
Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2013, Article ID 896168, 3 pages
http://dx.doi.org/10.1155/2013/896168

Research Article
Lower Bounds of Periods of Periodic Solutions for a Class of
Differential Equations with Variable Delays

Xin-Ge Liu and Mei-Lan Tang

School of Mathematics and Statistics, Central South University, Changsha 410083, China

Correspondence should be addressed to Mei-Lan Tang; csutmlang@163.com

Received 2 June 2013; Accepted 25 July 2013

Academic Editor: Nazim Idrisoglu Mahmudov

Copyright © 2013 X.-G. Liu and M.-L. Tang. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Based on generalizedWirtinger’s inequality, periods of periodic solutions of the nonautonomous differential equationswith variable
delays are investigated. Based onHölder inequality, lower bounds of periods of periodic solutions for a class of functional differential
equations with variable delays are obtained by a simple method.

1. Introduction

The existence and multiplicity of periodic solutions, bifur-
cations of periodic solutions, and stability of solutions of
functional differential equations have attracted the attention
of many mathematicians [1–5]. A lot of remarkable results
have been achieved [6–10]. However, only a few works on
periods of periodic solutions have been done (see, e.g.,
[11–13]). Suppose 𝑓 is Lipschitz continuous in a Banach
space with constant 𝐿 and 𝑥(𝑡) is a 𝑇-periodic nonconstant
solution of 𝑥󸀠(𝑡) = 𝑓(𝑥(𝑡)). Lasota and Yorke [12] have
showed that 𝑇𝐿 ≥ 4. Busenberg et al. [14] refined the earlier
estimate of 𝑇𝐿 in [12]; they [14] showed that 𝑇𝐿 ≥ 6. At the
same time, they [14] also gave a simple proof of the better
lower bound 𝑇𝐿 ≥ 2𝜋 in spaces with the norm defined
via an inner product. Mawhin and Walter [15] showed how
some lower bounds on the period of the possible periodic
solutions of autonomous ordinary differential equations due
to Yorke [11] are easy consequences of the general principle.
Zevin and Pinsky [16] investigated a class of Lipschitzian
differential equations of even order; they obtained the min-
imal periods of periodic solutions. In 2012, Domoshnitsky et
al. [17] investigated componentwise positivity of solutions to
periodic boundary problem for linear functional differential
system. Recently, Cheng and Zhang [18] proved a generalized
Wirtingers inequality. Based on this inequality, they [18]
studied estimates for lower bounds of periods of periodic

solutions for the following autonomous delay differential
equation:

𝑥̇ (𝑡) = −
𝑛

∑
𝑘=1

𝑓 (𝑥 (𝑡 − 𝑘𝑟)) , (1)

where 𝑥 ∈ 𝑅𝑝, 𝑓 ∈ 𝐶(𝑅𝑝, 𝑅𝑝), and 𝑟 > 0 is a given
constant. In their paper [18], delays are required to be
constants with the form of 𝑘𝑟. In this paper, we will
replace the constant delay 𝑘𝑟 with the generalized delay
function 𝑟

𝑘
(𝑡) with |𝑟󸀠

𝑘
(𝑡)| < 1, 𝑘 = 1, 2, . . . , 𝑛. Furthermore,

the method used in our paper is simpler than that in [18].
Lower bounds of periods of periodic solutions for a class
of functional differential equations with variable delays are
obtained.

Consider the lower bounds of periods of periodic solu-
tions for the following delay differential equations:

𝑥̇ (𝑡) = −
𝑛

∑
𝑘=1

𝑓 (𝑥 (𝑡 − 𝑟
𝑘
(𝑡))) , (2)

where 𝑥 ∈ 𝑅𝑝, 𝑓 ∈ 𝐶(𝑅𝑝, 𝑅𝑝), 𝑟
𝑘
(𝑡) = 𝑟

𝑘
(𝑡 + 𝑇), 𝑟

𝑘
(𝑡) > 0,

and |𝑟󸀠
𝑘
(𝑡)| < 1 for 𝑡 ∈ 𝑅.

