑡, 𝜑 (𝑡, 𝑥)) , 𝑡 ∈ [0, 𝑇) .

(15)

Lemma 5. Let 𝑋
0
= (
𝑢
0

𝜌
0

) ∈ 𝐻
𝑠
× 𝐻
𝑠−1, 𝑠 ≥ 2, and let 𝑇 be

the maximal existence time of the solution𝑋 = (
𝑢

𝜌 ) to (3) with
initial data 𝑋

0
. Then, for all 𝑡 ∈ [0, 𝑇), we have the following

results:

∫

𝑆

𝜌 (𝑡, 𝑥) 𝑑𝑥 = ∫

𝑆

𝜌
0
(𝑡) 𝑑𝑥, (16)

∫

𝑆

𝑢
2

𝑥
(𝑡, 𝑥) + 𝜌

2
(𝑡, 𝑥) 𝑑𝑥 ≤ ∫

𝑆

𝑢
2

0,𝑥
(𝑥) + 𝜌

2

0
(𝑥) 𝑑𝑥 ≜ 𝐸

0
.

(17)

Proof. On the one hand, integrating the second equation in
(3) by parts and using the periodicity of 𝑢 and 𝜌, we acquire

𝑑

𝑑𝑡

∫

𝑆

𝜌 𝑑𝑥 = −∫

𝑆

(𝑢𝜌)
𝑥
𝑑𝑥 = 0. (18)

On the other hand, multiplying (4) by 𝑢
𝑥
and integrating

by parts, considering the periodicity of 𝑢, we obtain

𝑑

𝑑𝑡

∫

𝑆

𝑢
2

𝑥
𝑑𝑥 = −2∫

𝑆

𝑢𝜌𝜌
𝑥
𝑑𝑥 + 2𝜆∫

𝑆

𝑢
2
𝑑𝑥 + 2𝜆∫

𝑆

𝑢
2

𝑥
𝑑𝑥.

(19)

Multiplying the second equation in (3) by 𝜌 and integrat-
ing by parts, we have

𝑑

𝑑𝑡

∫

𝑆

𝜌
2
𝑑𝑥 = 2∫

𝑆

𝑢𝜌𝜌
𝑥
𝑑𝑥. (20)

Adding the above two equations, we get

𝑑

𝑑𝑡

∫

𝑆

𝑢
2

𝑥
+ 𝜌
2
𝑑𝑥 = 2𝜆‖𝑢‖

2

𝐻
2 , 𝜆 < 0. (21)

We acquire

∫

𝑆

𝑢
2

𝑥
(𝑡, 𝑥) + 𝜌

2
(𝑡, 𝑥) 𝑑𝑥 ≤ ∫

𝑆

𝑢
2

0,𝑥
(𝑥) + 𝜌

2

0
(𝑥) 𝑑𝑥 ≜ 𝐸

0
.

(22)

This completes the proof of Lemma 5.

Lemma 6. Let 𝑋
0
= (
𝑢
0

𝜌
0

) ∈ 𝐻
𝑠
× 𝐻
𝑠−1, 𝑠 ≥ 2, and let 𝑇 be

the maximal existence time of the solution𝑋 = (
𝑢

𝜌 ) to (3) with
initial data 𝑋

0
. Then, for all 𝑡 ∈ [0, 𝑇), we have the following

results:

∫

𝑆

𝑢
2
(𝑡, 𝑥) 𝑑𝑥 ≤ 𝑒

𝐶
2
𝑡
(∫

𝑆

𝑢
2

0
(𝑥) 𝑑𝑥 + 1) , (23)

where 𝐶
1
= max(|𝜎| − 𝜆, 1)𝐸

0
+ sup

𝑡∈[0,∞)
|ℎ(𝑡)| > 0, 𝐶

2
=

𝐶
1
+ 4𝐴 − 2𝜆.

Proof. By computing directly, we have

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝜕
−1

𝑥
(

𝜎

2

𝑢
2

𝑥
+

1

2

𝜌
2
− 𝐴𝑢 + 𝑔 + 𝜆𝑢

𝑥
− 𝜆𝜕
−1

𝑥
𝑢) + ℎ (𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ ∫

𝑥

0

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝜎

2

𝑢
2

𝑥
+

1

2

𝜌
2
− 𝐴𝑢 + 𝑔 + 𝜆𝑢

𝑥
− 𝜆𝜕
−1

𝑥
𝑢

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑𝑥 + |ℎ (𝑡)|

≤

1

2

max (|𝜎| − 𝜆, 1) 𝐸
0
+
󵄨
󵄨
󵄨
󵄨
𝑔 (𝑡)

󵄨
󵄨
󵄨
󵄨
+ |ℎ (𝑡)|

+ (|𝐴| − 𝜆) ∫

1

0

|𝑢| 𝑑𝑥 − 𝜆

≤ max (|𝜎| − 𝜆, 1) 𝐸
0
+ |ℎ (𝑡)| + (2 |𝐴| − 𝜆) ∫

𝑆

|𝑢| 𝑑𝑥 − 𝜆

:= 𝐶
1
+ (2 |𝐴| − 𝜆) ∫

𝑆

|𝑢| 𝑑𝑥 − 𝜆,

(24)

where 𝐶
1
= max(|𝜎| − 𝜆, 1)𝐸

0
+ sup
𝑡∈[0,∞)

|ℎ(𝑡)| > 0 and

󵄨
󵄨
󵄨
󵄨
𝑔 (𝑡)

󵄨
󵄨
󵄨
󵄨
=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

− ∫

𝑆

(

𝜎

2

𝑢
2

𝑥
+

1

2

𝜌
2
− 𝐴𝑢)𝑑𝑥

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

1

2

max (|𝜎| , 1) 𝐸
0
+ 𝐴∫

𝑆

|𝑢| 𝑑𝑥.

(25)
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Multiplying (6) by 𝑢 and integrating with respect to 𝑥,
using the periodicity of 𝑢 and (24), we obtain

1

2

𝑑

𝑑𝑡

∫

𝑆

𝑢
2
(𝑡, 𝑥) 𝑑𝑥

= ∫

𝑆

𝑢𝑢
𝑡
𝑑𝑥

= −𝜎∫

𝑆

𝑢
𝑥
𝑢
2
𝑑𝑥

+ ∫

𝑆

𝑢 [𝜕
−1

𝑥
(

𝜎

2

𝑢
2

𝑥
+

1

2

𝜌
2
− 𝐴𝑢 + 𝜆𝑢

𝑥

− 𝜆𝜕
−1

𝑥
𝑢 + 𝑔) +ℎ (𝑡) ] 𝑑𝑥

= ∫

𝑆

𝑢 [𝜕
−1

𝑥
(

𝜎

2

𝑢
2

𝑥
+

1

2

𝜌
2
− 𝐴𝑢 + 𝜆𝑢

𝑥

−𝜆𝜕
−1

𝑥
𝑢 + 𝑔) + ℎ (𝑡) ] 𝑑𝑥

≤ (𝐶
1
+ (2 |𝐴| − 𝜆) ∫

𝑆

|𝑢| 𝑑𝑥 − 𝜆)∫

𝑆

|𝑢| 𝑑𝑥

≤ 𝐶
1
∫

𝑆

|𝑢| 𝑑𝑥 + (2 |𝐴| − 𝜆) (∫

𝑆

|𝑢| 𝑑𝑥)

2

− 𝜆∫

𝑆

𝑢
2
𝑑𝑥

≤ (

𝐶
1

2

+ (2 |𝐴| − 2𝜆))∫

𝑆

𝑢
2
𝑑𝑥 +

𝐶
1
− 𝜆

2

=

𝐶
2

2

∫

𝑆

𝑢
2
𝑑𝑥 +

𝐶
1
− 𝜆

2

,

(26)

where 𝐶
2
= 𝐶
1
+ 4𝐴 − 2𝜆; note that 𝐶

2
> 𝐶
1
.

