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We consider a predator-prey model with modified Leslie-Gower and Beddington-DeAngelis functional response. By applying
the comparison theorem of the differential equation and constructing a suitable Lyapunov function, sufficient conditions which
guarantee the permanence and existence of a unique globally attractive positive almost periodic solution of the system are obtained.
Our results not only supplement but also improve some existing ones. One example is presented to verify our main results.

1. Introduction

Let 𝑓(𝑡) be a continuous bounded function on 𝑅, and we set

𝑓𝑙 = inf
𝑡∈𝑅
𝑓 (𝑡) , 𝑓𝑢 = sup

𝑡∈𝑅

𝑓 (𝑡) . (1)

Leslie [1] introduced the famous Leslie predator-prey system

�̇� = 𝑥 (𝑎 − 𝑏𝑥) − 𝑝 (𝑥) 𝑦,

̇𝑦 = 𝑦 (𝑒 − 𝑓
𝑦

𝑥
) ,

(2)

where 𝑥, 𝑦 stand for the population (the density) of the
prey and the predator at time 𝑡, respectively, and 𝑝(𝑥) is
the so-called predator functional response to prey. The term
𝑦/𝑥 is the Leslie-Gower term which measures the loss in
the predator population due to rarity (per capita 𝑦/𝑥) of
its favorite food. Leslie and Gower [2], Pielou [3] obtain
some excellent results on the system (2) with the functional
response 𝑝(𝑥) = 𝑐𝑥 which is called Holling-type I. By
applying the Dulac’s criterion and constructing Lyapunov
functions, Hsu and Huang [4] establish the global stability of
system (2).

Recently, Aziz-Alaoui and Daher Okiye [5] pointed out
that in the case of severe scarcity, 𝑦 can switch over to other

populations, but its growth will be limited by the fact that
its most favorite food 𝑥 is not available in abundance. To
solve such problem, they suggested to add a positive constant
𝑑 to the denominator and proposed the following predator-
prey model with modified Leslie-Gower and Holling-type II
schemes:

�̇� = (𝑟1 − 𝑏𝑥 −
𝑎1𝑦

𝑥 + 𝑘1
)𝑥,

̇𝑦 = (𝑟2 −
𝑎2𝑦

𝑥 + 𝑘2
)𝑦,

(3)

with initial conditions 𝑥(0) > 0 and 𝑦(0) > 0, where 𝑥
and 𝑦 represent the population densities at time 𝑡. 𝑟1, 𝑎1,
𝑏, 𝑘1, 𝑟2, 𝑎2, and 𝑘2 are model parameters assuming only
positive values. 𝑟1 is the growth rate of prey 𝑥, 𝑏 measures
the strength of competition among individuals of species 𝑥,
𝑎1 is the maximum value of the per capita reduction rate
of 𝑥 due to 𝑦, 𝑘1 (resp., 𝑘2) measures the extent to which
the environment provides protection to prey 𝑥 (resp., to the
predator 𝑦), 𝑟2 describes the growth rate of 𝑦, and 𝑎2 has a
similar meaning to 𝑎1. The authors studied the boundedness
and global stability of positive equilibrium of the system (3).
Since then, system (2) and its nonautonomous versions have
been studied by incorporating delay, impulses, harvesting,
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and so on (see, e.g., [6–13]). In particular, Zhu andWang [13]
consider the following nonautonomous model:

�̇� (𝑡) = 𝑥 (𝑡) (𝑟1 (𝑡) − 𝑏 (𝑡) 𝑥 (𝑡) −
𝑎1 (𝑡) 𝑦 (𝑡)

𝑥 (𝑡) + 𝑘1
) ,

̇𝑦 (𝑡) = 𝑦 (𝑡) (𝑟2 (𝑡) −
𝑎2 (𝑡) 𝑦 (𝑡)

𝑥 (𝑡) + 𝑘2
) .

(4)

Under the assumption that the coefficients of the system
(4) are all continuous 𝑇-periodic functions, by utilizing
the coincidence degree theorem and constructing a suitable
Lyapunov function, they obtained sufficient conditions for
the existence and global attractivity of positive periodic
solutions of the system (4). More precisely, Zhu and Wang
[13] obtained the following theorem (see [13, Theorems 3.1
and 3.2]).

Theorem 1. Suppose that

(𝐶1)

[𝑘1𝑟1 − 𝑎1 [(𝑘2 + [
𝑟1
𝑏
]
𝑢

) [
𝑟2
𝑎2
]
𝑢

]]
𝑙

> 0 (5)

holds, and further suppose that one of the following
conditions:

(𝐶2)

𝑘1𝑟1 − 𝑎1 [
𝑟2 (𝑘2 + 𝑒

𝐴
5)

𝑎2
] > 0, 𝑤ℎ𝑒𝑟𝑒 𝐴5 = ln 𝑟1

𝑏
(6)

(𝐶3)

𝑘1 > 𝑘2 (7)

holds; then system (4) has at least one positive 𝑇-
periodic solution.

Corollary 6 given in Section 2 of this paper shows that
when (𝐶2) or (𝐶3) does not satisfy, the conclusion of
Theorem 1 also holds. Moreover, as we know, permanence is
one of the most important topics in the study of population
dynamics; however, Zhu and Wang [13] did not investigate
this property of the system (4). One aim of this work is
to obtain a set of sufficient conditions which guarantee the
permanence of the system (4).

On the other hand, as Fan and Kuang [14] have men-
tioned, the Holling II type functional responses fail to model
the interference among predators and have been facing
challenges from the biology and physiology communities
(see [15–17]). Some biologists have argued that in many
situations, especially when predators have to search for food
(and therefore have to share or compete for food), the
functional response in a prey-predator model should be
predator-dependent.

Stimulated by the previous reasons, in this paper we will
incorporate the Beddington-DeAngelis functional response

into model (4) and consider the following model which is the
generalization of the model (4):

�̇� (𝑡)

= 𝑥 (𝑡) (𝑟1 (𝑡)−𝑏 (𝑡) 𝑥 (𝑡) −
𝑐 (𝑡) 𝑦 (𝑡)

𝛼 (𝑡) + 𝛽 (𝑡) 𝑥 (𝑡)+𝛾 (𝑡) 𝑦 (𝑡)
) ,

̇𝑦 (𝑡) = 𝑦 (𝑡) (𝑟2 (𝑡) −
𝑑 (𝑡) 𝑦 (𝑡)

𝑥 (𝑡) + 𝑘 (𝑡)
) ,

(8)

where 𝑥(𝑡) is the size of prey population and 𝑦(𝑡) is the size
of predator population.

