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We discuss the kernel estimation of a density function based on censored data when the survival and the censoring times form the
stationary negatively associated (NA) sequences. Under certain regularity conditions, the Berry-Esseen type bounds are derived
for the kernel density estimator and the Kaplan-Meier kernel density estimator at a fixed point 𝑥.

1. Introduction

Let {𝑇
𝑖
; 𝑖 ≥ 1} be a sequence of the true survival times. The

randomvariables (r.v.s.) are not assumed to bemutually inde-
pendent; it is assumed, however, that they have a common
unknown continuous marginal distribution function (d.f.)
𝐹(𝑥) = 𝑃(𝑇

𝑖
≤ 𝑥) and density function 𝑓(𝑥). Let the r.v.s.

𝑇
𝑖
be censored on the right by the censoring r.v.s. 𝑌

𝑖
, so that

one observes only (𝑍
𝑖
, 𝛿
𝑖
), where

𝑍
𝑖
= min (𝑇

𝑖
, 𝑌
𝑖
) := 𝑇

𝑖
∧ 𝑌
𝑖
,

𝛿
𝑖
= 𝐼 (𝑇

𝑖
≤ 𝑌
𝑖
) , 𝑖 = 1, . . . , 𝑛,

(1)

here and in the sequel, and 𝐼(𝐴) is the indicator random
variable of the event 𝐴. In this random censorship model,
the censoring times 𝑌

𝑖
, 𝑖 = 1, . . . , 𝑛, are assumed to have the

common d.f. 𝐺(𝑦); they are also assumed to be independent
of the r.v.s. 𝑇

𝑖
s. Following the convention in the survival

literature, we assume that both 𝑋
𝑖
and 𝑌

𝑖
are nonnegative

random variables. In contrast to statistics for complete data,
we observe only the pairs (𝑍

𝑖
, 𝛿
𝑖
), 𝑖 = 1, . . . , 𝑛, and the

estimators are based on these pairs.

The following nonparametric estimation of the distribu-
tion functions 𝐹 and 𝐺 due to Kaplan and Meier [1] is widely
used to estimate 𝐹 and 𝐺 on the basis of the data (𝑍

𝑖
, 𝛿
𝑖
):

𝐹
𝑛 (
𝑥) = 1 −

𝑛

∏

𝑘=1

(1 −

𝛿
(𝑘)

𝑛 − 𝑘 + 1

)

𝐼(𝑍(𝑘)≤𝑥)

= 1 −

𝑛

∏

𝑘=1

(

𝑛 − 𝑘

𝑛 − 𝑘 + 1

)

𝐼(𝛿(𝑘)=1, 𝑍(𝑘)≤𝑥)

,

𝐺
𝑛 (
𝑥) = 1 −

𝑛

∏

𝑘=1

(

𝑛 − 𝑘

𝑛 − 𝑘 + 1

)

𝐼(𝛿(𝑘)=0, 𝑍(𝑘)≤𝑥)

,

(2)

where 𝑍
(1)
≤ 𝑍
(2)
≤ ⋅ ⋅ ⋅ ≤ 𝑍

(𝑛)
denote the order statistics of

𝑍
1
, 𝑍
2
, . . . , 𝑍

𝑛
and 𝛿
(𝑖)
is the concomitant of 𝑍

(𝑖)
.

We introduce the kernel density estimator

𝑓
𝑛 (
𝑥) =

1

𝑛ℎ
𝑛

𝑛

∑

𝑖=1

𝐾(

𝑍
𝑖
− 𝑥

ℎ
𝑛

)

𝛿
𝑖

1 − 𝐺 (𝑍
𝑖
)

, (3)

where 0 < ℎ
𝑛
→ 0 are bandwidths and 𝐾 is some kernel

function. When 𝐺 is known, (3) can be used to estimate the
common density of the lifetimes. However, in most practical
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cases 𝐺 is unknown and must be replaced by the Kaplan-
Meier estimator 𝐺

𝑛
, so the Kaplan-Meier kernel density esti-

mator of the 𝑓 is defined by

̂
𝑓
𝑛 (
𝑥) =

1

𝑛ℎ
𝑛

𝑛

∑

𝑖=1

𝐾(

𝑍
𝑖
− 𝑥

ℎ
𝑛

)

𝛿
𝑖

1 − 𝐺
𝑛
(𝑍
𝑖
)

. (4)

There is an extensive literature on the Kaplan-Meier esti-
mator for censored independent observations. We refer to
papers by Földes and Rejtő [2], Gu and Lai [3], Gill [4], and
Sun and Zhu [5]. Sun and Zhu obtained the following Berry-
Esseen bound for i.i.d. censored sequences.

Theorem A. Let 𝐾 be a bounded probability kernel function
with compact support [−1, 1] satisfying for integer 𝑟 ≥ 2,

1

𝑗!

∫ 𝑢
𝑗
𝐾 (𝑢) d𝑢 =

{
{

{
{

{

1, 𝑗 = 0,

0, 𝑗 = 1, 2, . . . , 𝑟 − 1,

𝑐
𝑟
̸= 0, 𝑗 = 𝑟.

(5)

Let 𝑓 be 𝑟-order continuously differentiable and let 𝐺
be continuously differentiable in a neighborhood of 𝑥 with
𝑓(𝑥) > 0 for 𝑥 < 𝜏

𝐿
. Then

𝑟𝑙sup
𝑦∈R








𝑃 ((𝑛ℎ
𝑛
)
1/2
[
̂
𝑓
𝑛 (
𝑥) − 𝑓 (𝑥)] ≤ 𝑦𝜎 (𝑥)) − Φ (𝑦)








= 𝑂 (𝑏
𝑛
) ,

(6)

where Φ(⋅) denotes the standard normal distribution func-
tion, 𝑏

𝑛
= (𝑛ℎ
𝑛
)
−1/2
+𝑛
1/2
ℎ
𝑟+1/2

𝑛
+ℎ
1/4

𝑛
and 𝜎2(𝑥) = (𝑓(𝑥)/(1−

𝐺(𝑥))) ∫𝐾
2
(𝑡)d𝑡.

However, the censored dependent data appear in a num-
ber of applications. For example, repeated measurements in
survival analysis follow this pattern; see Kang and Koehler
[6]. In the context of censored time series analysis, Shumway
et al. [7] considered (hourly or daily) measurements of
the concentration of a given substance subject to some
detection limits, thus being potentially censored from the
right. Lecoutre and Ould-Said [8], Cai [9], and Liang and
Uña-Álvarez [10] studied the convergence for the stationary
𝛼-mixing data. However, the convergence for theNAdata has
not been reported.

The main purpose of this paper is to study the kernel
density estimator and the Kaplan-Meier kernel estimator of
a density function based on censored data when the survival
and the censoring times form the stationary NA (see the fol-
lowing definition) sequences. Under certain regularity condi-
tions, the Berry-Esseen type bounds are derived for the kernel
density estimator and the Kaplan-Meier kernel estimator at a
fixed point 𝑥.