By Gronwall’s inequality, we get

∫

𝑆

𝑢
2
(𝑡, 𝑥) 𝑑𝑥 ≤ 𝑒

𝐶
2
𝑡
(∫

𝑆

𝑢
2

0
(𝑥) 𝑑𝑥 +

𝐶
1
− 𝜆

𝐶
2

) −

𝐶
1
− 𝜆

𝐶
2

≤ 𝑒
𝐶
2
𝑡
(∫

𝑆

𝑢
2

0
(𝑥) 𝑑𝑥 + 1) .

(27)

This completes the proof of Lemma 6.

Lemma 7. Assume that 𝑢
0
∈ 𝐻
𝑠
(𝑆), 𝑠 ≥ 2, 𝑢

0
̸= 0, and that

the corresponding solution 𝑢(𝑡, 𝑥) of (3) has a zero point for
any time 𝑡 ≥ 0. Then, for all 𝑡 ∈ [0, 𝑇) we have

∫

𝑆

𝑢
2
(𝑡, 𝑥) 𝑑𝑥 ≤ ∫

𝑆

𝑢
2

𝑥
(𝑡, 𝑥) 𝑑𝑥 ≤ 𝐸

0
. (28)

Proof. By assumption, there is 𝑥
0
∈ [0, 1] such that 𝑢(𝑡, 𝑥

0
) =

0 for each 𝑡 ∈ [0, 𝑇).
Then, for 𝑥 ∈ 𝑆, by holder equality, we have

𝑢
2
(𝑡, 𝑥) = (∫

𝑥

𝑥
0

𝑢
𝑥
𝑑𝑥)

2

≤ (𝑥 − 𝑥
0
) ∫

𝑥

𝑥
0

𝑢
2

𝑥
𝑑𝑥,

𝑥 ∈ [𝑥
0
, 𝑥
0
+

1

2

] .

(29)

This implies sup
𝑥∈𝑆

𝑢
2
(𝑡, 𝑥) ≤ (1/2) ∫

𝑆
𝑢
2

𝑥
𝑑𝑥

∫

𝑆

𝑢
2
(𝑡, 𝑥) 𝑑𝑥 ≤ sup

𝑥∈𝑆

𝑢
2
(𝑡, 𝑥) ≤

1

2

∫

𝑆

𝑢
2

𝑥
𝑑𝑥

≤ ∫

𝑆

𝑢
2

𝑥
+ 𝜌
2
𝑑𝑥 ≤ 𝐸

0
.

(30)

3. Wave-Breaking Criteria

In this section, by using transport equation theory, we obtain
the wave-breaking criteria for solutions to (3). We first recall
the following propositions.

Proposition 8 (1D Moser-type estimates). The following esti-
mates hold:

(a) For 𝑠 ≥ 0,
󵄩
󵄩
󵄩
󵄩
𝑓𝑔
󵄩
󵄩
󵄩
󵄩𝐻
𝑠
(R) ≤ 𝐶 (

󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩𝐿
∞
(R)
󵄩
󵄩
󵄩
󵄩
𝑔
󵄩
󵄩
󵄩
󵄩𝐻
𝑠
(R) +

󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩𝐻
𝑠
(R)
󵄩
󵄩
󵄩
󵄩
𝑔
󵄩
󵄩
󵄩
󵄩𝐿
∞
(R)) . (31)

(b) For 𝑠 > 0,
󵄩
󵄩
󵄩
󵄩
𝑓𝜕
𝑥
𝑔
󵄩
󵄩
󵄩
󵄩𝐻
𝑠
(R) ≤ 𝐶 (

󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩𝐿
∞
(R)
󵄩
󵄩
󵄩
󵄩
𝜕
𝑥
𝑔
󵄩
󵄩
󵄩
󵄩𝐻
𝑠
(R) +

󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩𝐻
𝑠+1
(R)
󵄩
󵄩
󵄩
󵄩
𝑔
󵄩
󵄩
󵄩
󵄩𝐿
∞
(R)) .

(32)

(c) For 𝑠
1
≤ 1/2, 𝑠

2
> 1/2, 𝑠

1
+ 𝑠
2
> 0,

󵄩
󵄩
󵄩
󵄩
f𝑔󵄩󵄩󵄩
󵄩𝐻
𝑠
1 (R) ≤ 𝐶

󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩𝐻
𝑠
1 (R)

󵄩
󵄩
󵄩
󵄩
𝑔
󵄩
󵄩
󵄩
󵄩𝐻
𝑠
2 (R), (33)

where 𝐶󸀠𝑠 are constants that are independent of 𝑓 and 𝑔.

Proposition 9 (see [21]). Suppose that 𝑠 > −𝑑/2. Let V
be a vector field such that ∇V belongs to 𝐿

1
([0, 𝑇];𝐻

𝑠−1
) if

𝑠 > 1 + 𝑑/2 or to 𝐿1([0, 𝑇];𝐻𝑑/2 ∩ 𝐿
∞
), otherwise. Suppose

also that 𝑓
0

∈ 𝐻
𝑠, 𝐹 ∈ 𝐿

1
([0, 𝑇];𝐻

𝑠
) and that 𝑓 ∈

𝐿
∞
([0, 𝑇];𝐻

𝑠
) ∩ 𝐶([0, 𝑇]; 𝑆

󸀠
) solves the 𝑑-dimensional linear

transport equations

(𝑇) {

𝜕
𝑡
𝑓 + V ⋅ ∇𝑓 = 𝐹,

𝑓
󵄨
󵄨
󵄨
󵄨𝑡=0

= 𝑓
0
.