Li and Zhang [18] pointed out that in real world phe-
nomenon, the environment varies due to the factors such as
seasonal effects of weather, food supplies, mating habits, and
harvesting. So it is usual to assume the periodicity of param-
eters in the system (8). However, if the various constituent
components of the temporally nonuniform environment are
with incommensurable (nonintegral multiples) periods, then
one has to consider the environment to be almost periodic
since there is no a priori reason to expect the existence of
periodic solutions. For this reason, the assumption of almost
periodicity is more realistic, more important, and more
general when we consider the effects of the environmental
factors. So it is assumed that the coefficients 𝑏(𝑡), 𝑐(𝑡), 𝑑(𝑡),
𝑘(𝑡), 𝛼(𝑡), 𝛽(𝑡), 𝛾(𝑡), 𝑟𝑖(𝑡) (𝑖 = 1, 2) are all continuous, almost
periodic functions and satisfy

min
𝑖=1,2

{𝑏𝑙, 𝑐𝑙, 𝑑𝑙, 𝑘𝑙, 𝛼𝑙, 𝛽𝑙, 𝛾𝑙, 𝑟𝑙
𝑖
} > 0,

max
𝑖=1,2

{𝑏𝑢, 𝑐𝑢, 𝑑𝑢, 𝑘𝑢, 𝛼𝑢, 𝛽𝑢, 𝛾𝑢, 𝑟𝑢
𝑖
} < +∞.

(9)

We consider system (8) with the following initial condi-
tions:

𝑥 (0) > 0, 𝑦 (0) > 0. (10)

One can easily show that the solution of (8) with the
initial condition (10) is defined and remains positive for all
𝑡 ≥ 0.

The aim of this paper is to obtain sufficient conditions for
the existence of a unique globally attractive almost periodic
solution of systems (8) and (10), by utilizing the comparison
theorem of the differential equation and applying the analysis
technique of papers [19–21].

The organization of this paper is as follows. In Section 2,
by applying the theory of differential inequality, we present
the permanence results for system (8). In Section 3, by
constructing a suitable Lyapunov function, a set of sufficient
conditions which ensure the existence and uniqueness of
almost periodic solutions of system (8) are obtained. Then,
in Section 4, a suitable example together with its numeric
simulations is given to illustrate the feasibility of the main
results. We end this paper by a brief discussion.

2. Permanence

Now let us state several definitions and lemmas which will be
useful in the proving of the main result of this section.
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Lemma 2 (see [22]). If 𝑎 > 0, 𝑏 > 0 and �̇� ≥ 𝑥(𝑏 − 𝑎𝑥), when
𝑡 ≥ 0 and 𝑥(0) > 0, we have

lim inf
𝑡→+∞

𝑥 (𝑡) ≥
𝑏

𝑎
. (11)

If 𝑎 > 0, 𝑏 > 0 and �̇� ≤ 𝑥(𝑏 − 𝑎𝑥), when 𝑡 ≥ 0 and 𝑥(0) > 0,
we have

lim sup
𝑡→+∞

𝑥 (𝑡) ≤
𝑏

𝑎
. (12)

Theorem3. Suppose that system (8)with initial condition (10)
satisfies the following conditions:

(𝐻1)

𝑟𝑙
1
𝛼𝑙 −

𝑟𝑢
2
𝑐𝑢 (𝑀1 + 𝑘

𝑢)

𝑑𝑙
> 0, 𝑤ℎ𝑒𝑟𝑒 𝑀1 =

𝑟𝑢
1

𝑏𝑙
. (13)

Then system (8) is permanent, that is, any positive solution
(𝑥(𝑡), 𝑦(𝑡))𝑇 of the system (8) satisfies

0 < 𝑚1 ≤ lim inf
𝑡→+∞

𝑥 (𝑡) ≤ lim sup
𝑡→+∞

𝑥 (𝑡) ≤ 𝑀1,

0 < 𝑚2 ≤ lim inf
𝑡→+∞

𝑦 (𝑡) ≤ lim sup
𝑡→+∞

𝑦 (𝑡) ≤ 𝑀2,
(14)

where𝑚1 = (𝑟𝑙1𝛼
𝑙 − 𝑐𝑢𝑀2)/𝑏

𝑢𝛼𝑙,𝑀2 = 𝑟𝑢2 (𝑀1 + 𝑘
𝑢)/𝑑𝑙,𝑚2 =

𝑟𝑙
2
(𝑚1 + 𝑘

𝑙)/𝑑𝑢.

Proof. From condition (𝐻1), we can choose a small enough 𝜀
such that

𝑟𝑙
1
𝛼𝑙 >

𝑟𝑢
2
𝑐𝑢 (𝑀1 + 𝜀 + 𝑘

𝑢)

𝑑𝑙
. (15)

The first equation of (8) yields

�̇� (𝑡) ≤ 𝑥 (𝑡) [𝑟
𝑢

1
− 𝑏𝑙𝑥 (𝑡)] . (16)

Applying Lemma 2 to (16) leads to

lim sup
𝑡→+∞

𝑥 (𝑡) ≤
𝑟𝑢
1

𝑏𝑙
Δ
= 𝑀1. (17)

Equation (17) shows that there exists a large enough 𝑇1 > 0
such that for all 𝑡 ≥ 𝑇1,

𝑥 (𝑡) ≤ 𝑀1 + 𝜀
Δ
= 𝑀1𝜀. (18)

It follows from (18) and the second equation of system (8)
that, for 𝑡 ≥ 𝑇1,

̇𝑦 (𝑡) ≤ 𝑦 (𝑡) [𝑟
𝑢

2
−

𝑑𝑙𝑦 (𝑡)

𝑀1𝜀 + 𝑘
𝑢
] . (19)

According to Lemma 2 and (19), one has

lim sup
𝑡→+∞

𝑦 (𝑡) ≤
𝑟𝑢
2
(𝑀1𝜀 + 𝑘

𝑢)

𝑑𝑙
. (20)

Thus, for previous 𝜀, there exists a 𝑇2 ≥ 𝑇1, such that

𝑦 (𝑡) ≤
𝑟𝑢
2
(𝑀1𝜀 + 𝑘

𝑢)

𝑑𝑙
+ 𝜀
Δ
= 𝑀2𝜀 ∀𝑡 ≥ 𝑇2. (21)

Equation (21) together with the first equation of (8) leads to

�̇� (𝑡) ≥ 𝑥 (𝑡) [𝑟
𝑙

1
− 𝑏𝑢𝑥 (𝑡) −

𝑐𝑢𝑀2𝜀
𝛼𝑙

] ∀𝑡 ≥ 𝑇2. (22)

From (22), according to (15) and Lemma 2, we can obtain

lim inf
𝑡→+∞

𝑥 (𝑡) ≥
𝑟𝑙
1
𝛼𝑙 − 𝑐𝑢𝑀2𝜀
𝑏𝑢𝛼𝑙

. (23)