Definition 1. Random variables𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑛
, 𝑛 ≥ 2 are said

to be negatively associated (NA) if for every pair of disjoint
subsets 𝐴

1
and 𝐴

2
of {1, 2, . . . , 𝑛},

cov (𝑓
1
(𝑋
𝑖
; 𝑖 ∈ 𝐴

1
) , 𝑓
2
(𝑋
𝑗
; 𝑗 ∈ 𝐴

2
)) ≤ 0, (7)

where 𝑓
1
and 𝑓
2
are increasing for every variable (or decreas-

ing for every variable) such that this covariance exists. A
sequence of random variables {𝑋

𝑖
; 𝑖 ≥ 1} is said to be NA

if every finite subfamily is NA.

Obviously, if {𝑋
𝑖
; 𝑖 ≥ 1} is a sequence of NA random

variables and {𝑓
𝑖
; 𝑖 ≥ 1} is a sequence of nondecreasing

(or nonincreasing) functions, then {𝑓
𝑖
(𝑋
𝑖
); 𝑖 ≥ 1} is also a

sequence of NA random variables.
This definitionwas introduced by Joag-Dev and Proschan

[11]. Statistical test depends greatly on sampling.The random
sampling without replacement from a finite population is NA
but is not independent. NA sampling has wide applications
such as those in multivariate statistical analysis and reliability
theory. Because of the wide applications of NA sampling, the
limit behavior of NA random variables has received more
and more attention recently. One can refer to Joag-Dev and
Proschan [11] for fundamental properties, Matuła [12] for the
three-series theorem, andWu and Jiang [13, 14] for the strong
convergence.

2. Main Results

In what follows, let 𝐿 be the d.f. of the 𝑍
𝑖
’s, 𝐿 := 1 − 𝐿. Since

the sequences {𝑇
𝑛
; 𝑛 ≥ 1} and {𝑌

𝑛
; 𝑛 ≥ 1} are independent, it

follows that 𝐿 = 1 − 𝐹𝐺 := 1 − (1 − 𝐹)(1 − 𝐺).
Define (possibly infinite) times 𝜏

𝐹
, 𝜏
𝐺
, and 𝜏

𝐿
by

𝜏
𝐹
= inf {𝑦; 𝐹 (𝑦) = 1} , 𝜏

𝐺
= inf {𝑦; 𝐺 (𝑦) = 1} ,

𝜏
𝐿
= inf {𝑦; 𝐿 (𝑦) = 1} .

(8)

Then, 𝜏
𝐿
= 𝜏
𝐹
∧ 𝜏
𝐺
.

We give the following four lemmas, which are helpful in
proving our theorems.

Lemma 2 (Chang and Rao, [15]). Let 𝑋 and 𝑌 be random
variables, then for any 𝑎 > 0

sup
𝑦∈R





𝑃 (𝑋 + 𝑌 ≤ 𝑦) − Φ (𝑦)






≤ sup
𝑦∈R





𝑃 (𝑋 ≤ 𝑦) − Φ (𝑦)





+

𝑎

√2𝜋

+ 𝑃 (|𝑌| > 𝑎) ,

(9)

here and in the sequel, whereΦ(⋅) denotes the standard normal
distribution function.

Lemma 3 (Su et al. [16, Theorem 1]). Let {𝑋
𝑖
; 𝑖 ≥ 1} be

a sequence of NA r.v.s. with zero means and E|𝑋
𝑖
|
𝑝
< ∞,

𝑖 = 1, 2, . . . and 𝑝 ≥ 2. Then for 𝑆
𝑛
= ∑
𝑛

𝑖=1
𝑋
𝑖
,

E




𝑆
𝑛






𝑝
≤ 𝑐
𝑝
(

𝑛

∑

𝑖=1

E




𝑋
𝑖






𝑝
+ (

𝑛

∑

𝑖=1

E𝑋
2

𝑖
)

𝑝/2

) , (10)

where 𝑐
𝑝
> 0 depends only on 𝑝.

Lemma 4. Let {𝑋
𝑖
; 𝑖 ≥ 1} be a sequence of NA r.v.s. with

continuous d.f. 𝐹, and let 𝐹
𝑛
(𝑥) := (1/𝑛)∑

𝑛

𝑖=1
𝐼(𝑋
𝑖
< 𝑥) be

the empirical d.f. based on the segments𝑋
1
, . . . , 𝑋

𝑛
. Then

sup
𝑥∈R





𝐹
𝑛 (
𝑥) − 𝐹 (𝑥)





= 𝑂 (𝑛

−1/2ln1/2𝑛) 𝑎.𝑠. (11)
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Proof. Similar to the proof of Lemma 4 in Yang [17], we can
prove Lemma 4.

Lemma 5 (Wu and Chen [18, Theorem 1.3]). Let {𝑇
𝑛
; 𝑛 ≥ 1}

and {𝑌
𝑛
; 𝑛 ≥ 1} be two sequences of NA r.v.s. Suppose that the

sequences {𝑇
𝑛
; 𝑛 ≥ 1} and {𝑌

𝑛
; 𝑛 ≥ 1} are independent. Then

for any 0 < 𝜏 < 𝜏
𝐿
,

sup
0≤𝑡≤𝜏






𝐹
𝑛 (
𝑡) − 𝐹 (𝑡)






= 𝑂 (𝑛

−1/2ln1/2𝑛) 𝑎.𝑠. (12)

In order to formulate our main results, we now list some
assumptions.

(𝐴
1
) {𝑌
𝑖
; 𝑖 ≥ 1} and {𝑇

𝑖
; 𝑖 ≥ 1} are two sequences of

stationary NA random variables, and {𝑌
𝑖
} and {𝑇

𝑖
} are

independent.
(𝐴
2
) Suppose that 𝑥 < 𝜏

𝐿
, 𝑓(𝑥) > 0, and 𝑓 and 𝐺 have

bounded derivative in a neighborhood of 𝑥.
(𝐴
3
) For all integers 𝑗 ≥ 1, the conditional distribution
𝑇
𝑗+1

, given 𝑇
1
= 𝑥
1
, has a density 𝑓

𝑗
(⋅|𝑥
1
), and for all

𝑥 ∈ R, 𝑓
𝑗
(𝑥
2
|𝑥
1
) ≤ 𝑀

0
for 𝑥
1
, 𝑥
2
∈ 𝑈(𝑥) and some

𝑀
0
> 0, where 𝑈(𝑥) represents a neighborhood of 𝑥.

(𝐴
4
) The kernel 𝐾 is a bounded derivative function with
𝐾(𝑢) = 0 for |𝑢| > 1 and ∫1

−1
𝐾(𝑢)𝑑𝑢 = 1.