(34)

Then 𝑓 ∈ 𝐶([0, 𝑇];𝐻
𝑠
). More precisely, there exists a

constant𝐶 depending only on 𝑠,𝑝, and𝑑 such that the following
statements hold:

(1) If 𝑠 ̸= 1 + 𝑑/2,

󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩𝐻
𝑠 ≤

󵄩
󵄩
󵄩
󵄩
𝑓
0

󵄩
󵄩
󵄩
󵄩𝐻
𝑠 + ∫

𝑡

0

‖𝐹 (𝜏)‖
𝐻
𝑠𝑑𝜏 + 𝐶∫

𝑡

0

𝑉
󸀠
(𝜏)

󵄩
󵄩
󵄩
󵄩
𝑓 (𝜏)

󵄩
󵄩
󵄩
󵄩𝐻
𝑠𝑑𝜏,

(35)

or

󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩𝐻
𝑠 ≤ 𝑒
𝐶𝑉(𝑡)

(
󵄩
󵄩
󵄩
󵄩
𝑓
0

󵄩
󵄩
󵄩
󵄩𝐻
𝑠 + ∫

𝑡

0

𝑒
−𝐶𝑉(𝜏)

‖𝐹 (𝜏)‖
𝐻
𝑠𝑑𝜏) , (36)

with 𝑉(𝑡) = ∫

𝑡

0
‖∇V(𝜏)‖

𝐻
𝑑/2
∩𝐿
∞𝑑𝜏 if 𝑠 < 1 + 𝑑/2 and 𝑉(𝑡) =

∫

𝑡

0
‖∇V(𝜏)‖

𝐻
𝑠−1𝑑𝜏 else.



Journal of Applied Mathematics 5

(2) If 𝑓 = V, then for all 𝑠 > 0, estimates (35) and (36) hold
with

𝑉 (𝑡) = ∫

𝑡

0

󵄩
󵄩
󵄩
󵄩
𝜕
𝑥
𝑢 (𝜏)

󵄩
󵄩
󵄩
󵄩𝐿
∞𝑑𝜏. (37)

Proposition 10 (see [21]). Let 0 < 𝑠 < 1. Suppose that 𝑓
0
∈

𝐻
𝑠, 𝑔 ∈ 𝐿

1
([0, 𝑇];𝐻

𝑠
)V, 𝜕
𝑥
V ∈ 𝐿

1
([0, 𝑇]; 𝐿

∞
) and that 𝑓 ∈

𝐿
∞
([0, 𝑇];𝐻

𝑠
) ∩ 𝐶([0, 𝑇]; 𝑆

󸀠
) solves the 1-dimensional linear

transport equation

(𝑇) {

𝜕
𝑡
𝑓 + V ⋅ ∇𝑓 = 𝑔,

𝑓
󵄨
󵄨
󵄨
󵄨𝑡=0

= 𝑓
0
.

(38)

Then 𝑓 ∈ 𝐶([0, 𝑇];H𝑠). More precisely, there exists a con-
stant 𝐶 depending only on 𝑠 such that the following statements
hold:

󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩𝐻
𝑠 ≤

󵄩
󵄩
󵄩
󵄩
𝑓
0

󵄩
󵄩
󵄩
󵄩𝐻
𝑠 + 𝐶∫

𝑡

0

󵄩
󵄩
󵄩
󵄩
𝑔 (𝜏)

󵄩
󵄩
󵄩
󵄩𝐻
𝑠𝑑𝜏

+ 𝐶∫

𝑡

0

𝑉
󸀠
(𝜏)

󵄩
󵄩
󵄩
󵄩
𝑓 (𝜏)

󵄩
󵄩
󵄩
󵄩𝐻
𝑠𝑑𝜏

(39)

or

󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩𝐻
𝑠 ≤ 𝑒
𝐶𝑉(𝑡)

(
󵄩
󵄩
󵄩
󵄩
𝑓
0

󵄩
󵄩
󵄩
󵄩𝐻
𝑠 + 𝐶∫

𝑡

0

󵄩
󵄩
󵄩
󵄩
𝑔 (𝜏)

󵄩
󵄩
󵄩
󵄩𝐻
𝑠𝑑𝜏) , (40)

with 𝑉(𝑡) = ∫

𝑡

0
(‖V(𝜏)‖

𝐿
∞ + ‖𝜕

𝑥
V(𝜏)‖
𝐿
∞)𝑑𝜏.

The above proposition was proved in [8] using Little-
wood-Paley analysis for the transport equation and Moser-
type estimates. Using this result and performing the same
argument, as in [17], we can obtain the following blow-up
criterion.

Theorem 11. Let𝑋
0
= (
𝑢
0

𝜌
0

) ∈ 𝐻
𝑠
×𝐻
𝑠−1 with 𝑠 ≥ 2, and𝑋 =

(
𝑢

𝜌 ) be the corresponding solution to (3). Assume that 𝑇 > 0 is
the maximal time of existence. Then

𝑇 < ∞ 󳨐⇒ ∫

𝑇

0

󵄩
󵄩
󵄩
󵄩
𝜕
𝑥
𝑢 (𝜏)

󵄩
󵄩
󵄩
󵄩𝐿
∞𝑑𝜏 = ∞. (41)

Our next result describes the necessary and sufficient
condition for the blow-up of solutions to (3).

Theorem 12. Suppose that 𝜎 ∈ 𝑅 \ {0}. Let 𝑋
0
= (
𝑢
0

𝜌
0

) ∈ 𝐻
𝑠
×

𝐻
𝑠−1, with 𝑠 ≥ 2, and let𝑇 be themaximal existence time of the

solution𝑋 = (
𝑢

𝜌 ) to (3)with initial data𝑋0. Then, the solution
blows up in finite time if and only if

lim inf
𝑡→𝑇

−

{inf
𝑥∈𝑆

𝜎𝑢
𝑥
(𝑡, 𝑥)} = −∞. (42)

The approach one takes here is the method of charac-
teristics. Applying the following lemma, we may carry out
the estimates along the characteristics 𝜑(𝑡, 𝑥) which captures
sup
𝑥∈𝑆

𝑢
𝑥
(𝑡, 𝑥) and inf

𝑥∈𝑆
𝑢
𝑥
(𝑡, 𝑥).

Lemma 13 (see [22]). Let𝑇 > 0 and let V ∈ 𝐶1([0, 𝑇];𝐻2(𝑅)).
Then, for every 𝑡 ∈ [0, 𝑇), there exists at least one point 𝜉(𝑡) ∈ 𝑅
with

𝑚(𝑡) := inf
𝑥∈𝑆

V
𝑥
(𝑡, 𝑥) = V

𝑥
(𝑡, 𝜉 (𝑡)) , (43)

and the function 𝑚(𝑡) is almost everywhere differentiable on
(0, 𝑇) with

𝑑𝑚 (𝑡)

𝑑𝑡

= V
𝑡𝑥
(𝑡, 𝜉 (𝑡)) , 𝑎.𝑒. 𝑜𝑛 (0, 𝑇) . (44)

Lemma 14. Let 𝑋
0
= (
𝑢
0

𝜌
0

) ∈ 𝐻
𝑠
× 𝐻
𝑠−1 with 𝑠 ≥ 2, and let 𝑇

be the maximal existence time of the solution 𝑋 = (
𝑢

𝜌 ) to (3)
with initial data𝑋

0
. Then one has the following:

(1) 𝜎 ̸= 0

sup
𝑥∈𝑆

𝑢
𝑥
(𝑡, 𝑥) ≤

󵄩
󵄩
󵄩
󵄩
𝑢
0,𝑥

󵄩
󵄩
󵄩
󵄩𝐿
∞
(𝑆)

+
√

󵄩
󵄩
󵄩
󵄩
𝜌
0

󵄩
󵄩
󵄩
󵄩

2

𝐿
∞
(𝑆)
+ 𝐾
2

1
(𝑇)

𝜎

+

𝜆
2

𝜎
2
+

𝜆

𝜎

(𝜎 > 0)

(45)

inf
𝑥∈𝑆

𝑢
𝑥
(𝑡, 𝑥) ≥ −

󵄩
󵄩
󵄩
󵄩
𝑢
0,𝑥

󵄩
󵄩
󵄩
󵄩𝐿
∞
(𝑆)

−
√
𝜆
2

𝜎
2
−

𝐾
2

2
(𝑇)

𝜎

+

𝜆

𝜎

(𝜎 < 0) .