Hence, for previous 𝜀, there exists a 𝑇3 ≥ 𝑇2, such that

𝑥 (𝑡) ≥
𝑟𝑙
1
𝛼𝑙 − 𝑐𝑢𝑀2𝜀
𝑏𝑢𝛼𝑙

− 𝜀
Δ
= 𝑚1𝜀 ∀𝑡 ≥ 𝑇3. (24)

From (24) and the second equation of system (8), we know
that for 𝑡 ≥ 𝑇3,

̇𝑦 (𝑡) ≥ [𝑟
𝑙

2
−
𝑑𝑢𝑦 (𝑡)

𝑚1𝜀 + 𝑘
𝑙
] . (25)

Applying Lemma 2 to (25) leads to

lim inf
𝑡→+∞

𝑦 (𝑡) ≥
𝑟𝑙
2
(𝑚1𝜀 + 𝑘

𝑙)

𝑑𝑢
. (26)

Setting 𝜀 → 0, it follows from the previous discussion that

lim sup
𝑡→+∞

𝑦 (𝑡) ≤
𝑟𝑢
2
(𝑀1 + 𝑘

𝑢)

𝑑𝑙
Δ
= 𝑀2,

lim inf
𝑡→+∞

𝑥 (𝑡) ≥
𝑟𝑙
1
𝛼𝑙 − 𝑐𝑢𝑀2
𝑏𝑢𝛼𝑙

Δ
= 𝑚1,

lim inf
𝑡→+∞

𝑦 (𝑡) ≥
𝑟𝑙
2
(𝑚1 + 𝑘

𝑙)

𝑑𝑢
Δ
= 𝑚2.

(27)

Obviously, 𝑚𝑖 and 𝑀𝑖 (𝑖 = 1, 2) are independent of the
solution of system (8); (17) and (27) show that the conclusion
of Theorem 3 holds. The proof is completed.

Theorem4. Suppose that system (8)with initial condition (10)
satisfies the following conditions:

(𝐻2)

𝑟𝑙
1
𝛾𝑙 − 𝑐𝑢 > 0. (28)

Then system (8) is permanent, that is, any positive solution
(𝑥(𝑡), 𝑦(𝑡))𝑇 of the system (8) satisfies

0 < 𝑚1 ≤ lim inf
𝑡→+∞

𝑥 (𝑡) ≤ lim sup
𝑡→+∞

𝑥 (𝑡) ≤ 𝑀1,

0 < 𝑚2 ≤ lim inf
𝑡→+∞

𝑦 (𝑡) ≤ lim sup
𝑡→+∞

𝑦 (𝑡) ≤ 𝑀2,
(29)

where 𝑀1, 𝑀2 are defined in Theorem 3 and 𝑚1 = (𝑟𝑙
1
𝛾𝑙 −

𝑐𝑢)/𝑏𝑢𝛾𝑙,𝑚2 = 𝑟𝑙2(𝑚1 + 𝑘
𝑙)/𝑑𝑢.
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Proof. From (17) and (20), one can derive

lim sup
𝑡→+∞

𝑥 (𝑡) ≤ 𝑀1, lim sup
𝑡→+∞

𝑦 (𝑡) ≤ 𝑀2, (30)

where𝑀1 and𝑀2 are defined inTheorem 3.
It follows from the first equation of system (8) that

𝑥 (𝑡) ≥ 𝑥 (𝑡) (𝑟
𝑙

1
− 𝑏𝑢𝑥 (𝑡) −

𝑐𝑢

𝛾𝑙
) . (31)

According to (𝐻2), by applying Lemma 2 to (31), we obtain

lim inf
𝑡→+∞

𝑥 (𝑡) ≥
𝑟𝑙
1
𝛾𝑙 − 𝑐𝑢

𝑏𝑢𝛾𝑙
Δ
= 𝑚1. (32)

Hence, for a small enough 𝜀, there exists a 𝑇 > 0, such that

𝑥 (𝑡) ≥
𝑟𝑙
1
𝛾𝑙 − 𝑐𝑢

𝑏𝑢𝛾𝑙
− 𝜀
Δ
= 𝑚1𝜀 ∀𝑡 ≥ 𝑇. (33)

From (33) and the second equation of system (8), we know
that for 𝑡 ≥ 𝑇3,

̇𝑦 (𝑡) ≥ [𝑟
𝑙

2
−
𝑑𝑢𝑦 (𝑡)

𝑚1𝜀 + 𝑘
𝑙
] . (34)

Applying Lemma 2 to (34) leads to

lim inf
𝑡→+∞

𝑦 (𝑡) ≥
𝑟𝑙
2
(𝑚1𝜀 + 𝑘

𝑙)

𝑑𝑢
. (35)

Setting 𝜀 → 0, it follows from the previous discussion that

lim inf
𝑡→+∞

𝑦 (𝑡) ≥
𝑟𝑙
2
(𝑚1 + 𝑘

𝑙)

𝑑𝑢
Δ
= 𝑚2.

(36)

Obviously, 𝑚𝑖 and 𝑀𝑖 (𝑖 = 1, 2) are independent of the
solution of system (8); (30), (32) and (36) show that the
conclusion of Theorem 4 holds. The proof is completed.

As a direct corollary ofTheorem 2 in [23], fromTheorems
3 or 4, we have the following.

Corollary 5. Suppose that (𝐻1) or (𝐻2) holds, then system
(8) admits at least one positive 𝑇-periodic solution if 𝑏(𝑡), 𝑐(𝑡),
𝑑(𝑡), 𝑘(𝑡), 𝛼(𝑡), 𝛽(𝑡), 𝛾(𝑡), 𝑟𝑖(𝑡) (𝑖 = 1, 2) are all continuous
positive 𝑇-periodic functions.

When 𝛼(𝑡) = 𝑘1, 𝛽(𝑡) = 1, 𝛾(𝑡) = 0, 𝑘(𝑡) = 𝑘2, 𝑐(𝑡) = 𝑎1(𝑡),
𝑑(𝑡) = 𝑎2(𝑡), where 𝑘1, 𝑘2 are positive constants, (8) becomes
(4) which was discussed in [13]. According toTheorem 3 and
Corollary 5, we obtain the following.

Corollary 6. Suppose that

(𝐻11)

𝑟𝑙
1
𝑘1 −

𝑎𝑢
1
𝑟𝑢
2
(𝑀1 + 𝑘2)

𝑎𝑙
2

> 0, 𝑤ℎ𝑒𝑟𝑒 𝑀1 =
𝑟𝑢
1

𝑏𝑙
(37)

holds; then system (4) is permanent and admits at least one
positive 𝑇-periodic solution if 𝑎𝑖(𝑡), 𝑏(𝑡), 𝑟𝑖(𝑡) (𝑖 = 1, 2) are all
continuous positive 𝑇-periodic functions.

Remark 7. Comparing with Theorem 1, it follows from
Corollary 6 that (𝐶2) or (𝐶3) is superfluous, so our results
improve the main results in [13].