In order to estimate the lower bounds of periods of
periodic solution of (2), we need the following definitions and
lemmas.
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Definition 1. For a positive constant 𝐿, 𝑓(𝑥) ∈ 𝐶(𝑅𝑝, 𝑅𝑝) is
called 𝐿-Lipschitz continuous if, for all 𝑥, 𝑦 ∈ 𝑅𝑝,

󵄨󵄨󵄨󵄨𝑓 (𝑥) − 𝑓 (𝑦)
󵄨󵄨󵄨󵄨 ≤ 𝐿

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨 , (3)

where | ⋅ | denotes the Euclidean norm in 𝑅𝑝.

Let 𝐻1
𝑇
(𝑅, 𝑅𝑝) be the Hilbert space consisting of the 𝑇-

periodic functions 𝑥 on 𝑅 which together with weak deriva-
tives belong to 𝐿2(0, 𝑇; 𝑅𝑝). For all 𝑥, 𝑦 ∈ 𝐿2(0, 𝑇; 𝑅𝑝),
let ⟨𝑥, 𝑦⟩ = ∫

𝑇

0
(𝑥, 𝑦)𝑑𝑡 and ‖𝑥‖ = √⟨𝑥, 𝑥⟩ denote the

inner product and the norm in 𝐿2(0, 𝑇; 𝑅𝑝), respectively,
where (⋅, ⋅) is the inner product in 𝑅𝑝. Let 𝑆 = {𝑥 |
𝑥(𝑡) = (𝑥

1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑝
(𝑡))}, where 𝑥

𝑖
(𝑡) has the second

derivative, 𝑖 = 1, 2, . . . , 𝑝.

Lemma 2 (see [8]). Suppose 𝜏 ∈ 𝐶1
𝜔
and 𝜏󸀠(𝑡) < 1,

for all 𝑡 ∈ [0, 𝜔]. Then the function 𝑡 − 𝜏(𝑡) has an
inverse 𝜇(𝑡) satisfying 𝜇 ∈ 𝐶(𝑅, 𝑅) with 𝜇(𝑎 + 𝜔) = 𝜇(𝑎) + 𝜔.

Lemma 3 (see [18]). If 𝑥 ∈ 𝐻1
𝑇
and ∫𝑇

0
𝑥(𝑡)𝑑𝑡 = 0, then

∫
𝑇

0

|𝑥 (𝑡)|
2𝑑𝑡 ≤

𝑇2

4𝜋2
∫
𝑇

0

|𝑥̇ (𝑡)|
2𝑑𝑡. (4)

2. Main Results

Since 𝑟󸀠
𝑘
(𝑡) < 1, by Lemma 2, the inverse of 𝑡 − 𝑟

𝑘
(𝑡) exists.

Let 𝜇
𝑘
(𝑠) be the inverse of 𝑡 − 𝑟

𝑘
(𝑡).

Theorem 4. Let 𝑥 be a nonconstant 𝑇-periodic solution of
the nonautonomous delay differential equation (2) and 𝑥 ∈
𝑆. Suppose that the function 𝑓 : 𝑅𝑝 → 𝑅𝑝 is 𝐿-Lipschitz
continuous and 𝑟

𝑘
(𝑡) = 𝑟

𝑘
(𝑡 + 𝑇), 𝑟

𝑘
(𝑡) > 0, |𝑟󸀠

𝑘
(𝑡)| < 1.

Then 𝑇 > √2𝜋/𝑛𝐿.

Proof. Since 𝑥 is a nonconstant 𝑇-periodic solution of the
nonautonomous delay differential equation (2), for all 𝑡, 𝑢 ∈
𝑅, we have

|𝑥̇ (𝑡 + 𝑢) − 𝑥̇ (𝑡)|

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑
𝑘=1

𝑓 (𝑥 (𝑡 + 𝑢 − 𝑟
𝑘
(𝑡 + 𝑢))) −

𝑛

∑
𝑘=1

𝑓 (𝑥 (𝑡 − 𝑟
𝑘
(𝑡)))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
𝑛

∑
𝑘=1

󵄨󵄨󵄨󵄨𝑓 (𝑥 (𝑡 + 𝑢 − 𝑟𝑘 (𝑡 + 𝑢))) − 𝑓 (𝑥 (𝑡 − 𝑟𝑘 (𝑡)))
󵄨󵄨󵄨󵄨

≤ 𝐿
𝑛

∑
𝑘=1

󵄨󵄨󵄨󵄨𝑥 (𝑡 + 𝑢 − 𝑟𝑘 (𝑡 + 𝑢)) − 𝑥 (𝑡 − 𝑟𝑘 (𝑡))
󵄨󵄨󵄨󵄨 .