(46)

(2) 𝜎 = 0

sup
𝑥∈𝑆

𝑢
𝑥
(𝑡, 𝑥) ≤ sup

𝑥∈𝑆

𝑢
0,𝑥

(𝑥)

+

1

2

(sup
𝑥∈𝑆

𝜌
2

0
(𝑥) + 𝐾

2

1
(𝑇))

𝑒
𝜆𝑡
− 1

𝜆

(47)

inf
𝑥∈𝑆

𝑢
𝑥
(𝑡, 𝑥) ≥ inf

𝑥∈𝑆

𝑢
0,𝑥

(𝑥)

+

1

2

(inf
𝑥∈𝑆

𝜌
2

0
(𝑥) − 𝐾

2

2
(𝑇))

𝑒
𝜆𝑡
− 1

𝜆

.

(48)

The constants above are defined as follows:

𝐾
1
(𝑇) = √2𝐴 − 𝜆 +

𝐴

2

𝐸
0
+

3𝐴 − 2𝜆

2

[𝑒
𝐶
2
𝑇
(
󵄩
󵄩
󵄩
󵄩
𝑢
0

󵄩
󵄩
󵄩
󵄩

2

𝐿
2
(𝑆)
+ 1)],

(49)

𝐾
2
(𝑇)

= √2𝐴 − 𝜆 +

𝐴 + 2

2

𝐸
0
+

3𝐴 − 2𝜆

2

[𝑒
𝐶
2
𝑇
(
󵄩
󵄩
󵄩
󵄩
𝑢
0

󵄩
󵄩
󵄩
󵄩

2

𝐿
2
(𝑆)
+ 1)].

(50)

Proof of Lemma 14. ByTheorem 2 and a simple density argu-
ment, we show that the desired results are valid when 𝑠 ≥ 3,
so we take 𝑠 = 3 in the proof.
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Let 𝜎 > 0. Using Lemma 13 and the fact that

sup
𝑥∈𝑆

[V
𝑥
(𝑡, 𝑥)] = −inf

𝑥∈𝑆

[−V
𝑥
(𝑡, 𝑥)] . (51)

We can consider𝑀(𝑡) and 𝛾(𝑡) as follows:

𝑀(𝑡) := 𝑢
𝑥
(𝑡, 𝜉 (𝑡)) = sup

𝑥∈𝑆

[𝑢
𝑥
(𝑡, 𝑥)] , 𝑡 ∈ [0, 𝑇) . (52)

Hence,

𝑢
𝑥𝑥
(𝑡, 𝜉 (𝑡)) = 0, a.e. on 𝑡 ∈ [0, 𝑇) . (53)

Take the trajectory 𝜑(𝑡, 𝑥) defined in (12). Then we know
that 𝜑(𝑡, ⋅) : 𝑅 → 𝑅 is a diffeomorphism for every 𝑡 ∈ [0, 𝑇).
Therefore, there exists 𝑥

0
(𝑡) ∈ 𝑅 such that

𝜑 (𝑡, 𝑥
0
(𝑡)) = 𝜉 (𝑡) , 𝑡 ∈ [0, 𝑇) . (54)

Now, let

𝛾 (𝑡) = 𝜌 (𝑡, 𝜑 (𝑡, 𝑥
0
)) , 𝑡 ∈ [0, 𝑇) . (55)

Therefore, along the trajectory𝜑(𝑡, 𝑥
0
), (4) and the second

equation of (3) become

𝑀
󸀠
(𝑡) = −

𝜎

2

𝑀
2
(𝑡) + 𝜆𝑀 (𝑡) +

1

2

𝛾
2
(𝑡) + 𝑓 (𝑡, 𝜑 (𝑡, 𝑥

0
))

𝛾
󸀠
(𝑡) = −𝛾𝑀, a.e. 𝑡 ∈ [0, 𝑇) ,

(56)

where the notation denotes the derivative with respect to 𝑡

and 𝑓 represents the function

𝑓 = −𝐴𝑢 − 𝜆𝜕
−1

𝑥
𝑢 + 𝑔 (𝑡)

= −𝐴𝑢 − 𝜆𝜕
−1

𝑥
𝑢 − ∫

𝑆

(

𝜎

2

𝑢
2

𝑥
+

1

2

𝜌
2
− 𝐴𝑢)𝑑𝑥.

(57)

We first compute the upper and lower bounds for 𝑓 for
later use in getting the blow-up result as follows:

𝑓 = −𝐴𝑢 − 𝜆∫

𝑥

0

𝑢 𝑑𝑥 −

𝜎

2

∫

𝑆

𝑢
2

𝑥
𝑑𝑥 −

1

2

∫

𝑆

𝜌
2
𝑑𝑥 + 𝐴∫

𝑆

𝑢 𝑑𝑥

≤ −𝐴𝑢 − 𝜆∫

𝑥

0

𝑢 𝑑𝑥 + 𝐴∫

𝑆

𝑢 𝑑𝑥 ≤

𝐴

2

(1 + 𝑢
2
)

+

𝐴 − 𝜆

2

(1 + ∫

𝑆

𝑢
2
𝑑𝑥) .

(58)

Since 𝑢2 ≤ (1/2) ∫
𝑆
(𝑢
2
+ 𝑢
2

𝑥
)𝑑𝑥, (17), we obtain the upper

bound for 𝑓

𝑓 ≤

𝐴

2

(1 +

1

2

∫

𝑆

(𝑢
2
+ 𝑢
2

𝑥
) 𝑑𝑥) +

𝐴 − 𝜆

2

(1 + ∫

𝑆

𝑢
2
𝑑𝑥)

≤ 𝐴 −

𝜆

2

+

𝐴

4

∫

𝑆

(𝜌
2
+ 𝑢
2

𝑥
) 𝑑𝑥 +

3𝐴 − 2𝜆

4

∫

𝑆

𝑢
2
𝑑𝑥

≤ 𝐴 −

𝜆

2

+

𝐴

4

𝐸
0
+

3𝐴 − 2𝜆

4

[𝑒
𝐶
2
𝑡
(∫

𝑆

𝑢
2

0
(𝑥) 𝑑𝑥 + 1)]

≤ 𝐴 −

𝜆

2

+

𝐴

4

𝐸
0
+

3𝐴 − 2𝜆

4

× [𝑒
𝐶
2
𝑇
(
󵄩
󵄩
󵄩
󵄩
𝑢
0

󵄩
󵄩
󵄩
󵄩

2

𝐿
2
(𝑆)
+ 1)] :=

1

2

𝐾
2

1
(𝑇) .