3. Existence of a Unique Almost
Periodic Solution

Now let us state several definitions and lemmas which will be
useful in the proving of the main result of this section.

Definition 8 (see [24, 25]). A function 𝑓(𝑡, 𝑥), where 𝑓 is an
𝑚-vector, 𝑡 is a real scalar, and 𝑥 is an 𝑛-vector, is said to be
almost periodic in 𝑡 uniformly with respect to 𝑥 ∈ 𝑋 ⊂ 𝑅𝑛, if
𝑓(𝑡, 𝑥) is continuous in 𝑡 ∈ 𝑅 and 𝑥 ∈ 𝑋, and if for any 𝜀 > 0,
there is a constant 𝑙(𝜀) > 0, such that in any interval of length
𝑙(𝜀) there exists 𝜏 such that the inequality

𝑓 (𝑡 + 𝜏) − 𝑓 (𝑡)
 =
𝑚

∑
𝑖=1

𝑓𝑖 (𝑡 + 𝜏, 𝑥) − 𝑓𝑖 (𝑡, 𝑥)
 < 𝜀 (38)

is satisfied for all 𝑡 ∈ (−∞, +∞), 𝑥 ∈ 𝑋. The number 𝜏 is
called an 𝜀-translation number of 𝑓(𝑡, 𝑥).

Definition 9 (see [24, 25]). A function 𝑓 : 𝑅 → 𝑅 is said to
be asymptotically almost periodic function if there exists an
almost periodic function 𝑞(𝑡) and a continuous function 𝑟(𝑡)
such that

𝑓 (𝑡) = 𝑞 (𝑡) + 𝑟 (𝑡) , 𝑡 ∈ 𝑅, 𝑟 (𝑡) → 0 as 𝑡 → ∞. (39)

We denote by 𝑆(𝐸) the set of all solutions 𝑧(𝑡) =

(𝑥(𝑡), 𝑦(𝑡))𝑇 of system (8) satisfying 𝑚1 ≤ 𝑥(𝑡) ≤ 𝑀1, 𝑚2 ≤
𝑦(𝑡) ≤ 𝑀2 for all 𝑡 ∈ 𝑅.

Lemma 10. 𝑆(𝐸) ̸=Ø.

Proof. Since 𝑏(𝑡), 𝑐(𝑡), 𝑑(𝑡), 𝑘(𝑡), 𝛼(𝑡),𝛽(𝑡), 𝛾(𝑡), 𝑟𝑖(𝑡) (𝑖 = 1, 2)
are almost periodic functions, there exists a sequence {𝑡𝑛},
𝑡𝑛 → ∞ as 𝑛 → ∞ such that

𝑏 (𝑡 + 𝑡𝑛) → 𝑏 (𝑡) , 𝑐 (𝑡 + 𝑡𝑛) → 𝑐 (𝑡) ,

𝑑 (𝑡 + 𝑡𝑛) → 𝑑 (𝑡) , 𝑘 (𝑡 + 𝑡𝑛) → 𝑘 (𝑡) ,

𝛼 (𝑡 + 𝑡𝑛) → 𝛼 (𝑡) , 𝛽 (𝑡 + 𝑡𝑛) → 𝛽 (𝑡) ,

𝛾 (𝑡 + 𝑡𝑛) → 𝛾 (𝑡) , 𝑟𝑖 (𝑡 + 𝑡𝑛) → 𝑟𝑖 (𝑡) (𝑖 = 1, 2) ,

(40)

as 𝑛 → ∞ uniformly on 𝑅. Let 𝑧(𝑡) = (𝑥(𝑡), 𝑦(𝑡))𝑇 be
solution of systems (8) and (10) satisfying 𝑚1 ≤ 𝑥(𝑡) ≤ 𝑀1,
𝑚2 ≤ 𝑦(𝑡) ≤ 𝑀2 for 𝑡 > 𝑇. Obviously, the sequence 𝑧(𝑡 + 𝑡𝑛)
is uniformly bounded and equicontinuous on each bounded
subset of 𝑅. Therefore, by Ascoli-Arzela theorem, there exists
a subsequence of {𝑡𝑛}, and we still denote it as {𝑡𝑛}, such that
𝑥(𝑡+𝑡𝑛) → 𝑝1(𝑡), 𝑦(𝑡+𝑡𝑛) → 𝑝2(𝑡), as 𝑛 → ∞ uniformly
on each bounded subset of 𝑅. For any𝑇1 ∈ 𝑅, we may assume
that 𝑡𝑛 + 𝑇1 ≥ 𝑇 for all 𝑛. For 𝑡 ≥ 0, we have
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𝑥 (𝑡 + 𝑡𝑛 + 𝑇1) − 𝑥 (𝑡𝑛 + 𝑇1)

= ∫
𝑡+𝑇
1

𝑇
1

𝑥 (𝑠 + 𝑡𝑛) (𝑟1 (𝑠 + 𝑡𝑛) − 𝑏 (𝑠 + 𝑡𝑛) 𝑥 (𝑠 + 𝑡𝑛)

−
𝑐 (𝑠 + 𝑡𝑛) 𝑦 (𝑠 + 𝑡𝑛)

𝛼 (𝑠 + 𝑡𝑛) + 𝛽 (𝑠 + 𝑡𝑛) 𝑥 (𝑠 + 𝑡𝑛) + 𝛾 (𝑠 + 𝑡𝑛) 𝑦 (𝑠 + 𝑡𝑛)
) 𝑑𝑠,

𝑦 (𝑡 + 𝑡𝑛 + 𝑇1) − 𝑦 (𝑡𝑛 + 𝑇1) = ∫
𝑡+𝑇
1

𝑇
1

𝑦 (𝑠 + 𝑡𝑛) (𝑟2 (𝑠 + 𝑡𝑛) −
𝑑 (𝑠 + 𝑡𝑛) 𝑦 (𝑠 + 𝑡𝑛)

𝑥 (𝑠 + 𝑡𝑛) + 𝑘 (𝑠 + 𝑡𝑛)
) 𝑑𝑠.