(5)

We claim that if 𝑢 ̸= 0, then, for 𝑡 ∈ 𝑅, there exists at least
one 𝑘 such that

𝑢 − 𝑟
𝑘
(𝑡 + 𝑢) + 𝑟

𝑘
(𝑡) ̸= 0. (6)

Otherwise, if 𝑢− 𝑟
𝑘
(𝑡 + 𝑢) + 𝑟

𝑘
(𝑡) = 0 for 𝑘 = 1, 2, . . . , 𝑛, then

𝑥 (𝑡 + 𝑢 − 𝑟
𝑘
(𝑡 + 𝑢)) − 𝑥 (𝑡 − 𝑟

𝑘
(𝑡)) = 0. (7)

From (5), one has

|𝑥̇ (𝑡 + 𝑢) − 𝑥̇ (𝑡)| = 0. (8)

Noting that 𝑥 ∈ 𝑆, we obtain

|𝑥̈ (𝑡)| = 0. (9)

Noting that 𝑥(𝑡) = 𝑥(𝑡 + 𝑇), then ∫
𝑇

0
𝑥̇(𝑡)𝑑𝑡 = 0. From

Lemma 3, we have

2𝜋 ‖𝑥̇‖ ≤ 𝑇 ‖𝑥̈‖ . (10)

Then |𝑥̇| = 0. 𝑥 is a constant 𝑇-periodic solution. This con-
tradicts the assumption that 𝑥 is a nonconstant 𝑇-periodic
solution.

For simplicity of proof, we suppose that 𝑢 − 𝑟
𝑘
(𝑡 + 𝑢) +

𝑟
𝑘
(𝑡) ̸= 0 for 𝑘 = 1, 2, . . . , 𝑛, (5) can be rewritten as
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑥̇ (𝑡 + 𝑢) − 𝑥̇ (𝑡)

𝑢

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐿
𝑛

∑
𝑘=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑥 (𝑡 + 𝑢 − 𝑟
𝑘
(𝑡 + 𝑢)) − 𝑥 (𝑡 − 𝑟

𝑘
(𝑡))

𝑢 − 𝑟
𝑘
(𝑡 + 𝑢) + 𝑟

𝑘
(𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

×
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑢 − 𝑟
𝑘
(𝑡 + 𝑢) + 𝑟

𝑘
(𝑡)

𝑢

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
.

(11)

Let 𝑢 → 0; one has

|𝑥̈ (𝑡)| ≤ 𝐿
𝑛

∑
𝑘=1

󵄨󵄨󵄨󵄨𝑥̇ (𝑡 − 𝑟𝑘 (𝑡))
󵄨󵄨󵄨󵄨[1 − 𝑟

󸀠

𝑘
(𝑡)]

= 𝐿
𝑛

∑
𝑘=1

󵄨󵄨󵄨󵄨𝑥̇ (𝑡 − 𝑟𝑘 (𝑡))
󵄨󵄨󵄨󵄨[1 − 𝑟

󸀠

𝑘
(𝑡)]
1/2

[1 − 𝑟󸀠
𝑘
(𝑡)]
1/2

.