(59)

Now we turn to the lower bound of 𝑓. Using previous argu-
ments, we get

−𝑓 = 𝐴𝑢 + 𝜆∫

𝑥

0

𝑢 𝑑𝑥 +

𝜎

2

∫

𝑆

𝑢
2

𝑥
𝑑𝑥 +

1

2

∫

𝑆

𝜌
2
𝑑𝑥 − 𝐴∫

𝑆

𝑢 𝑑𝑥

≤ 𝐴

1 + 𝑢
2

2

+

max (|𝜎| , 1)
2

∫

𝑆

(𝜌
2
+ 𝑢
2

𝑥
) 𝑑𝑥

+

𝐴 − 𝜆

2

(1 + ∫

𝑆

𝑢
2
𝑑𝑥)

≤ 𝐴 −

𝜆

2

+

𝐴 + 2max (|𝜎| , 1)
4

∫

𝑆

(𝜌
2
+ 𝑢
2

𝑥
) 𝑑𝑥

+

3𝐴 − 2𝜆

4

∫

𝑆

𝑢
2
𝑑𝑥

≤ 𝐴 −

𝜆

2

+

𝐴 + 2max (|𝜎| , 1)
4

𝐸
0

+

3𝐴 − 2𝜆

4

[𝑒
𝐶
2
𝑇
(
󵄩
󵄩
󵄩
󵄩
𝑢
0

󵄩
󵄩
󵄩
󵄩

2

𝐿
2
(𝑆)
+ 1)] .

(60)

When 𝜎 < 0, we have a finer estimate

−𝑓 ≤ 𝐴 −

𝜆

2

+

𝐴 + 2

4

∫

𝑆

(𝜌
2
+ 𝑢
2

𝑥
) 𝑑𝑥 +

3𝐴 − 2𝜆

4

∫

𝑆

𝑢
2
𝑑𝑥

≤ 𝐴 −

𝜆

2

+

𝐴 + 2

4

𝐸
0
+

3𝐴 − 2𝜆

4

× [𝑒
𝐶
2
𝑇
(
󵄩
󵄩
󵄩
󵄩
𝑢
0

󵄩
󵄩
󵄩
󵄩

2

𝐿
2
(𝑆)
+ 1)] :=

1

2

𝐾
2

2
(𝑇) .

(61)

Combining (59) and (60), we obtain

󵄨
󵄨
󵄨
󵄨
𝑓
󵄨
󵄨
󵄨
󵄨
≤ 𝐴 −

𝜆

2

+

𝐴 + 2max (|𝜎| , 1)
4

𝐸
0

+

3𝐴 − 2𝜆

4

[𝑒
𝐶
2
𝑇
(
󵄩
󵄩
󵄩
󵄩
𝑢
0

󵄩
󵄩
󵄩
󵄩

2

𝐿
2
(𝑆)
+ 1)] :=

1

2

𝐾
2

3
(𝑇) .

(62)

Since 𝑠 ≥ 3, we have 𝑢 ∈ 𝐶1
0
(𝑆). Therefore,

sup
𝑥∈𝑆

𝑢
𝑥
(𝑡, 𝑥) ≥ 0, inf

𝑥∈𝑆

𝑢
𝑥
(𝑡, 𝑥) ≤ 0, 𝑡 ∈ [0, 𝑇) . (63)



Journal of Applied Mathematics 7

Hence,𝑀(𝑡) > 0 for 𝑡 ∈ [0, 𝑇). From the second equation
of (55), we obtain

𝛾 (𝑡) = 𝛾 (0) 𝑒
−∫
𝑡

0

𝑀(𝜏)𝑑𝜏
. (64)

Hence,
󵄨
󵄨
󵄨
󵄨
𝜌 (𝑡, 𝜑 (𝑡, 𝑥

0
))
󵄨
󵄨
󵄨
󵄨
=
󵄨
󵄨
󵄨
󵄨
𝛾 (𝑡)

󵄨
󵄨
󵄨
󵄨
≤
󵄨
󵄨
󵄨
󵄨
𝛾 (0)

󵄨
󵄨
󵄨
󵄨
≤
󵄩
󵄩
󵄩
󵄩
𝜌
0

󵄩
󵄩
󵄩
󵄩𝐿
∞
(𝑆)
. (65)

For any given 𝑥 ∈ 𝑆, define

𝑝
1
(𝑡) = 𝑀 (𝑡) −

󵄩
󵄩
󵄩
󵄩
𝑢
0,𝑥

󵄩
󵄩
󵄩
󵄩𝐿
∞
(𝑆)

−
√

󵄩
󵄩
󵄩
󵄩
𝜌
0

󵄩
󵄩
󵄩
󵄩

2

𝐿
∞
(𝑆)
+ 𝐾
2

1
(𝑇)

𝜎

+

𝜆
2

𝜎
2
−

𝜆

𝜎

(𝜎 > 0) .

(66)

Observing that 𝑝
1
(𝑡) is a 𝐶1-differentiable function on

[0, 𝑇) and satisfies

𝑝
1
(0) = 𝑀 (0) −

󵄩
󵄩
󵄩
󵄩
𝑢
0,𝑥

󵄩
󵄩
󵄩
󵄩𝐿
∞
(𝑆)

−
√

󵄩
󵄩
󵄩
󵄩
𝜌
0

󵄩
󵄩
󵄩
󵄩

2

𝐿
∞
(𝑆)
+ 𝐾
2

1
(𝑇)

𝜎

+

𝜆
2

𝜎
2
−

𝜆

𝜎

≤ 𝑀(0) −
󵄩
󵄩
󵄩
󵄩
𝑢
0,𝑥

󵄩
󵄩
󵄩
󵄩𝐿
∞
(𝑆)
.

(67)

We now claim that 𝑝
1
(𝑡) ≤ 0 𝑡 ∈ [0, 𝑇).

Assume the contrary that there is 𝑡
0
∈ [0, 𝑇) such that

𝑝
1
(𝑡
0
) > 0.

Let 𝑡
1
= max{𝑡 < 𝑡

0
: 𝑝
1
(𝑡) = 0}. Then 𝑝

1
(𝑡
1
) = 0 and

𝑝
󸀠

1
(𝑡
1
) ≥ 0, or equivalently,

𝑀(𝑡
1
) =

󵄩
󵄩
󵄩
󵄩
𝑢
0,𝑥

󵄩
󵄩
󵄩
󵄩𝐿
∞
(𝑆)
+
√

󵄩
󵄩
󵄩
󵄩
𝜌
0

󵄩
󵄩
󵄩
󵄩

2

𝐿
∞
(𝑆)
+ 𝐾
2

1
(𝑇)

𝜎

+

𝜆
2

𝜎
2
+

𝜆

𝜎

(68)

and𝑀󸀠(𝑡
1
) ≥ 0 a.e. 𝑡 ∈ [0, 𝑇). On the other hand, we have

𝑀
󸀠
(𝑡
1
) = −

𝜎

2

𝑀
2
(𝑡
1
) + 𝜆𝑀(𝑡

1
) +

1

2

𝛾
2
(𝑡
1
)

+ 𝑓 (𝑡
1
, 𝜑 (𝑡
1
, 𝑥
0
)) a.e. 𝑡 ∈ [0, 𝑇)

≤ −

𝜎

2

(𝑀(𝑡
1
) −

𝜆

𝜎

)

2

+

1

2

󵄩
󵄩
󵄩
󵄩
𝜌
0

󵄩
󵄩
󵄩
󵄩

2

𝐿
∞
(𝑆)
+

𝜆
2

2𝜎

+

𝐾
2

1
(𝑇)

2

< 0,

(69)

which is a contradiction.Therefore,𝑝
1
(𝑡) ≤ 0 for all 𝑡 ∈ [0, 𝑇).