(𝐴
5
) Let 𝑝

𝑛
, 𝑞
𝑛
, and 𝑘

𝑛
= [𝑛/(𝑝

𝑛
+ 𝑞
𝑛
)] be positive integers

with

lim
𝑛→∞

𝑘
𝑛
= ∞, lim

𝑛→∞

𝑝
𝑛
𝑘
𝑛

𝑛

= 1, lim
𝑛→∞

𝑝
𝑛
ℎ
𝑛
= 0,

lim
𝑛→∞

𝑛ℎ
𝑛
= ∞, lim

𝑛→∞
ℎ
−3

𝑛
𝑢 (𝑞
𝑛
) = 0,

(13)

where 𝑢(𝑛) := ∑∞
𝑗=𝑛
|Cov(𝑇

1
, 𝑇
𝑗+1
)|.

Remark 6. (𝐴
5
) Implies lim

𝑛→∞
(𝑘
𝑛
𝑞
𝑛
/𝑛) = 0 and

lim
𝑛→∞

(𝑝
𝑛
/𝑛) = 0.

Let 𝜎2
𝑛
(𝑥) = 𝑛ℎ

𝑛
Var(𝑓

𝑛
(𝑥)), 𝜎2(𝑥) = (𝑓(𝑥)/(1 −

𝐺(𝑥))) ∫

1

−1
𝐾
2
(𝑡)d𝑡.

Theorem 7. Suppose that (𝐴
1
)–(𝐴
5
) are satisfied; then






𝜎
2

𝑛
(𝑥) − 𝜎

2
(𝑥)






= 𝑂 (𝑎

𝑛
) , (14)

where 𝑎
1𝑛
= (𝑞
𝑛
𝑘
𝑛
/𝑛) + (𝑞

𝑛
𝑘
𝑛
𝑢(𝑝
𝑛
)/𝑛ℎ
3

𝑛
), 𝑎
2𝑛
= 𝑝
𝑛
/𝑛, 𝑎
3𝑛
=

𝑢(𝑞
𝑛
)/ℎ
3

𝑛
, 𝑎
𝑛
= 𝑝
𝑛
ℎ
𝑛
+ 𝑎
1/2

1𝑛
+ 𝑎
1/2

2𝑛
+ 𝑎
3𝑛
→ 0.

Consider the following:

sup
𝑦∈R











𝑃(

𝑓
𝑛 (
𝑥) − E𝑓𝑛 (𝑥)

√Var𝑓
𝑛 (
𝑥)

≤ 𝑦) − Φ (𝑦)











= 𝑂 (𝑏
𝑛
) , (15)

where 𝑏
𝑛
= 1/(𝑛ℎ

𝑛
)
1/2
+ 𝑎
1/3

1𝑛
+ 𝑎
1/3

2𝑛
+ 𝑎
1/3

3𝑛
→ 0.

Furthermore, if

lim
𝑛→∞

𝑛
1/2
ℎ
3/2

𝑛
= 0, (16)

then

sup
𝑦∈R











𝑃(

𝑓
𝑛 (
𝑥) − 𝑓 (𝑥)

√Var𝑓
𝑛 (
𝑥)

≤ 𝑦) − Φ (𝑦)











= 𝑂 (𝑏
𝑛
+ 𝑛
1/2
ℎ
3/2

𝑛
) .

(17)

Theorem 8. Assume that the conditions of Theorem 7 hold.
Then

sup
𝑦∈R












𝑃(

̂
𝑓
𝑛 (
𝑥) − E ̂𝑓𝑛 (𝑥)

√Var𝑓
𝑛 (
𝑥)

≤ 𝑦) − Φ (𝑦)












= 𝑂 (𝑏
𝑛
+ (ℎ
𝑛
ln 𝑛)1/4) .

(18)

Furthermore, if (16) holds, then

sup
𝑦∈R












𝑃(

̂
𝑓
𝑛 (
𝑥) − 𝑓 (𝑥)

√Var𝑓
𝑛 (
𝑥)

≤ 𝑦) − Φ (𝑦)












= 𝑂 (𝑏
𝑛
+ (ℎ
𝑛
ln 𝑛)1/4 + 𝑛1/2ℎ3/2

𝑛
) .

(19)

3. Proofs

Proof of Theorem 7. We observe that, by (3),

(𝑛ℎ
𝑛
)
1/2
𝑓
𝑛 (
𝑥) =

𝑛

∑

𝑖=1

1

(𝑛ℎ
𝑛
)
1/2
𝐾(

𝑍
𝑖
− 𝑥

ℎ
𝑛

)

𝛿
𝑖

1 − 𝐺 (𝑍
𝑖
)

:=

𝑛

∑

𝑖=1

𝑍
𝑛𝑖
:= 𝑆
𝑛
.

(20)

Let 𝑘
𝑚
= (𝑚−1)(𝑝

𝑛
+𝑞
𝑛
)+1, 𝑙
𝑚
= (𝑚−1)(𝑝

𝑛
+𝑞
𝑛
)+𝑝
𝑛
+1,

𝑚 = 1, 2, . . . , 𝑘
𝑛
, where

𝑈
𝑛𝑚
=

𝑘𝑚+𝑝𝑛−1

∑

𝑖=𝑘𝑚

𝑍
𝑛𝑖
, 𝑈



𝑛𝑚
=

𝑙𝑚+𝑞𝑛−1

∑

𝑖=𝑙𝑚

𝑍
𝑛𝑖
,

𝑈


𝑛,𝑘𝑛+1
=

𝑛

∑

𝑖=𝑘𝑛(𝑝𝑛+𝑞𝑛)+1

𝑍
𝑛𝑖
, 𝑆



𝑛
=

𝑘𝑛

∑

𝑚=1

𝑈
𝑛𝑚
,

𝑆


𝑛
=

𝑘𝑛

∑

𝑚=1

𝑈


𝑛𝑚
, 𝑆



𝑛
= 𝑈


𝑛,𝑘𝑛+1
,

(21)

and then

𝑆
𝑛
= 𝑆


𝑛
+ 𝑆


𝑛
+ 𝑆


𝑛
. (22)

By (20),

𝜎
2

𝑛
(𝑥) = Var 𝑆

𝑛
= Var (𝑆

𝑛
+ 𝑆


𝑛
+ 𝑆


𝑛
)

= Var 𝑆
𝑛
+ Var 𝑆

𝑛
+ Var 𝑆

𝑛
+ 2Cov (𝑆

𝑛
, 𝑆


𝑛
)

+ 2Cov (𝑆
𝑛
, 𝑆


𝑛
) + 2Cov (𝑆

𝑛
, 𝑆


𝑛
) .