(12)

Applying Hölder inequality gives

|𝑥̈ (𝑡)|

≤ 𝐿
𝑛

∑
𝑘=1

󵄨󵄨󵄨󵄨𝑥̇ (𝑡 − 𝑟𝑘 (𝑡))
󵄨󵄨󵄨󵄨[1 − 𝑟

󸀠

𝑘
(𝑡)]
1/2

[1 − 𝑟󸀠
𝑘
(𝑡)]
1/2

≤ 𝐿{
𝑛

∑
𝑘=1

󵄨󵄨󵄨󵄨𝑥̇ (𝑡 − 𝑟𝑘 (𝑡))
󵄨󵄨󵄨󵄨
2

[1 − 𝑟󸀠
𝑘
(𝑡)]}

1/2

× {
𝑛

∑
𝑘=1

[1 − 𝑟󸀠
𝑘
(𝑡)]}

1/2

< (2𝑛)
1/2𝐿{

𝑛

∑
𝑘=1

󵄨󵄨󵄨󵄨𝑥̇ (𝑡 − 𝑟𝑘 (𝑡))
󵄨󵄨󵄨󵄨
2

[1 − 𝑟󸀠
𝑘
(𝑡)]}

1/2

.

(13)

Raising both sides of inequality (13) to power 2 and
integrating both sides from 0 to 𝑇, we have

∫
𝑇

0

|𝑥̈ (𝑡)|
2𝑑𝑡

< 2𝑛𝐿2 ∫
𝑇

0

𝑛

∑
𝑘=1

󵄨󵄨󵄨󵄨𝑥̇ (𝑡 − 𝑟𝑘 (𝑡))
󵄨󵄨󵄨󵄨
2

[1 − 𝑟󸀠
𝑘
(𝑡)] 𝑑𝑡.

(14)
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Since 𝜇
𝑘
(𝑠) is the inverse of 𝑡 − 𝑟

𝑘
(𝑡), by using Lemma 2, we

have

∫
𝑇

0

|𝑥̈ (𝑡)|
2𝑑𝑡

< 2𝑛𝐿2
𝑛

∑
𝑘=1

∫
𝑇

0

󵄨󵄨󵄨󵄨𝑥̇ (𝑡 − 𝑟𝑘 (𝑡))
󵄨󵄨󵄨󵄨
2

[1 − 𝑟󸀠
𝑘
(𝑡)] 𝑑𝑡

= 2𝑛𝐿2
𝑛

∑
𝑘=1

∫
𝑇−𝑟𝑘(𝑇)

−𝑟𝑘(0)

|𝑥̇ (𝑠)|
2

× [1 − 𝑟󸀠
𝑘
(𝜇
𝑘
(𝑠))]

1

1 − 𝑟󸀠
𝑘
(𝜇
𝑘
(𝑠))

𝑑𝑠

= 2𝑛𝐿2
𝑛

∑
𝑘=1

∫
𝑇−𝑟𝑘(𝑇)

−𝑟𝑘(0)

|𝑥̇ (𝑠)|
2𝑑𝑠

= 2𝑛𝐿2
𝑛

∑
𝑘=1

∫
𝑇

0

|𝑥̇ (𝑠)|
2𝑑𝑠

= 2𝑛2𝐿2 ∫
𝑇

0

|𝑥̇ (𝑠)|
2𝑑𝑠.

(15)

That is,

‖𝑥̈‖ < √2𝑛𝐿 ‖𝑥̇‖ . (16)

Since 𝑥(𝑡) = 𝑥(𝑡 + 𝑇), obviously, ∫𝑇
0
𝑥̇(𝑡)𝑑𝑡 = 0. By Lemma 3,

we have 2𝜋‖𝑥̇‖ ≤ 𝑇‖𝑥̈‖. So

𝑇 >
√2𝜋

𝑛𝐿
. (17)

Remark 5. When delay 𝑟
𝑘
(𝑡) = 𝑘𝑟, 𝑘 = 1, 2, . . . , 𝑛, from the

second inequality of (13), we can easily obtain Theorem 1 in
[18].

We can easily obtain the following result.

Corollary 6. Let 𝑥 be a nonconstant 𝑇-periodic solution of
the nonautonomous delay differential equation (2) and 𝑥 ∈
𝑆. Suppose that the function 𝑓 : 𝑅𝑝 → 𝑅𝑝 is 𝐿-Lipschitz
continuous and 𝑟

𝑘
(𝑡) = 𝑟

𝑘
(𝑡 + 𝑇), 𝑟

𝑘
(𝑡) > 0, −1/𝑛 ≤ 𝑟󸀠

𝑘
(𝑡) < 1.

Then 𝑇 ≥ 2𝜋/√𝑛(𝑛 + 1)𝐿.
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