(41)

Applying Lebesgue’s dominated convergence theorem and
letting 𝑛 → ∞ in the previous equations, we obtain

𝑝1 (𝑡 + 𝑇1) − 𝑝1 (𝑇1)

= ∫
𝑡+𝑇
1

𝑇
1

𝑝1 (𝑠) (𝑟1 (𝑠) − 𝑏 (𝑠) 𝑝1 (𝑠)

−
𝑐 (𝑠) 𝑝2 (𝑠)

𝛼 (𝑠) + 𝛽 (𝑠) 𝑝1 (𝑠) + 𝛾 (𝑠) 𝑝2 (𝑠)
) 𝑑𝑠,

𝑝2 (𝑡 + 𝑇1) − 𝑝2 (𝑇1)

= ∫
𝑡+𝑇
1

𝑇
1

𝑝2 (𝑠) (𝑟2 (𝑠) −
𝑑 (𝑠) 𝑝2 (𝑠)

𝑝1 (𝑠) + 𝑘 (𝑠)
) 𝑑𝑠,

(42)

for all 𝑡 ≥ 0. Since 𝑇1 ∈ 𝑅 is arbitrarily given, (𝑝1(𝑡), 𝑝2(𝑡))
𝑇 is

a solution of system (8) on 𝑅. It is clear that𝑚1 ≤ 𝑝1(𝑡) ≤ 𝑀1,
𝑚2 ≤ 𝑝2(𝑡) ≤ 𝑀2 for 𝑡 ∈ 𝑅. That is to say (𝑝1(𝑡), 𝑝2(𝑡))

𝑇 ∈
𝑆(𝐸). This completes the proof.

Lemma 11 (see [26]). Let 𝑓 be a nonnegative function defined
on [0, +∞) such that 𝑓 is integrable on [0, +∞) and is
uniformly continuous on [0, +∞). Then lim𝑡→+∞𝑓(𝑡) = 0.

Theorem 12. In addition to (𝐻1) or (𝐻2), further suppose that

(𝐻3)

[𝑏 (𝑡) −
𝑐 (𝑡) 𝛽 (𝑡)𝑀2
Δ2 (𝑡, 𝑚1, 𝑚2)

−
𝑑 (𝑡)𝑀2

(𝑚1 + 𝑘 (𝑡))
2
]

𝑙

> 0, (43)

(𝐻4)

[
𝑑 (𝑡)

𝑀1 + 𝑘 (𝑡)
−

𝑐 (𝑡)

Δ (𝑡, 𝑚1, 𝑚2)
−
𝑐 (𝑡) 𝛾 (𝑡)𝑀2
Δ2 (𝑡, 𝑚1, 𝑚2)

]

𝑙

> 0, (44)

where 𝑚𝑖 and 𝑀𝑖 (𝑖 = 1, 2) are defined in the proof of
Theorem 3 (or Theorem 4) and

Δ (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡)) = 𝛼 (𝑡) + 𝛽 (𝑡) 𝑥 (𝑡) + 𝛾 (𝑡) 𝑦 (𝑡) . (45)

Then system (8) with initial conditions (10) is globally attrac-
tive.

Proof. It follows from conditions (𝐻3) and (𝐻4) that there
exists a small enough 𝜀 > 0 such that

𝐴1 (𝜀)

= [𝑏 (𝑡) −
𝑐 (𝑡) 𝛽 (𝑡) (𝑀2 + 𝜀)

Δ2 (𝑡, 𝑚1 − 𝜀,𝑚2 − 𝜀)

−
𝑑 (𝑡) (𝑀2 + 𝜀)

(𝑚1 − 𝜀 + 𝑘 (𝑡))
2
]

𝑙

> 𝜀,

𝐴2 (𝜀)

= [
𝑑 (𝑡)

𝑀1 + 𝜀 + 𝑘 (𝑡)
−

𝑐 (𝑡)

Δ (𝑡, 𝑚1 − 𝜀,𝑚2 − 𝜀)

−
𝑐 (𝑡) 𝛾 (𝑡) (𝑀2 + 𝜀)

Δ2 (𝑡, 𝑚1 − 𝜀,𝑚2 − 𝜀)
]

𝑙

> 𝜀.

(46)

Let 𝑧1(𝑡) = (𝑥(𝑡), 𝑦(𝑡))
𝑇, 𝑧2(𝑡) = (𝑥∗(𝑡), 𝑦∗(𝑡))

𝑇 be any two
positive solutions of system (8) with initial conditions (10).
For previous 𝜀, according to Lemma 10 and Theorem 3 (or
Theorem 4), there exists a 𝑇 > 0, when 𝑡 ≥ 𝑇,

𝑚1 − 𝜀 ≤ 𝑥 (𝑡) ≤ 𝑀1 + 𝜀, 𝑚2 − 𝜀 ≤ 𝑦 (𝑡) ≤ 𝑀2 + 𝜀,

𝑚1 − 𝜀 ≤ 𝑥∗ (𝑡) ≤ 𝑀1 + 𝜀, 𝑚2 − 𝜀 ≤ 𝑦∗ (𝑡) ≤ 𝑀2 + 𝜀.

(47)

Let 𝑉(𝑡) = 𝑉1(𝑡) + 𝑉2(𝑡), where

𝑉1 (𝑡) =
ln𝑥 (𝑡) − ln𝑥∗ (𝑡)

 ,

𝑉2 (𝑡) =
ln𝑦 (𝑡) − ln𝑦∗ (𝑡)

 .
(48)

Calculating the upper right derivatives of 𝑉1(𝑡) along the
solution of (8) leads to
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𝐷+𝑉1 (𝑡) = sgn (𝑥 (𝑡) − 𝑥∗ (𝑡)) [−𝑏 (𝑡) (𝑥 (𝑡) − 𝑥∗ (𝑡)) − 𝑐 (𝑡) (
𝑦 (𝑡)

Δ (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡))
−

𝑦∗ (𝑡)

Δ (𝑡, 𝑥∗ (𝑡) , 𝑦∗ (𝑡))
)]

= −𝑏 (𝑡)
𝑥 (𝑡) − 𝑥∗ (𝑡)

 − sgn (𝑥 (𝑡) − 𝑥∗ (𝑡)) 𝑐 (𝑡) (
𝑦 (𝑡)

Δ (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡))
−

𝑦∗ (𝑡)

Δ (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡))

+
𝑦∗ (𝑡)

Δ (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡))
−

𝑦∗ (𝑡)

Δ (𝑡, 𝑥∗ (𝑡) , 𝑦∗ (𝑡))
)

= −𝑏 (𝑡)
𝑥 (𝑡) − 𝑥∗ (𝑡)

 − sgn (𝑥 (𝑡) − 𝑥∗ (𝑡))

× 𝑐 (𝑡) (
𝑦 (𝑡) − 𝑦∗ (𝑡)

Δ (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡))
+
𝑦∗ (𝑡) [𝛽 (𝑡) (𝑥∗ (𝑡) − 𝑥 (𝑡)) + 𝛾 (𝑡) (𝑦∗ (𝑡) − 𝑦 (𝑡))]

Δ (𝑡, 𝑥∗ (𝑡) , 𝑦∗ (𝑡)) ⋅ Δ (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡))
) ,

𝐷+𝑉1 (𝑡) ≤ −𝑏 (𝑡)
𝑥 (𝑡) − 𝑥∗ (𝑡)



+ 𝑐 (𝑡) (

𝑦 (𝑡) − 𝑦∗ (𝑡)


Δ (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡))
+
𝑦∗ (𝑡) [𝛽 (𝑡)

𝑥 (𝑡) − 𝑥∗ (𝑡)
 + 𝛾 (𝑡)

𝑦 (𝑡) − 𝑦∗ (𝑡)
]

Δ (𝑡, 𝑥∗ (𝑡) , 𝑦∗ (𝑡)) ⋅ Δ (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡))
) .