(23)



4 Journal of Applied Mathematics

We first estimate Var 𝑆
𝑛
, Var 𝑆

𝑛
, and Var 𝑆

𝑛
. Obviously, (𝐴

1
)

implies that {𝑈
𝑛𝑚
} and {𝑍

𝑛𝑖
} are stationary; thus,

Var 𝑆
𝑛
= Var(

𝑘𝑛

∑

𝑚=1

𝑈
𝑛𝑚
)

=

𝑘𝑛

∑

𝑚=1

Var𝑈
𝑛𝑚
+ 2 ∑

1≤𝑖<𝑗≤𝑘𝑛

Cov (𝑈
𝑛𝑖
, 𝑈
𝑛𝑗
)

= 𝑘
𝑛
Var𝑈
𝑛1
+ 2 ∑

1≤𝑖<𝑗≤𝑘𝑛

Cov (𝑈
𝑛𝑖
, 𝑈
𝑛𝑗
)

= 𝑘
𝑛
𝑝
𝑛
Var𝑍

𝑛1
+ 2𝑘
𝑛
∑

1≤𝑖<𝑗≤𝑝𝑛

Cov (𝑍
𝑛𝑖
, 𝑍
𝑛𝑗
)

+ 2 ∑

1≤𝑖<𝑗≤𝑘𝑛

Cov (𝑈
𝑛𝑖
, 𝑈
𝑛𝑗
)

:= 𝐼
𝑛1
+ 𝐼
𝑛2
+ 𝐼
𝑛3
.

(24)

From (𝐴
1
), (𝐴
2
), and (𝐴

4
), we obtain

Var𝑍
𝑛1
=

1

𝑛ℎ
𝑛

Var𝐾(𝑍1 − 𝑥
ℎ
𝑛

)

𝛿
1

1 − 𝐺 (𝑍
1
)

=

1

𝑛ℎ
𝑛

{E[𝐾
2
(

𝑍
1
− 𝑥

ℎ
𝑛

)

𝛿
1

(1 − 𝐺 (𝑍
1
))
2
]

−[E𝐾(
𝑍
1
− 𝑥

ℎ
𝑛

)

𝛿
1

1 − 𝐺 (𝑍
1
)

]

2

}

=

1

𝑛ℎ
𝑛

∬𝐾
2
(

min (𝑢, V) − 𝑥
ℎ
𝑛

)

×

𝐼 (𝑢 < V)

(1 − 𝐺 (min (𝑢, V)))2
d𝐹 (𝑢) d𝐺 (V)

−

1

𝑛ℎ
𝑛

[∬𝐾(

min (𝑢, V) − 𝑥
ℎ
𝑛

)

×

𝐼 (𝑢 < V)

1 − 𝐺 (min (𝑢, V))
d𝐹 (𝑢) d𝐺 (V)]

2

=

1

𝑛ℎ
𝑛

∫∫

𝑢<V
𝐾
2
(

𝑢 − 𝑥

ℎ
𝑛

)

1

(1 − 𝐺 (𝑢))
2
d𝐹 (𝑢) d𝐺 (V)

−

1

𝑛ℎ
𝑛

[∫∫

𝑢<V
𝐾(

𝑢−𝑥

ℎ
𝑛

)

1

1−𝐺 (𝑢)

d𝐹 (𝑢) d𝐺 (V)]
2

=

1

𝑛ℎ
𝑛

{∫𝐾
2
(

𝑢 − 𝑥

ℎ
𝑛

)

𝑓 (𝑢)

1 − 𝐺 (𝑢)

d𝑢

−[∫𝐾(

𝑢 − 𝑥

ℎ
𝑛

)𝑓 (𝑢) d𝑢]
2

}

=

1

𝑛

{∫

1

−1

𝐾
2
(𝑢)

𝑓 (𝑥 + 𝑢ℎ
𝑛
)

1 − 𝐺 (𝑥 + 𝑢ℎ
𝑛
)

d𝑢

−ℎ
𝑛
[∫

1

−1

𝐾 (𝑢) 𝑓 (𝑥 + 𝑢ℎ𝑛
) d𝑢]
2

}

(25)

= 𝑂(

1

𝑛

) . (26)

Hence, by (𝐴
5
), 𝐼
𝑛1
= 𝑂(1).

For 𝑖 < 𝑗 and 𝑥 < 𝜏
𝐿
, by (𝐴

1
) − (𝐴

4
),






Cov (𝑍

𝑛𝑖
, 𝑍
𝑛𝑗
)







=






Cov (𝑍

𝑛1
, 𝑍
𝑛,𝑗−𝑖+1

)







=

1

𝑛ℎ
𝑛











Cov(𝐾(𝑍1 − 𝑥
ℎ
𝑛

)

𝛿
1

1 − 𝐺 (𝑍
1
)

,

𝐾(

𝑍
𝑗−𝑖+1

− 𝑥

ℎ
𝑛

)

𝛿
𝑗−𝑖+1

1 − 𝐺 (𝑍
𝑗−𝑖+1
)

)













≤

𝑐

𝑛ℎ
𝑛

{E











𝐾(

𝑇
1
− 𝑥

ℎ
𝑛

)𝐾(

𝑇
𝑗−𝑖+1

− 𝑥

ℎ
𝑛

)











+(E𝐾(
𝑍
1
− 𝑥

ℎ
𝑛

))

2

}

≤

𝑐

𝑛ℎ
𝑛

{∬










𝐾(

𝑢 − 𝑥

ℎ
𝑛

)𝐾(

V − 𝑥

ℎ
𝑛

)










× 𝑓 (𝑢) 𝑓𝑗−𝑖 (
V | 𝑢) d𝑢 dV

+(∫𝐾(

𝑢 − 𝑥

ℎ
𝑛

)𝑓 (𝑢) d𝑢)
2

}

≤

𝑐ℎ
𝑛

𝑛

{∬

1

−1

|𝐾 (𝑢)𝐾 (V)| d𝑢 dV

+(∫

1

−1

𝐾 (𝑢) 𝑓 (𝑥 + ℎ𝑛
𝑢) d𝑢)

2

}

= 𝑂(

ℎ
𝑛

𝑛

) .

(27)

Therefore, by (𝐴
5
),





𝐼
𝑛2





= 2𝑘
𝑛













∑

1≤𝑖<𝑗≤𝑝𝑛

Cov (𝑍
𝑛𝑖
, 𝑍
𝑛𝑗
)













= 𝑂(

𝑘
𝑛
𝑝
2

𝑛
ℎ
𝑛

𝑛

) = 𝑂 (𝑝
𝑛
ℎ
𝑛
) → 0.