Since 𝑥 is arbitrarily chosen, we obtain (45).
To derive (46) in the case of 𝜎 < 0, we consider 𝑀̃(𝑡) and

𝛾(𝑡) as in Lemma 13:

𝑀̃ (𝑡) := 𝑢
𝑥
(𝑡, 𝜁 (𝑡)) = inf

𝑥∈𝑆

[𝑢
𝑥
(𝑡, 𝑥)] 𝑡 ∈ [0, 𝑇) . (70)

Hence,

𝑢
𝑥𝑥
(𝑡, 𝜁 (𝑡)) = 0 a.e. 𝑡 ∈ [0, 𝑇) . (71)

Using previous arguments, we take the characteristic 𝜑(𝑡,
𝑥) defined in (13) and choose 𝑥

1
(𝑡) ∈ 𝑅 such that

𝜑 (𝑡, 𝑥
1
(𝑡)) = 𝜁 (𝑡) . (72)

Let

𝛾 (𝑡) = 𝜌 (𝑡, 𝜑 (𝑡, 𝑥)) , 𝑡 ∈ [0, 𝑇) . (73)

Hence, along the trajectory 𝑀̃󸀠(𝑡) = 𝜆𝑀̃(𝑡) +(1/2)𝛾
2
(𝑡) +

𝑓(𝑡, 𝜑(𝑡, 𝑥
0
)) ≥ 𝜆𝑀̃(0)+(1/2)𝛾

2
(0) +(1/2)𝐾

2

2
(𝑇), (4) and the

second equation of (3) become

𝑀̃
󸀠
(𝑡) = −

𝜎

2

𝑀̃
2
(𝑡) + 𝜆𝑀̃ (𝑡) +

1

2

𝛾
2
(𝑡) + 𝑓 (𝑡, 𝜑 (𝑡, 𝑥

0
))

𝛾
󸀠
(𝑡) = −𝛾𝑀̃, a.e. 𝑡 ∈ [0, 𝑇) .

(74)

Define

𝑝
2
(𝑡) = 𝑀̃ (𝑡) +

󵄩
󵄩
󵄩
󵄩
𝑢
0,𝑥

󵄩
󵄩
󵄩
󵄩𝐿
∞
(𝑆)

+
√
𝜆
2

𝜎
2
−

𝐾
2

2
(𝑇)

𝜎

−

𝜆

𝜎

(𝜎 < 0) .

(75)

For any given 𝑥 ∈ 𝑆, Note that 𝑝
2
(𝑡) is also 𝐶

1-dif-
ferentiable function on [0, 𝑇) and satisfies

𝑝
2
(0) = 𝑀̃ (0) +

󵄩
󵄩
󵄩
󵄩
𝑢
0,𝑥

󵄩
󵄩
󵄩
󵄩𝐿
∞
(𝑆)

+
√
𝜆
2

𝜎
2
−

𝐾
2

2
(𝑇)

𝜎

−

𝜆

𝜎

≥ 𝑀̃ (0) +
󵄩
󵄩
󵄩
󵄩
𝑢
0,𝑥

󵄩
󵄩
󵄩
󵄩𝐿
∞
(𝑆)

≥ 0.

(76)

We now claim that 𝑝
2
(𝑡) ≥ 0, for any 𝑡 ∈ [0, 𝑇).

Suppose not, then there is 𝑡̃ ∈ [0, 𝑇) such that 𝑝
2
(𝑡
0
) < 0.

Define

𝑡
2
= max {𝑡 < 𝑡

0
: 𝑝
2
(𝑡) = 0} . (77)

Then, 𝑝
2
(𝑡
2
) = 0 and 𝑝󸀠

2
(𝑡
2
) < 0, or equivalently,

𝑀̃ (𝑡
2
) = −

󵄩
󵄩
󵄩
󵄩
𝑢
0,𝑥

󵄩
󵄩
󵄩
󵄩𝐿
∞
(𝑆)
−
√
𝜆
2

𝜎
2
−

𝐾
2

2
(𝑇)

𝜎

+

𝜆

𝜎

(78)

and 𝑀̃󸀠(𝑡
2
) ≤ 0 a.e. 𝑡 ∈ [0, 𝑇). However, we have

𝑀̃
󸀠
(𝑡
2
) = −

𝜎

2

𝑀̃
2
(𝑡
2
) + 𝜆𝑀̃ (𝑡

2
) +

1

2

𝛾
2
(𝑡
2
)

+ 𝑓 (𝑡
2
, 𝜑 (𝑡
2
, 𝑥
0
)) a.e. 𝑡 ∈ [0, 𝑇)

≥ −

𝜎

2

(−
󵄩
󵄩
󵄩
󵄩
𝑢
0,𝑥

󵄩
󵄩
󵄩
󵄩𝐿
∞
(𝑆)
−
√
𝜆
2

𝜎
2
−

𝐾
2

2
(𝑇)

𝜎

)

2

+

𝜆
2

2𝜎

−

1

2

𝐾
2

2
(𝑇) > 0.

(79)
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Therefore, 𝑝
2
(𝑡) ≥ 0 for any 𝑡 ∈ [0, 𝑇). Since 𝑥 is chosen

arbitrarily, we obtain (46).
Let 𝜎 = 0. Using previous arguments, (56) becomes

𝑀
󸀠
(𝑡) = −

𝜎

2

𝑀
2
(𝑡) + 𝜆𝑀 (𝑡) +

1

2

𝛾
2
(𝑡) + 𝑓 (𝑡, 𝜑 (𝑡, 𝑥

0
))

𝛾
󸀠(𝑡)

= −𝛾𝑀, a.e. 𝑡 ∈ [0,T) ,
(80)

where the notation denotes the derivative with respect to 𝑡

and 𝑓 represents the function

𝑓 = −𝐴𝑢 − 𝜆𝜕
−1

𝑥
𝑢 + 𝑔 (𝑡)

= −𝐴𝑢 − 𝜆𝜕
−1

𝑥
𝑢 − ∫

𝑆

(

1

2

𝜌
2
− 𝐴𝑢)𝑑𝑥.