(49)

Calculating the upper right derivatives of 𝑉2(𝑡) along the
solution of (8), one has

𝐷+𝑉2 (𝑡)

= sgn [𝑦 (𝑡) − 𝑦∗ (𝑡)] 𝑑 (𝑡) (
𝑦∗ (𝑡)

𝑥∗ (𝑡) + 𝑘 (𝑡)
−

𝑦 (𝑡)

𝑥 (𝑡) + 𝑘 (𝑡)
)

= sgn [𝑦 (𝑡) − 𝑦∗ (𝑡)] 𝑑 (𝑡)

× (
𝑦∗ (𝑡)

𝑥∗ (𝑡) + 𝑘 (𝑡)
−

𝑦∗ (𝑡)

𝑥 (𝑡) + 𝑘 (𝑡)

+
𝑦∗ (𝑡)

𝑥 (𝑡) + 𝑘 (𝑡)
−

𝑦 (𝑡)

𝑥 (𝑡) + 𝑘 (𝑡)
)

= sgn [𝑦 (𝑡) − 𝑦∗ (𝑡)] 𝑑 (𝑡)

× (
𝑦∗ (𝑡) (𝑥 (𝑡) − 𝑥∗ (𝑡))

(𝑥∗ (𝑡) + 𝑘 (𝑡)) (𝑥 (𝑡) + 𝑘 (𝑡))
+
𝑦∗ (𝑡) − 𝑦 (𝑡)

𝑥 (𝑡) + 𝑘 (𝑡)
)

≤
𝑑 (𝑡) 𝑦∗ (𝑡)

𝑥 (𝑡) − 𝑥∗ (𝑡)


(𝑥∗ (𝑡) + 𝑘 (𝑡)) (𝑥 (𝑡) + 𝑘 (𝑡))
−
𝑑 (𝑡)

𝑦 (𝑡) − 𝑦∗ (𝑡)


𝑥 (𝑡) + 𝑘 (𝑡)
.

(50)

It follows from (49)-(50) that for 𝑡 ≥ 𝑇,

𝐷+𝑉 (𝑡)

≤ [−𝑏 (𝑡) +
𝑐 (𝑡) 𝑦∗ (𝑡) 𝛽 (𝑡)

Δ (𝑡, 𝑥∗ (𝑡) , 𝑦∗ (𝑡)) ⋅ Δ (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡))

+
𝑑 (𝑡) 𝑦∗ (𝑡)

(𝑥∗ (𝑡) + 𝑘 (𝑡)) (𝑥 (𝑡) + 𝑘 (𝑡))
]
𝑥 (𝑡) − 𝑥∗ (𝑡)



+ [−
𝑑 (𝑡)

𝑥 (𝑡) + 𝑘 (𝑡)
+

𝑐 (𝑡)

Δ (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡))

+
𝑐 (𝑡) 𝑦∗ (𝑡) 𝛾 (𝑡)

Δ (𝑡, 𝑥∗ (𝑡) , 𝑦∗ (𝑡)) ⋅ Δ (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡))
]

×
𝑦 (𝑡) − 𝑦∗ (𝑡)



≤ −[𝑏 (𝑡) −
𝑐 (𝑡) 𝛽 (𝑡) (𝑀2 + 𝜀)

Δ2 (𝑡, 𝑚1 − 𝜀,𝑚2 − 𝜀)
−

𝑑 (𝑡) (𝑀2 + 𝜀)

(𝑚1 − 𝜀 + 𝑘 (𝑡))
2
]

×
𝑥 (𝑡) − 𝑥∗ (𝑡)



− [
𝑑 (𝑡)

𝑀1 + 𝜀 + 𝑘 (𝑡)
−

𝑐 (𝑡)

Δ (𝑡, 𝑚1 − 𝜀,𝑚2 − 𝜀)

−
𝑐 (𝑡) 𝛾 (𝑡) (𝑀2 + 𝜀)

Δ2 (𝑡, 𝑚1 − 𝜀,𝑚2 − 𝜀)
]
𝑦 (𝑡) − 𝑦∗ (𝑡)

 .

(51)

It follows from (46) and (51) that for 𝑡 ≥ 𝑇,

𝐷+𝑉 (𝑡) ≤ −𝜀
𝑥 (𝑡) − 𝑥∗ (𝑡)

 − 𝜀
𝑦 (𝑡) − 𝑦∗ (𝑡)

 , (52)

which implies 𝑉(𝑡) is nonincreasing on [𝑇, +∞). Integrating
the previous inequality from 𝑇 to 𝑡 leads to

𝑉 (𝑡) + 𝜀∫
𝑡

𝑇

𝑥 (𝑠) − 𝑥∗ (𝑠)
 𝑑𝑠 + 𝜀

× ∫
𝑡

𝑇

𝑦 (𝑠) − 𝑦∗ (𝑠)
 𝑑𝑠 < 𝑉 (𝑇) < +∞, 𝑡 ≥ 𝑇.

(53)

Then for 𝑡 ≥ 𝑇, we obtain that

∫
𝑡

𝑇

𝑥 (𝑠) − 𝑥∗ (𝑠)
 𝑑𝑠 <

𝑉 (𝑇)

𝜀
< +∞,

∫
𝑡

𝑇

𝑦 (𝑠) − 𝑦∗ (𝑠)
 𝑑𝑠 <

𝑉 (𝑇)

𝜀
< +∞.

(54)
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Hence, |𝑥(𝑡) − 𝑥∗(𝑡)|, |𝑦(𝑡) − 𝑦∗(𝑡)| ∈ 𝐿
1([𝑇, +∞)). By system

(8) and Theorem 3 (or Theorem 4), we get 𝑥(𝑡), 𝑥∗(𝑡), 𝑦(𝑡),
𝑦∗(𝑡), and their derivatives are bounded on [𝑇, +∞), which
implies that both |𝑥(𝑡)−𝑥∗(𝑡)| and |𝑦(𝑡)−𝑦(𝑡)| are uniformly
continuous on [𝑇, +∞). By Lemma 11, we obtain

lim
𝑡→+∞

𝑥 (𝑡) − 𝑥∗ (𝑡)
 = 0, lim

𝑡→+∞

𝑦 (𝑡) − 𝑦∗ (𝑡)
 = 0.

(55)

Then the solution of systems (8) and (10) is globally attractive.

Theorem 13. Suppose all conditions of Theorem 12 hold; then
there exists a unique almost periodic solution of systems (8) and
(10).