(28)
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By (𝐴
1
), (𝐴
2
), (𝐴
4
), and Lemma 2.3 of Zhang [19], for 𝑙 ≥ 1,





Cov (𝑈

𝑛1
, 𝑈
𝑛,𝑙+1
)





=













𝑝𝑛

∑

𝑖=1

𝑙(𝑝𝑛+𝑞𝑛)+𝑝𝑛

∑

𝑗=𝑙(𝑝𝑛+𝑞𝑛)+1

Cov (𝑍
𝑛𝑖
, 𝑍
𝑛𝑗
)













=














𝑝𝑛

∑

𝑖=1

{

{

{

𝑖−1

∑

𝑗=1

Cov (𝑍
𝑛,𝑖−𝑗+1

, 𝑍
𝑛,𝑙(𝑝𝑛+𝑞𝑛)+1

)

+

𝑝𝑛

∑

𝑗=𝑖

Cov (𝑍
𝑛1
, 𝑍
𝑛,𝑙(𝑝𝑛+𝑞𝑛)+𝑗−𝑖+1

)

}

}

}














=












𝑝𝑛

∑

𝑟=1

(𝑝
𝑛
− 𝑟 + 1)Cov (𝑍

𝑛1
, 𝑍
𝑛,𝑙(𝑝𝑛+𝑞𝑛)+𝑟

)

+

𝑝𝑛−1

∑

𝑟=1

(𝑝
𝑛
− 𝑟)Cov (𝑍

𝑛,𝑟+1
, 𝑍
𝑛,𝑙(𝑝𝑛+𝑞𝑛)+1

)












≤ 𝑝
𝑛

𝑙(𝑝𝑛+𝑞𝑛)+𝑝𝑛−1

∑

𝑟=𝑙(𝑝𝑛+𝑞𝑛)





Cov (𝑍

𝑛1
, 𝑍
𝑛,𝑟+1
)





+ 𝑝
𝑛

𝑙(𝑝𝑛+𝑞𝑛)−1

∑

𝑟=𝑙(𝑝𝑛+𝑞𝑛)−(𝑝𝑛−1)





Cov (𝑍

𝑛1
, 𝑍
𝑛,𝑟+1
)





= 𝑝
𝑛

𝑙(𝑝𝑛+𝑞𝑛)+𝑝𝑛−1

∑

𝑟=𝑙(𝑝𝑛+𝑞𝑛)−(𝑝𝑛−1)





Cov (𝑍

𝑛1
, 𝑍
𝑛,𝑟+1
)





=

𝑝
𝑛

𝑛ℎ
𝑛

𝑙(𝑝𝑛+𝑞𝑛)+𝑝𝑛−1

∑

𝑟=𝑙(𝑝𝑛+𝑞𝑛)−(𝑝𝑛−1)










Cov(𝐾(𝑍1 − 𝑥
ℎ
𝑛

)

×

𝛿
1

1 − 𝐺 (𝑍
1
)

,

𝐾(

𝑍
𝑟+1
− 𝑥

ℎ
𝑛

)

×

𝛿
𝑟+1

1 − 𝐺 (𝑍
𝑟+1
)

)











≤ 𝑐

𝑝
𝑛

𝑛ℎ
3

𝑛

𝑙(𝑝𝑛+𝑞𝑛)+𝑝𝑛−1

∑

𝑟=𝑙(𝑝𝑛+𝑞𝑛)−(𝑝𝑛−1)





Cov (𝑇

1
, 𝑇
𝑟+1
)




.

(29)

Thus, by (𝐴
1
) and (𝐴

5
),





𝐼
𝑛3





=













2 ∑

1≤𝑖<𝑗≤𝑘𝑛

Cov (𝑈
𝑛𝑖
, 𝑈
𝑛𝑗
)













=













2

𝑘𝑛−1

∑

𝑙=1

(𝑘
𝑛
− 𝑙)Cov (𝑈

𝑛1
, 𝑈
𝑛,𝑙+1
)













≤

𝑐𝑝
𝑛
𝑘
𝑛

𝑛ℎ
3

𝑛

𝑘𝑛−1

∑

𝑙=1

𝑙(𝑝𝑛+𝑞𝑛)+𝑝𝑛−1

∑

𝑟=𝑙(𝑝𝑛+𝑞𝑛)−(𝑝𝑛−1)





Cov (𝑇

1
, 𝑇
𝑟+1
)





≤

𝑐𝑝
𝑛
𝑘
𝑛

𝑛

1

ℎ
3

𝑛

∞

∑

𝑟=𝑞𝑛





Cov (𝑇

1
, 𝑇
𝑟+1
)





= 𝑂(

𝑢 (𝑞
𝑛
)

ℎ
3

𝑛

) = 𝑂 (𝑎
3𝑛
) → 0.

(30)

Therefore, by the combination of (𝐴
5
), (24), (26), (28), and

(30),

Var 𝑆
𝑛
= 𝑂 (1) + 𝑂 (𝑝𝑛

ℎ
𝑛
) + 𝑂 (𝑎

3𝑛
) = 𝑂 (1) . (31)

Similarly,

Var 𝑆
𝑛
= 𝑘
𝑛
Var𝑈
𝑛1
+ 2 ∑

1≤𝑖<𝑗≤𝑘𝑛

Cov (𝑈
𝑛𝑖
, 𝑈


𝑛𝑗
)

= 𝑘
𝑛
𝑞
𝑛
Var𝑍

𝑛1
+ 2𝑘
𝑛
∑

1≤𝑖<𝑗≤𝑞𝑛

Cov (𝑍
𝑛𝑖
, 𝑍
𝑛𝑗
)

+ 2 ∑

1≤𝑖<𝑗≤𝑘𝑛

Cov (𝑈
𝑛𝑖
, 𝑈


𝑛𝑗
)

= 𝑂(

𝑞
𝑛
𝑘
𝑛

𝑛

+

𝑞
2

𝑛
𝑘
𝑛
ℎ
𝑛

𝑛

+

𝑞
𝑛
𝑘
𝑛
𝑢 (𝑝
𝑛
)

𝑛ℎ
3

𝑛

)

= 𝑂(

𝑞
𝑛
𝑘
𝑛

𝑛

+

𝑞
𝑛
𝑘
𝑛
𝑢 (𝑝
𝑛
)

𝑛ℎ
3

𝑛

) = 𝑂 (𝑎
1𝑛
) .

(32)

By (26), (27), (𝐴
1
), (𝐴
5
), and 𝑛 − 𝑘

𝑛
(𝑝
𝑛
+ 𝑞
𝑛
) ≤ 𝑝
𝑛
+ 𝑞
𝑛
≤

2𝑝
𝑛
,

Var 𝑆
𝑛
= Var(

𝑛

∑

𝑖=𝑘𝑛(𝑝𝑛+𝑞𝑛)+1

𝑍
𝑛𝑖
)

= (𝑛 − 𝑘
𝑛
(𝑝
𝑛
+ 𝑞
𝑛
))Var (𝑍

𝑛1
)

+ 2 ∑

𝑘𝑛(𝑝𝑛+𝑞𝑛)+1≤𝑖<𝑗≤𝑛

Cov (𝑍
𝑛𝑖
, 𝑍
𝑛𝑗
)

= 𝑂(

𝑝
𝑛

𝑛

+

𝑝
2

𝑛
ℎ
𝑛

𝑛

) = 𝑂(

𝑝
𝑛

𝑛

)

= 𝑂 (𝑎
2𝑛
) .