(81)

We first compute the upper and lower bounds for 𝑓 for
later use in getting the blow-up result:

𝑓 = −𝐴𝑢 − 𝜆∫

𝑥

0

𝑢 𝑑𝑥 −

1

2

∫

𝑆

𝜌
2
𝑑𝑥 + 𝐴∫

𝑆

𝑢 𝑑𝑥

≤ −𝐴𝑢 − 𝜆∫

𝑥

0

𝑢 𝑑𝑥 + 𝐴∫

𝑆

𝑢 𝑑𝑥 ≤

𝐴

2

(1 + 𝑢
2
)

+

𝐴 − 𝜆

2

(1 + ∫

𝑆

𝑢
2
𝑑𝑥)

≤

𝐴

2

(1 +

1

2

∫

𝑆

(𝑢
2
+ 𝑢
2

𝑥
) 𝑑𝑥) +

𝐴 − 𝜆

2

(1 + ∫

𝑆

𝑢
2
𝑑𝑥)

≤ 𝐴 −

𝜆

2

+

𝐴

4

∫

𝑆

(𝜌
2
+ 𝑢
2

𝑥
) 𝑑𝑥 +

3𝐴 − 2𝜆

4

∫

𝑆

𝑢
2
𝑑𝑥

≤ 𝐴 −

𝜆

2

+

𝐴

4

𝐸
0
+

3𝐴 − 2𝜆

4

[𝑒
𝐶
2
𝑡
(∫

𝑆

𝑢
2

0
(𝑥) 𝑑𝑥 + 1)]

≤ 𝐴 −

𝜆

2

+

𝐴

4

𝐸
0
+

3𝐴 − 2𝜆

4

[𝑒
𝐶
2
𝑇
(
󵄩
󵄩
󵄩
󵄩
𝑢
0

󵄩
󵄩
󵄩
󵄩

2

𝐿
2
(𝑆)
+ 1)] .

(82)

Now, we turn to the lower bound of 𝑓:

−𝑓 = 𝐴𝑢 + 𝜆∫

𝑥

0

𝑢 𝑑𝑥 +

1

2

∫

𝑆

𝜌
2
𝑑𝑥 − 𝐴∫

𝑆

𝑢 𝑑𝑥

≤ 𝐴

1 + 𝑢
2

2

+

1

2

∫

𝑆

𝜌
2
𝑑𝑥 +

𝐴 − 𝜆

2

(1 + ∫

𝑆

𝑢
2
𝑑𝑥)

≤ 𝐴 −

𝜆

2

+

𝐴 + 2

4

∫

𝑆

(𝜌
2
+ 𝑢
2

𝑥
) 𝑑𝑥 +

3𝐴 − 2𝜆

4

∫

𝑆

𝑢
2
𝑑𝑥

≤ 𝐴 −

𝜆

2

+

𝐴 + 2

4

𝐸
0
+

3𝐴 − 2𝜆

4

[𝑒
𝐶
2
𝑇
(
󵄩
󵄩
󵄩
󵄩
𝑢
0

󵄩
󵄩
󵄩
󵄩

2

𝐿
2
(𝑆)
+ 1)] .

(83)

Combining (82) and (83), we obtain

󵄨
󵄨
󵄨
󵄨
𝑓
󵄨
󵄨
󵄨
󵄨
≤ 𝐴 −

𝜆

2

+

𝐴 + 2

4

𝐸
0
+

3𝐴 − 2𝜆

4

[𝑒
𝐶
2
𝑇
(
󵄩
󵄩
󵄩
󵄩
𝑢
0

󵄩
󵄩
󵄩
󵄩

2

𝐿
2
(𝑆)
+ 1)] .

(84)

We know 𝑀(𝑡) > 0 for 𝑡 ∈ [0, 𝑇). From the second
equation of (81), we obtain that

𝛾 (𝑡) = 𝛾 (0) 𝑒
−∫
𝑡

0

𝑀(𝜏)𝑑𝜏
. (85)

Hence,
󵄨
󵄨
󵄨
󵄨
𝜌 (𝑡, 𝜑 (𝑡, 𝑥

0
))
󵄨
󵄨
󵄨
󵄨
=
󵄨
󵄨
󵄨
󵄨
𝛾 (𝑡)

󵄨
󵄨
󵄨
󵄨
≤
󵄨
󵄨
󵄨
󵄨
𝛾 (0)

󵄨
󵄨
󵄨
󵄨
. (86)

Therefore, we have

𝑀
󸀠
(𝑡) = 𝜆𝑀 (𝑡) +

1

2

𝛾
2
(𝑡) + 𝑓 (𝑡, 𝜑 (𝑡, 𝑥

0
))

≤ 𝜆𝑀 (0) +

1

2

𝛾
2
(0) +

1

2

𝐾
2

1
(𝑇) ,

(87)

𝑀
󸀠
(𝑡) − 𝜆𝑀 (𝑡) ≤

1

2

(sup
𝑥∈𝑆

𝜌
2

0
(𝑥) + 𝐾

2

1
(𝑇)) a.e. 𝑡 ∈ [0, 𝑇).

(88)

Integrating (88) on [0, 𝑡], we prove (47) as follows:

𝑀(𝑡) ≤ sup
𝑥∈𝑆

𝑢
0,𝑥

(𝑥) +

1

2

(sup
𝑥∈𝑆

𝜌
2

0
(𝑥) + 𝐾

2

1
(𝑇))

𝑒
𝜆𝑡
− 1

𝜆

.

(89)

To obtain a lower bound for inf
𝑥∈𝑆

𝑢
𝑥
(𝑡, 𝑥), we use the

same argument.
Since 𝜎 = 0, (80) becomes

𝑀̃
󸀠
(𝑡) = 𝜆𝑀̃ (𝑡) +

1

2

𝛾
2
(𝑡) + 𝑓 (𝑡, 𝜑 (𝑡, 𝑥

1
)) ,

𝛾
󸀠
(𝑡) = −𝛾𝑀̃, a.e. 𝑡 ∈ [0, 𝑇) .

(90)

Because of 𝑀̃(𝑡) < 0, we get from the second equation of
(90) that

𝛾 (𝑡) = 𝛾 (0) 𝑒
−∫
𝑡

0

𝑀(𝜏)𝑑𝜏
. (91)

This means that
󵄨
󵄨
󵄨
󵄨
𝜌 (𝑡, 𝜑 (𝑡, 𝑥

1
))
󵄨
󵄨
󵄨
󵄨
=
󵄨
󵄨
󵄨
󵄨
𝛾 (𝑡)

󵄨
󵄨
󵄨
󵄨
≥
󵄨
󵄨
󵄨
󵄨
𝛾 (0)

󵄨
󵄨
󵄨
󵄨
. (92)

Then,

𝑀̃
󸀠
(𝑡) = 𝜆𝑀̃ (𝑡) +

1

2

𝛾
2
(𝑡) + 𝑓 (𝑡, 𝜑 (𝑡, 𝑥

0
))

≥ 𝜆𝑀̃ (0) +

1

2

𝛾
2
(0) +

1

2

𝐾
2

2
(𝑇) ,

(93)

𝑀̃
󸀠
(𝑡) − 𝜆𝑀̃ (𝑡) ≥

1

2

(inf
𝑥∈𝑆

𝜌
2

0
(𝑥) − 𝐾

2

2
(𝑇)) a.e. 𝑡 ∈ [0, 𝑇) .