Proof. According to Lemma 10, there exists a bounded posi-
tive solution𝑢(𝑡) = (𝑢1(𝑡), 𝑢2(𝑡))

𝑇 of (8)with initial condition
(10).Then there exists a sequence {𝑡

𝑘
}, {𝑡
𝑘
} → ∞ as 𝑘 → ∞,

such that (𝑢1(𝑡 + 𝑡


𝑘
), 𝑢2(𝑡 + 𝑡



𝑘
))𝑇 is a solution of the following

system:

�̇� (𝑡) = 𝑥 (𝑡) (𝑟1 (𝑡 + 𝑡


𝑘
) − 𝑏 (𝑡 + 𝑡

𝑘
) 𝑥 (𝑡)

−
𝑐 (𝑡 + 𝑡

𝑘
) 𝑦 (𝑡)

𝛼 (𝑡 + 𝑡
𝑘
)+𝛽 (𝑡 + 𝑡

𝑘
) 𝑥 (𝑡)+𝛾 (𝑡 + 𝑡

𝑘
) 𝑦 (𝑡)

) ,

̇𝑦 (𝑡) = 𝑦 (𝑡) (𝑟2 (𝑡 + 𝑡


𝑘
) −

𝑑 (𝑡 + 𝑡
𝑘
) 𝑦 (𝑡)

𝑥 (𝑡) + 𝑘 (𝑡 + 𝑡
𝑘
)
) .

(56)

According to Theorem 3 (or Theorem 4) and the fact that
𝑏(𝑡), 𝑐(𝑡), 𝑑(𝑡), 𝑘(𝑡), 𝛼(𝑡), 𝛽(𝑡), 𝛾(𝑡), 𝑟𝑖(𝑡) (𝑖 = 1, 2) are all
continuous, positive almost periodic functions, we know that
both {𝑢𝑖(𝑡 + 𝑡



𝑘
)} (𝑖 = 1, 2) and their derivative function {�̇�(𝑡 +

𝑡
𝑘
)} (𝑖 = 1, 2) are uniformly bounded; thus {𝑢𝑖(𝑡 + 𝑡



𝑘
)} (𝑖 =

1, 2) are uniformly bounded and equicontinuous. By Ascoli’s
theorem, there exists a uniformly convergent subsequence
{𝑢𝑖(𝑡 + 𝑡𝑘)} ⊆ {𝑢𝑖(𝑡 + 𝑡



𝑘
)} such that for any 𝜀 > 0, there exists

a 𝐾(𝜀) > 0 with the property that if𝑚, 𝑘 ≥ 𝐾(𝜀), then

𝑢𝑖 (𝑡 + 𝑡𝑚) − 𝑢𝑖 (𝑡 + 𝑡𝑘)
 < 𝜀, 𝑖 = 1, 2. (57)

That is to say 𝑢𝑖(𝑡) (𝑖 = 1, 2) are asymptotically almost
periodic functions; hence there exists two almost periodic
functions 𝑝𝑖(𝑡 + 𝑡𝑘)(𝑖 = 1, 2) and two continuous functions
𝑞𝑖(𝑡 + 𝑡𝑘) (𝑖 = 1, 2) such that

𝑢𝑖 (𝑡 + 𝑡𝑘) = 𝑝𝑖 (𝑡 + 𝑡𝑘) + 𝑞𝑖 (𝑡 + 𝑡𝑘) , 𝑖 = 1, 2, (58)

where

lim
𝑘→+∞

𝑝𝑖 (𝑡 + 𝑡𝑘) = 𝑝𝑖 (𝑡) , lim
𝑘→+∞

𝑞𝑖 (𝑡 + 𝑡𝑘) = 0,

𝑖 = 1, 2,

(59)

𝑝𝑖(𝑡)(𝑖 = 1, 2) are also almost periodic functions.
Therefore,

lim
𝑘→+∞

𝑢𝑖 (𝑡 + 𝑡𝑘) = 𝑝𝑖 (𝑡) , 𝑖 = 1, 2. (60)

On the other hand,

lim
𝑘→+∞

�̇�𝑖 (𝑡 + 𝑡𝑘) = lim
𝑘→+∞

lim
ℎ→0

𝑢𝑖 (𝑡 + 𝑡𝑘 + ℎ) − 𝑢𝑖 (𝑡 + 𝑡𝑘)

ℎ

= lim
ℎ→0

lim
𝑘→+∞

𝑢𝑖 (𝑡 + 𝑡𝑘 + ℎ) − 𝑢𝑖 (𝑡 + 𝑡𝑘)

ℎ

= lim
ℎ→0

𝑝𝑖 (𝑡 + ℎ) − 𝑝𝑖 (𝑡)

ℎ
, 𝑖 = 1, 2.

(61)

So �̇�𝑖(𝑡) (𝑖 = 1, 2) exist. Now we will prove that (𝑝1(𝑡), 𝑝2(𝑡))
𝑇

is an almost solution of system (8).
From properties of almost periodic function, there exists

an sequence {𝑡𝑛}, {𝑡𝑛} → ∞ as 𝑛 → ∞, such that

𝑏 (𝑡 + 𝑡𝑛) → 𝑏 (𝑡) , 𝑐 (𝑡 + 𝑡𝑛) → 𝑐 (𝑡) ,

𝑑 (𝑡 + 𝑡𝑛) → 𝑑 (𝑡) , 𝑘 (𝑡 + 𝑡𝑛) → 𝑘 (𝑡) ,

𝛼 (𝑡 + 𝑡𝑛) → 𝛼 (𝑡) , 𝛽 (𝑡 + 𝑡𝑛) → 𝛽 (𝑡) ,

𝛾 (𝑡 + 𝑡𝑛) → 𝛾 (𝑡) , 𝑟
𝑖
(𝑡 + 𝑡𝑛) → 𝑟𝑖 (𝑡) , (𝑖 = 1, 2)

(62)

as 𝑛 → ∞ uniformly on 𝑅.
It is easy to know that 𝑢𝑖(𝑡 + 𝑡𝑛) → 𝑝𝑖(𝑡)(𝑖 = 1, 2) as

𝑛 → ∞; then we have

�̇�1 (𝑡) = lim
𝑛→+∞

�̇�1 (𝑡 + 𝑡𝑛)

= lim
𝑛→+∞

𝑢1 (𝑡 + 𝑡𝑛) (𝑟1 (𝑡 + 𝑡𝑛) − 𝑏 (𝑡 + 𝑡𝑛) 𝑢1 (𝑡 + 𝑡𝑛)

−
𝑐 (𝑡 + 𝑡𝑛) 𝑢2 (𝑡 + 𝑡𝑛)

𝛼 (𝑡 + 𝑡𝑛) + 𝛽 (𝑡 + 𝑡𝑛) 𝑢1 (𝑡 + 𝑡𝑛) + 𝛾 (𝑡 + 𝑡𝑛) 𝑢2 (𝑡 + 𝑡𝑛)
)