(33)

By (25), (𝐴
2
), and (𝐴

4
),



6 Journal of Applied Mathematics






𝑛Var𝑍

𝑛1
− 𝜎
2
(𝑥)






=












∫

1

−1

𝐾
2
(𝑢) (

𝑓 (𝑥 + 𝑢ℎ
𝑛
)

1 − 𝐺 (𝑥 + 𝑢ℎ
𝑛
)

−

𝑓 (𝑥)

1 − 𝐺 (𝑥)

) d𝑢 − ℎ
𝑛
[∫

1

−1

𝐾 (𝑢) 𝑓 (𝑥 + 𝑢ℎ𝑛
) d𝑢]
2









≤











∫

1

−1

𝐾
2
(𝑢)

(1 − 𝐺 (𝑥)) (𝑓 (𝑥 + 𝑢ℎ𝑛
) − 𝑓 (𝑥)) + 𝑓 (𝑥) (𝐺 (𝑥 + 𝑢ℎ𝑛

) − 𝐺 (𝑥))

(1 − 𝐺 (𝑥 + 𝑢ℎ
𝑛
)) (1 − 𝐺 (𝑥))

d𝑢










+ ℎ
𝑛
[∫

1

−1

𝐾 (𝑢) 𝑓 (𝑥 + 𝑢ℎ𝑛
) d𝑢]
2

= 𝑂 (ℎ
𝑛
) .

(34)

Note that |Cov(𝑋, 𝑌)| ≤ (Var𝑋Var𝑌)1/2 for any random
variables𝑋 and 𝑌; from (31)–(33),






Cov (𝑆

𝑛
, 𝑆


𝑛
)






= 𝑂 (𝑎

1/2

1𝑛
) ,






Cov (𝑆

𝑛
, 𝑆


𝑛
)






= 𝑂 (𝑎

1/2

2𝑛
) ,






Cov (𝑆

𝑛
, 𝑆


𝑛
)






= 𝑂 (𝑎

1/2

1𝑛
𝑎
1/2

2𝑛
) .

(35)

Therefore, from the combination of (23) and (31)–(34), it
follows that






𝜎
2

𝑛
(𝑥) − 𝜎

2
(𝑥)







=






𝑛Var𝑍

𝑛1
− 𝜎
2
(𝑥) + 𝑂 (𝑝𝑛

ℎ
𝑛
+ 𝑎
3𝑛
+ 𝑎
1/2

1𝑛
+ 𝑎
1/2

2𝑛
)







= 𝑂 (𝑝
𝑛
ℎ
𝑛
+ 𝑎
3𝑛
+ 𝑎
1/2

1𝑛
+ 𝑎
1/2

2𝑛
)

= 𝑂 (𝑎
𝑛
) .

(36)

Thus, (14) holds.
Now, we prove (15). Let 𝑆

𝑛
= (𝑆
𝑛
− E𝑆
𝑛
)/𝜎
𝑛
(𝑥), 𝑆
𝑛
= (𝑆


𝑛
−

E𝑆
𝑛
)/𝜎
𝑛
(𝑥), 𝑆
𝑛
= (𝑆


𝑛
−E𝑆
𝑛
)/𝜎
𝑛
(𝑥), 𝑆
𝑛
= (𝑆


𝑛
−E𝑆
𝑛
)/𝜎
𝑛
(𝑥).

Then, 𝑆
𝑛
= 𝑆


𝑛
+ 𝑆


𝑛
+ 𝑆


𝑛
. According to Lemma 2, (14), (20),

(32), and (33), we have

sup
𝑦∈R











𝑃(

𝑓
𝑛 (
𝑥) − E𝑓𝑛 (𝑥)

√Var𝑓
𝑛 (
𝑥)

≤ 𝑦) − Φ (𝑦)











= sup
𝑦∈R






𝑃 (𝑆


𝑛
+ 𝑆


𝑛
+ 𝑆


𝑛
≤ 𝑦) − Φ (𝑦)







≤ sup
𝑦∈R






𝑃 (𝑆


𝑛
≤ 𝑦) − Φ (𝑦)






+

𝑎
1/3

1𝑛

√2𝜋

+ 𝑃 (𝑆


𝑛
> 𝑎
1/3

1𝑛
) +

𝑎
1/3

2𝑛

√2𝜋

+ 𝑃 (𝑆


𝑛
> 𝑎
1/3

2𝑛
)

= sup
𝑦∈R






𝑃 (𝑆


𝑛
≤ 𝑦) − Φ (𝑦)






+ 𝑂 (𝑎

1/3

1𝑛
+ 𝑎
1/3

2𝑛
) .

(37)

Let 𝜉
𝑛𝑚
, 𝑚 = 1, 2, . . . , 𝑘

𝑛
be independent random

variables with the same distribution as �̃�
𝑛𝑚
:= (𝑈

𝑛𝑚
−

E𝑈
𝑛𝑚
)/𝜎
𝑛
(𝑥) for 𝑚 = 1, 2, . . . , 𝑘

𝑛
. Put 𝐻

𝑛
= ∑
𝑘𝑛

𝑚=1
𝜉
𝑛𝑚
, 𝐵2
𝑛
=

∑
𝑘𝑛

𝑚=1
Var �̃�
𝑛𝑚
= ∑
𝑘𝑛

𝑚=1
Var 𝜉
𝑛𝑚
= Var𝐻

𝑛
. Obviously,

sup
𝑦∈R






𝑃 (𝑆


𝑛
≤ 𝑦) − Φ (𝑦)







≤ sup
𝑦∈R






𝑃 (𝑆


𝑛
≤ 𝑦) − 𝑃 (𝐻

𝑛
≤ 𝑦)







+ sup
𝑦∈R










Φ(

𝑦

𝐵
𝑛

) − Φ (𝑦)










+ sup
𝑦∈R










𝑃 (𝐻
𝑛
≤ 𝑦) − Φ(

𝑦

𝐵
𝑛

)










:= 𝐽
1𝑛
+ 𝐽
2𝑛
+ 𝐽
3𝑛
.