(94)

Integrating (94) on [0, 𝑡], we prove (48). This completes
the proof of Lemma 14.

Lemma 15. Suppose that 𝜎 ∈ 𝑅 \ {0}. Suppose 𝑋
0
= (
𝑢
0

𝜌
0

) ∈

𝐻
𝑠
×𝐻
𝑠−1 with 𝑠 ≥ 2, and let 𝑇 be the maximal existence time
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of the solution 𝑋 = (
𝑢

𝜌 ) to (3) with initial data 𝑋
0
. Then we

have

𝜌 (𝑡, 𝜑 (𝑡, 𝑥)) 𝜑
𝑥
(𝑡, 𝑥) = 𝜌

0
(𝑥) , (𝑡, 𝑥) ∈ [0, 𝑇] × 𝑆. (95)

Moreover, if there exists𝑀 > 0 such that

inf
(𝑡,𝑥)∈[0,𝑇]×𝑆

𝜎𝑢
𝑥
(𝑡, 𝑥) ≥ −𝑀, (𝑡, 𝑥) ∈ [0, 𝑇] × 𝑆. (96)

Then
󵄩
󵄩
󵄩
󵄩
𝜌 (𝑡, ⋅)

󵄩
󵄩
󵄩
󵄩𝐿
∞
(𝑆)

=
󵄩
󵄩
󵄩
󵄩
𝜌 (𝑡, 𝜑 (𝑡, ⋅))

󵄩
󵄩
󵄩
󵄩𝐿
∞
(𝑆)

≤ 𝑒
𝑀𝑇/𝜎 󵄩

󵄩
󵄩
󵄩
𝜌
0

󵄩
󵄩
󵄩
󵄩𝐿
∞
(𝑆)

(𝜎 > 0)

(97)

󵄩
󵄩
󵄩
󵄩
𝜌 (𝑡, ⋅)

󵄩
󵄩
󵄩
󵄩𝐿
∞
(𝑆)

=
󵄩
󵄩
󵄩
󵄩
𝜌 (𝑡, 𝜑 (𝑡, ⋅))

󵄩
󵄩
󵄩
󵄩𝐿
∞
(𝑆)

≤ 𝑒
𝑁𝑇/𝜎 󵄩

󵄩
󵄩
󵄩
𝜌
0

󵄩
󵄩
󵄩
󵄩𝐿
∞
(𝑆)

(𝜎 < 0) ,

(98)

where𝑁 = ‖𝑢
0,𝑥
‖
𝐿
∞
(𝑆)
+√𝜆
2
/𝜎
2
− 𝐾
2

2
(𝑇)/𝜎 − 𝜆/𝜎 and𝐾

2
(𝑇)

is given in (50).

Proof. Differentiating the left hand side of (95) with respect
to 𝑡, in view of the relations (12) and (3), we obtain

𝑑

𝑑𝑡

{𝜌 (𝑡, 𝜑 (𝑡, 𝑥)) 𝜑
𝑥
(𝑡, 𝑥)}

= [𝜌
𝑡
(𝑡, 𝜑) + 𝜌

𝑥
(𝑡, 𝜑) 𝜑

𝑡
(𝑡, 𝑥)]

× 𝜑
𝑥
(𝑡, 𝑥) + 𝜌 (𝑡, 𝜑) 𝜑

𝑥𝑡
(𝑡, 𝑥)

= [𝜌
𝑡
(𝑡, 𝜑) + 𝜌

𝑥
(𝑡, 𝜑) 𝜑

𝑡
(𝑡, 𝑥)] 𝜑

𝑥
(𝑡, 𝑥)

+ 𝜌 (𝑡, 𝜑) 𝑢
𝑥
(𝑡, 𝜑) 𝜑

𝑥
(𝑡, 𝑥)

= [𝜌
𝑡
(𝑡, 𝜑) + 𝜌

𝑥
(𝑡, 𝜑) 𝜑

𝑡
(𝑡, 𝑥) + 𝜌 (𝑡, 𝜑) 𝑢

𝑥
(𝑡, 𝜑)]

× 𝜑
𝑥
(𝑡, 𝑥) = 0.

(99)

This completes the proof of (95). In view of the assump-
tion (96) and 𝜎 > 0, we obtain 𝑢(𝑡, 𝑥) ≥ −(𝑀/𝜎) (𝑡, 𝑥) ∈

[0, 𝑇] × 𝑆.
By Lemma 3 and (95), we have

󵄩
󵄩
󵄩
󵄩
𝜌 (𝑡, ⋅)

󵄩
󵄩
󵄩
󵄩𝐿
∞ =

󵄩
󵄩
󵄩
󵄩
𝜌 (𝑡, 𝜑 (𝑡, ⋅))

󵄩
󵄩
󵄩
󵄩𝐿
∞ =

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑒
−∫
𝑡

0

𝑢
𝑥
(𝜏,⋅)𝑑𝜏

𝜌
0
(⋅)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩𝐿
∞

≤ 𝑒
𝑀𝑇/𝜎󵄩

󵄩
󵄩
󵄩
𝜌
0
(⋅)
󵄩
󵄩
󵄩
󵄩𝐿
∞ .

(100)

To obtain (98), we use a similar argument as before. Using
(13) and the lower bound for 𝑢

𝑥
(𝑡, 𝑥) in (46), it follows that

󵄩
󵄩
󵄩
󵄩
𝜌 (𝑡, ⋅)

󵄩
󵄩
󵄩
󵄩𝐿
∞ =

󵄩
󵄩
󵄩
󵄩
𝜌 (𝑡, 𝜑 (𝑡, ⋅))

󵄩
󵄩
󵄩
󵄩𝐿
∞ =

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑒
−∫
𝑡

0

𝑢
𝑥
(𝜏,⋅)𝑑𝜏

𝜌
0
(⋅)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩𝐿
∞

≤ 𝑒
𝑁𝑇/𝜎󵄩

󵄩
󵄩
󵄩
𝜌
0
(⋅)
󵄩
󵄩
󵄩
󵄩𝐿
∞ ,

(101)

which proves (98). This completes the proof of Lemma 15.

Proof of Theorem 12. Suppose that𝑇 < ∞ and that (42) is not
valid. Then, there is some positive number𝑀 > 0 such that

𝜎𝑢
𝑥
(𝑡, 𝑥) ≥ −𝑀, (𝑡, 𝑥) ∈ [0, 𝑇] × 𝑆. (102)

It now follows from Lemma 14 that |𝑢
𝑥
(𝑡, 𝑥)| ≤ 𝐶, where

𝐶 = 𝐶(𝐴,𝑀, 𝜎, 𝐸
0
, 𝜆, ‖𝑢

0
‖, 𝑇). Therefore, Theorem 11 implies

that the maximal existence time 𝑇 = ∞, which contradicts
with the assumption that 𝑇 < ∞.

Conversely, the Sobolev embedding theorem 𝐻
𝑠
(𝑆) →

𝐿
∞
(𝑆) with 𝑠 > 1/2 implies that if (70) holds, the corre-

sponding solution blows up in finite time, which completes
the proof of Theorem 12.
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