= 𝑝1 (𝑡) (𝑟1 (𝑡) − 𝑏 (𝑡) 𝑝1 (𝑡)) −
𝑐 (𝑡) 𝑝2 (𝑡)

𝛼 (𝑡) + 𝛽 (𝑡) 𝑝1 (𝑡) + 𝛾 (𝑡) 𝑝2 (𝑡)
,
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�̇�2 (𝑡) = lim
𝑛→+∞

�̇�2 (𝑡 + 𝑡𝑛)

= lim
𝑛→+∞

𝑢2 (𝑡 + 𝑡𝑛) (𝑟2 (𝑡 + 𝑡𝑛) −
𝑑 (𝑡 + 𝑡𝑛) 𝑢2 (𝑡 + 𝑡𝑛)

𝑢1 (𝑡 + 𝑡𝑛) + 𝑘 (𝑡 + 𝑡𝑛)
)

= 𝑝2 (𝑡) (𝑟2 (𝑡) −
𝑑 (𝑡) 𝑝2 (𝑡)

𝑝1 (𝑡) + 𝑘 (𝑡)
) .

(63)
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Figure 1: Dynamic behavior of the system (64) with the initial
condition (𝑥(0), 𝑦(0)) = (0.5, 1)𝑇, (1, 1.2)𝑇, (0, 2, 0.05)𝑇, and
(0.1, 1.3)𝑇, respectively.

These show that (𝑝1(𝑡), 𝑝2(𝑡))
𝑇 satisfies system (8). Hence,

(𝑝1(𝑡), 𝑝2(𝑡))
𝑇 is a positive almost periodic solution of (8).

Then, it follows from Theorem 12 that system (8) has a
unique positive almost periodic solution. The proof is com-
pleted.

4. Examples and Numeric Simulations

Consider the following example:

�̇� (𝑡)

= 𝑥 (𝑡) [10 + sin√5𝑡 − 11𝑥 (𝑡)

−
(0.3 + 0.2 sin√3𝑡) 𝑦 (𝑡)

8 + cos√11𝑡 + (10 + sin√3𝑡) 𝑥 (𝑡) + 5𝑦 (𝑡)
] ,

̇𝑦 (𝑡) = 𝑦 (𝑡)

× [0.5 + 0.3 sin√2𝑡 −
(12 + 0.2 sin√13𝑡) 𝑦 (𝑡)

𝑥 (𝑡) + 2
] .

(64)

In this case, we have 𝑟𝑢
1
= 11, 𝑟𝑙

1
= 9, 𝑏𝑢 = 𝑏𝑙 = 11, 𝑐𝑢 = 0.5,

𝑐𝑙 = 0.1, 𝛼𝑢 = 9, 𝛼𝑙 = 7, 𝛽𝑢 = 11, 𝛽𝑙 = 9, 𝛾𝑢 = 𝛾𝑙 = 5, 𝑟𝑢
2
= 0.8,

𝑟𝑙
2
= 0.2, 𝑑𝑢 = 12.2,𝑑𝑙 = 11.8, 𝑘𝑢 = 𝑘𝑙 = 2. According to

Theorem 3 (or Theorem 4), we have

𝑚1 ≈ 0.81686 (or 0.80909) ,

𝑚2 ≈ 0.04618 (or 0.04605) ,

𝑀1 = 1, 𝑀2 ≈ 0.20339.

(65)

Considering (𝐻3) and (𝐻4), we choose 𝑚1 = 0.80909,
𝑚2 = 0.04605. Hence,

𝑟𝑙
1
𝛼𝑙 −

𝑟𝑢
2
𝑐𝑢 (𝑀1 + 𝑘

𝑢)

𝑑𝑙
≈ 62.8983 > 0,

𝑟𝑙
1
𝛾𝑙 − 𝑐𝑢 ≈ 44.5 > 0,

[𝑏 (𝑡) −
𝑐 (𝑡) 𝛽 (𝑡)𝑀2
Δ2 (𝑡, 𝑚1, 𝑚2)

−
𝑑 (𝑡)𝑀2

(𝑚1 + 𝑘 (𝑡))
2
]

𝑙

≥ 𝑏𝑙 −
𝑐𝑢𝛽𝑢𝑀2

(𝛼𝑙 + 𝛽𝑙𝑚1 + 𝛾
𝑙𝑚2)
2

−
𝑑𝑢𝑀2

(𝑚1 + 𝑘
𝑙)
2
≈ 10.6802 > 0,

[
𝑑 (𝑡)

𝑀1 + 𝐾 (𝑡)
−

𝑐 (𝑡)

Δ (𝑡, 𝑚1, 𝑚2)
−
𝑐 (𝑡) 𝛾 (𝑡)𝑀2
Δ2 (𝑡, 𝑚1, 𝑚2)

]

𝑙

≥
𝑑𝑙

𝑀1 + 𝑘
𝑢
−

𝑐𝑢

𝛼𝑙 + 𝛽𝑙𝑚1 + 𝛾
𝑙𝑚2

−
𝑐𝑢𝛾𝑢𝑀2

(𝛼𝑙 + 𝛽𝑙𝑚1 + 𝛾
𝑙𝑚2)
2

≈ 3.89646 > 0.

(66)

Equation (66) means that all conditions of Theorem 13 are
satisfied in system (64). Thus, it admits a unique, globally
attractive, positive, almost periodic solution. Figure 1 shows
the dynamic behaviors of the solution (𝑥(𝑡), 𝑦(𝑡))𝑇 with the
four group initial values (𝑥(0), 𝑦(0)) = (0.5, 1)𝑇, (1, 1.2)𝑇,
(0, 2, 0.05)𝑇, and (0.1, 1.3)𝑇. From the figure, we could easily
see that the solution (𝑥(𝑡), 𝑦(𝑡))𝑇 is asymptotic to the unique,
almost periodic solution of the system (64).
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5. Conclusion

In this paper, we consider a predator-prey with modified
Leslie-Gower model and Beddington-DeAngelis functional
response. When 𝛼(𝑡) = 𝑘1, 𝛽(𝑡) = 1, 𝛾(𝑡) = 0, 𝑘(𝑡) =
𝑘2, 𝑐(𝑡) = 𝑎1(𝑡), 𝑑(𝑡) = 𝑎2(𝑡), (8) we discussed reduces to
(4) which was studied by Zhu and Wang [13]. By utilizing
the coincidence degree theorem and constructing a suitable
Lyapunov function, the authors in [13] investigated the
existence and global attractivity of positive periodic solutions
of (4) and obtained Theorem 1. More precisely, comparing
Theorem 1 with Corollary 6, we find that conditions (𝐶2) or
(𝐶3) of Theorem 1 are redundant, which implies that our
results improve those of [13]. Example together with numeric
simulation shows the feasibility of our main results.
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