(38)

Note that Var 𝑆
𝑛
= 𝜎
2

𝑛
(𝑥) and 𝐵2

𝑛
= (Var 𝑆

𝑛
− 𝐼
𝑛3
)/𝜎
2

𝑛
(𝑥) from

(20) and (24). By (14), (30), (32), and (33),

𝐽
2𝑛
= sup
𝑦∈R










Φ(

𝑦

𝐵
𝑛

) − Φ (𝑦)










≤






𝐵
2

𝑛
− 1







=











Var 𝑆
𝑛
− 𝐼
𝑛3
− Var 𝑆

𝑛

𝜎
2

𝑛
(𝑥)











≤ 𝑐






Var 𝑆
𝑛
− Var 𝑆

𝑛






+ 𝑐




𝐼
𝑛3






≤ 𝑐Var (𝑆
𝑛
+ 𝑆


𝑛
)

+ 2






Cov (𝑆

𝑛
, 𝑆


𝑛
+ 𝑆


𝑛
)






+ 𝑂 (𝑎

3𝑛
)

= 𝑂 (𝑎
1/2

1𝑛
+ 𝑎
1/2

2𝑛
+ 𝑎
3𝑛
) → 0.

(39)

Note that 𝜉
𝑛𝑚
, 𝑚 = 1, 2, . . . , 𝑘

𝑛
, are independent random

variables, and 𝐵2
𝑛
= Var𝐻

𝑛
. Therefore, by 𝐵

𝑛
→ 1

(from (39)), (14), and Berry-Esseen inequality (cf. Petrov [20,
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page 154,Theorem5.7]), there exists some constant 𝑐 > 0 such
that

𝐽
3𝑛
= sup
𝑦∈R










𝑃 (

𝐻
𝑛

𝐵
𝑛

≤ 𝑦) − Φ (𝑦)










≤ 𝑐

∑
𝑘𝑛

𝑚=1
E




𝜉
𝑛𝑚






3

𝐵
3

𝑛

≤ 𝑐

𝑘𝑛

∑

𝑚=1

E




𝑈
𝑛𝑚






3

=

𝑘𝑛

∑

𝑚=1

E













𝑘𝑚+𝑝𝑛−1

∑

𝑖=𝑘𝑚

𝑍
𝑛𝑖













3

.

(40)

Similar to (26), we can get E|𝑍
𝑛1
|
3
= 𝑂(1/𝑛

3/2
ℎ
1/2

𝑛
) and

E𝑍2
𝑛1
= 𝑂(1/𝑛). It is easy to see from Property P7 of Joag-

Dev and Proschan [11] that {𝑍
𝑛
; 𝑛 ≥ 1} is also sequence of NA

r.v.s., so by using Lemma 3, we have

𝐽
3𝑛
≤ 𝑐

𝑘𝑛

∑

𝑚=1

[

[

𝑘𝑚+𝑝𝑛−1

∑

𝑖=𝑘𝑚

E




𝑍
𝑛𝑖






3
+ (

𝑘𝑚+𝑝𝑛−1

∑

𝑖=𝑘𝑚

E𝑍
2

𝑛𝑖
)

3/2

]

]

≤ 𝑐𝑘
𝑛
(𝑝
𝑛

1

𝑛
3/2
ℎ
1/2

𝑛

+ (

𝑝
𝑛

𝑛

)

3/2

)

= 𝑂(

1

(𝑛ℎ
𝑛
)
1/2
+ 𝑎
1/2

2𝑛
) .

(41)

Assume that 𝜑(𝑡) and𝜓(𝑡) are the characteristic functions
of 𝑆
𝑛
and 𝐻

𝑛
, respectively. By Esseen inequality (cf. Petrov

[20, page 146,Theorem 5.3]), for any 𝑇 > 0, there exists some
constant 𝑐 > 0 such that

𝐽
1𝑛
= sup
𝑦∈R






𝑃 (𝑆


𝑛
≤ 𝑦) − 𝑃 (𝐻

𝑛
≤ 𝑦)







≤ ∫

𝑇

−𝑇










𝜑 (𝑡) − 𝜓 (𝑡)

𝑡










d𝑡

+ 𝑇sup
𝑦∈R

∫

|𝑢|≤(𝑐/𝑇)





𝑃 (𝐻
𝑛
≤ 𝑢 + 𝑦) − 𝑃 (𝐻

𝑛
≤ 𝑦)




d𝑢

:= 𝐽


1𝑛
+ 𝐽


1𝑛
.

(42)

ByTheorem 10 in Newman [21], (14), and (30),





𝜑 (𝑡) − 𝜓 (𝑡) =













E exp(i𝑡
𝑘𝑛

∑

𝑚=1

�̃�
𝑛𝑚
) −

𝑘𝑛

∏

𝑚=1

E exp (i𝑡�̃�
𝑛𝑚
)













≤ 2 ∑

1≤𝑖<𝑗≤𝑘𝑛

𝑡
2 



Cov (�̃�

𝑛𝑖
, �̃�
𝑛𝑗
)







≤ 𝑐 ∑

1≤𝑖<𝑗≤𝑘𝑛

𝑡
2 



Cov (𝑈

𝑛𝑖
, 𝑈
𝑛𝑗
)







= 𝑡
2
𝑂 (𝑎
3𝑛
) .

(43)

Therefore,

𝐽


1𝑛
= 𝑂 (𝑎

3𝑛
𝑇
2
) . (44)

On applying (39)–(41), we have

sup
𝑦∈R





𝑃 (𝐻
𝑛
≤ 𝑢 + 𝑦) − 𝑃 (𝐻

𝑛
≤ 𝑦)





≤ sup
𝑦∈R

[










𝑃 (

𝐻
𝑛

𝐵
𝑛

≤

𝑢 + 𝑦

𝐵
𝑛

) − Φ(

𝑢 + 𝑦

𝐵
𝑛

)










+










𝑃 (

𝐻
𝑛

𝐵
𝑛

≤

𝑦

𝐵
𝑛

) − Φ(

𝑦

𝐵
𝑛

)










+










Φ(

𝑢 + 𝑦

𝐵
𝑛

) − Φ(

𝑦

𝐵
𝑛

)










]

= 𝑂(

1

(𝑛ℎ
𝑛
)
1/2
+ 𝑎
1/2

2𝑛
+ |𝑢|) .

(45)

Thus,

𝐽


1𝑛
= 𝑂(

1

(𝑛ℎ
𝑛
)
1/2
+ 𝑎
1/2

2𝑛
+

1

𝑇

) . (46)

Choosing 𝑇 = 𝑎−1/3
3𝑛

, then by (42)–(46),

𝐽
1𝑛
= 𝑂(

1

(𝑛ℎ
𝑛
)
1/2
+ 𝑎
1/2

2𝑛
+ 𝑎
1/3

3𝑛
) . (47)

Therefore, the combination of (37)–(39), (41), (47), and (15)
holds.

Finally, we prove (17). By Lemma 2 and (15), for any 𝑎 > 0,

sup
𝑦∈R











𝑃(

𝑓
𝑛 (
𝑥) − 𝑓 (𝑥)

√Var𝑓
𝑛 (
𝑥)

≤ 𝑦) − Φ (𝑦)











= sup
𝑦∈R











𝑃(

𝑓
𝑛 (
𝑥) − E𝑓𝑛 (𝑥)

√Var𝑓
𝑛 (
𝑥)

+

E𝑓
𝑛 (
𝑥) − 𝑓 (𝑥)

√Var𝑓
𝑛 (
𝑥)

≤ 𝑦) − Φ (𝑦)











≤ sup
𝑦∈R











𝑃(

𝑓
𝑛 (
𝑥) − E𝑓𝑛 (𝑥)

√Var𝑓
𝑛 (
𝑥)

≤ 𝑦) − Φ (𝑦)











+

𝑎

√2𝜋

+ 𝑃(





E𝑓
𝑛 (
𝑥) − 𝑓 (𝑥)






√Var𝑓
𝑛 (
𝑥)

> 𝑎)

= 𝑂 (𝑏
𝑛
) +

𝑎

√2𝜋

+ 𝑃(





E𝑓
𝑛 (
𝑥) − 𝑓 (𝑥)






√Var𝑓
𝑛 (
𝑥)

> 𝑎) .

(48)
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Applying (14), (𝐴
3
), (𝐴
4
), and differential mean value

theorem, there exists a constant 0 < 𝜃 < 1, such that





E𝑓
𝑛 (
𝑥) − 𝑓 (𝑥)






√Var𝑓
𝑛 (
𝑥)

≤ 𝑐√𝑛ℎ
𝑛











1

ℎ
𝑛

E𝐾(
𝑍
1
− 𝑥

ℎ
𝑛

)

𝛿
1

1 − 𝐺 (𝑍
1
)

− 𝑓 (𝑥)











= 𝑐√𝑛ℎ
𝑛











∫

1

−1

𝐾 (𝑢) (𝑓 (𝑥 + 𝑢ℎ𝑛
) − 𝑓 (𝑥)) d𝑢











= 𝑐√𝑛ℎ
𝑛
∫

1

−1






𝐾 (𝑢) 𝑢ℎ𝑛

𝑓

(𝑥 + 𝜃𝑢ℎ

𝑛
)






d𝑢

= 𝑂 (𝑛
1/2
ℎ
3/2

𝑛
) .

(49)

Hence, there exists a constant𝑀 sufficiently large such that
|E𝑓
𝑛
(𝑥) − 𝑓(𝑥)|/√Var𝑓

𝑛
(𝑥) < 𝑀𝑛

1/2
ℎ
3/2

𝑛
. Let 𝑎 = 𝑀𝑛1/2ℎ3/2

𝑛

in (48); then𝑃(|E𝑓
𝑛
(𝑥)−𝑓

𝑛
(𝑥)|/√Var𝑓

𝑛
(𝑥) > 𝑎) = 𝑃(𝜙) = 0.

Therefore, by (48), (16) holds.

Proof of Theorem 8. Using (15) and Lemma 2,

sup
𝑦∈R












𝑃(

̂
𝑓
𝑛 (
𝑥) − E ̂𝑓𝑛 (𝑥)

√Var𝑓
𝑛 (
𝑥)

≤ 𝑦) − Φ (𝑦)












= sup
𝑦∈R











𝑃(

𝑓
𝑛 (
𝑥) − E𝑓𝑛 (𝑥)

√Var𝑓
𝑛 (
𝑥)

+

̂
𝑓
𝑛 (
𝑥) − 𝑓𝑛 (

𝑥) − E ( ̂𝑓𝑛 (𝑥) − 𝑓𝑛 (𝑥))

√Var𝑓
𝑛 (
𝑥)

≤𝑦)

−Φ (𝑦)













≤ sup
𝑦∈R











𝑃(

𝑓
𝑛 (
𝑥) − E𝑓𝑛 (𝑥)

√Var𝑓
𝑛 (
𝑥)

≤ 𝑦) − Φ (𝑦)











+

(ℎ
𝑛
ln 𝑛)1/4

√2𝜋

+ 𝑃(







̂
𝑓
𝑛 (
𝑥) − 𝑓𝑛 (

𝑥) − E ( ̂𝑓𝑛 (𝑥) − 𝑓𝑛 (𝑥))






√Var𝑓
𝑛 (
𝑥)

> (ℎ
𝑛
ln 𝑛)1/4)

≤ 𝑂(𝑏
𝑛
+ (ℎ
𝑛
ln 𝑛)1/4)

+ 𝑐

E ((𝑛ℎ
𝑛
)
1/2 




̂
𝑓
𝑛 (
𝑥) − 𝑓𝑛 (

𝑥)






)

(ℎ
𝑛
ln 𝑛)1/4

.

(50)

Let 𝐿
𝑛
(𝑥) = 𝑛

−1
∑
𝑛

𝑖=1
𝐼(𝑍
𝑖
≤ 𝑥) be the empirical d.f. of 𝐿.

Then, by (2),

𝐿
𝑛 (
𝑥) = 1 − (1 − 𝐹𝑛 (

𝑥)) (1 − 𝐺𝑛 (
𝑥)) . (51)

Thus, by Lemmas 4 and 5, for 𝜏 < 𝜏
𝐿
,

sup
0≤𝑥≤𝜏






𝐺
𝑛 (
𝑥) − 𝐺 (𝑥)







≤ sup
0≤𝑥≤𝜏

1

1 − 𝐹
𝑛 (
𝑥)

× {




𝐿
𝑛 (
𝑥) − 𝐿 (𝑥)





+ (1 − 𝐺 (𝑥))






𝐹
𝑛 (
𝑥) − 𝐹 (𝑥)






}

= 𝑂(√
ln 𝑛
𝑛

) .

(52)
Using (14), we get

E ((𝑛ℎ
𝑛
)
1/2 




̂
𝑓
𝑛 (
𝑥) − 𝑓𝑛 (

𝑥)






)

≤

1

√𝑛ℎ
𝑛

𝑛

∑

𝑖=1

E{









𝐾(

𝑍
𝑖
− 𝑥

ℎ
𝑛

)










×






𝐺
𝑛
(𝑍
𝑖
) − 𝐺 (𝑍

𝑖
)







(1 − 𝐺 (𝑍
𝑖
)) (1 − 𝐺

𝑛
(𝑍
𝑖
))

𝛿
𝑖
}

≤ 𝑐√

ln 𝑛
ℎ
𝑛










E𝐾(
𝑇
1
− 𝑥

ℎ
𝑛

)










= 𝑐√

ln 𝑛
ℎ
𝑛

ℎ
𝑛
∫

1

−1

|𝐾 (𝑡)| 𝑓 (𝑥 + ℎ𝑛
𝑡) d𝑡

= 𝑂(√ℎ
𝑛
ln 𝑛) .

(53)

Therefore, (18) holds from (50) and (53).
Using (18), similar to the proof of (17), we can prove (19).

This completes the proof of Theorem 8.
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