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Hesitant fuzzy sets, permitting the membership of an element to be a set of several possible values, can be used as an efficient
mathematical tool for modelling people’s hesitancy in daily life. In this paper, we extend the hesitant fuzzy set to interval-valued
intuitionistic fuzzy environments and propose the concept of interval-valued intuitionistic hesitant fuzzy set, which allows the
membership of an element to be a set of several possible interval-valued intuitionistic fuzzy numbers. The aim of this paper
is to develop a series of aggregation operators for interval-valued intuitionistic hesitant fuzzy information. Then, some desired
properties of the developed operators are studied, and the relationships among these operators are discussed. Furthermore, we apply
these aggregation operators to develop an approach to multiple attribute group decision-making with interval-valued intuitionistic
hesitant fuzzy information. Finally, a numerical example is provided to illustrate the application of the developed approach.

1. Introduction

In many practical problems, when defining the membership
degree of an element, the difficulty of establishing the mem-
bership degree is not because we have a margin of error (as
in intuitionistic fuzzy sets [1] and interval-valued fuzzy sets
[2]) or some possibility distribution (as in type 2 fuzzy sets
[3]) on the possibility values, but because we have several
possible numerical values. To deal with such cases, Torra [4]
introduced the concept of hesitant fuzzy set to permit the
membership of an element to be a set of several possible
values between 0 and 1, which can depict the human’s
hesitance more objectively and precisely.

It should be noted that hesitant fuzzy sets permit the
membership of an element to be a set of several possible val-
ues. All these possible values are crisp real numbers that
belong to [0, 1]. However, in the process of some practical
decision-makings, sometimes, due to the time pressure and
lack of knowledge or data or the decision makers’ (DMs)
limited attention and information processing capacities, the
DMs cannot provide their evaluations with a single numerical
value, a margin of error, some possibility distribution on the
possible values, several possible numerical values, several
possible interval numbers, or several possible intuitionistic

fuzzy numbers but several possible interval-valued intu-
itionistic fuzzy numbers. For example, to get a reasonable
decision result, a decision organization, which contains a lot
of decision makers, is required to estimate the degree that an
alternative satisfies an attribute. Suppose there are three
cases: some decision makers provide ([0.5,0.7],[0.2,0.3]),
some assign ([0.2,0.3],[0.5,0.6]), and the others provide
([0.4,0.6],[0.1,0.3]), and these three parts cannot persuade
each other to change their opinions. We can easily see that
such cases cannot be dealt with by fuzzy sets [5], hesitant
fuzzy sets, and their extensions, such as interval-valued fuzzy
sets, intuitionistic fuzzy sets, interval-valued intuitionistic
fuzzy sets, type 2 fuzzy sets, interval-valued hesitant fuzzy
sets [6], and generalized hesitant fuzzy sets [7]. Thus, it
is very necessary to introduce a new extension of hesitant
fuzzy sets to address this issue. The aim of this paper is to
present the notion of interval-valued intuitionistic hesitant
fuzzy set, which extends the hesitant fuzzy set to interval-
valued intuitionistic fuzzy environments and permits the
membership of an element to be a set of several possible
interval-valued intuitionistic fuzzy numbers. Thus, interval-
valued intuitionistic hesitant fuzzy set is a very useful tool
to deal with the situations in which the experts hesitate
between several possible interval-valued intuitionistic fuzzy



numbers to assess the degree to which an alternative satisfies
an attribute. In the previous example, the degree to which
the alternative satisfies the attribute can be represented by
an interval-valued intuitionistic hesitant fuzzy set {([0.5,0.7],
[0.2,0.3]), ([0.2,0.3], [0.5, 0.6]), ([0.4, 0.6], [0.1, 0.3])}. More-
over, in many multiple attribute group decision-making
(MAGDM) problems, considering that the estimations of
the attribute values are interval-valued intuitionistic hesi-
tant fuzzy sets, it therefore is very necessary to give some
aggregation techniques to aggregate the interval-valued intu-
itionistic hesitant fuzzy information. However, we are aware
that the existing aggregation techniques have difficulty in
coping with group decision-making problems with interval-
valued intuitionistic hesitant fuzzy information. Therefore,
we in the current paper propose a series of aggregation
operators for aggregating the interval-valued intuitionistic
hesitant fuzzy information and investigate some properties of
these operators. Then, based on these aggregation operators,
we develop an approach to MAGDM with interval-valued
intuitionistic hesitant fuzzy information. Moreover, we use a
numerical example to show the application of the developed
approach.

In order to do this, this paper is organized as fol-
lows. Section 2 introduces some concepts and proper-
ties of interval-valued intuitionistic hesitant fuzzy sets. In
Section 3, we present a series of aggregation operators for
interval-valued intuitionistic hesitant fuzzy information and
examine the relationships among these aggregation oper-
ators. Section 4 develops an approach to group decision-
makings with interval-valued intuitionistic hesitant fuzzy
information. In the sequel, the application of the developed
approach in group decision-making problems is shown by an
illustrative example in Section 5. The final section offers some
concluding remarks.

2. Preliminaries

In this section, we will briefly introduce the basic notions of
hesitant fuzzy sets [4], interval-valued intuitionistic fuzzy sets
[8], and interval-valued intuitionistic hesitant fuzzy sets.

2.1. Hesitant Fuzzy Sets and Hesitant Fuzzy Elements

Definition I (see [4]). Let X be a fixed set; a hesitant fuzzy set
(HES) on X is given in terms of a function that when applied
to X returns a subset of [0, 1].

To be easily understood, we express the HFS by a mathe-
matical symbol

E={(x,hg(x)) | x € X}, (1)

where hp(x) is a set of some values in [0, 1], denoting the
possible membership degrees of the element x € X to the
set E. For convenience, Xia and Xu [9] called h = hg(x) a
hesitant fuzzy element (HFE) and H the set of all HFEs.
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Given three HFEs represented by h, h;, and h,, Torra [4]
defined some operations on them, which can be described as

hc={1—y|y€h},
hUhy={y,Vy, |y €hy, 1 €hyl, )

hynhy={y Ay, |y €hy, 5 € byl

Furthermore, in order to aggregate hesitant fuzzy infor-
mation, Xia and Xu [9] defined some new operations on the
HFEs h, h,, and h,:

heh ={y+y,-nnlnch, v ehl,
h®hy={yy, |y €hy, 3 € Byl

3
W =1{y* lyeh}, ©

/\hz{l—(l—y)ﬂyeh}.

To compare the HFEs, Xia and Xu [9] defined the follow-
ing comparison laws.

Definition 2 (see [9]). For an HFE h, s(h) = Zyeh y/#h is
called the score function of h, where #h is the number of the
elements in h. For two HFEs h; and h,, if s(h;) > s(h,), then
hy > hy;if s(hy) = s(h,), then h; = h,.

2.2. Interval-Valued Intuitionistic Fuzzy Sets and
Interval-Valued Intuitionistic Fuzzy Numbers

Definition 3 (see [8]). Let X be an ordinary nonempty set. An
interval-valued intuitionistic fuzzy set A in X is an object that
has the form

A={({x,pp (x),74 (%)) | x € X}, (4)

where py(x) = [uy(x),pa(x)] < [0,1] and vu(x) =
[V, (x), v} (x)] < [0,1] satisfy 0 < pj(x) + vj(x) < 1 for
all x € X and are, respectively, called the membership degree
and the nonmembership degree of the element x € U to A.

Xu [10] called each pair (u,(x),v4(x)) in A an interval-
valued intuitionistic fuzzy number (IVIFN), and, for conve-
nience, each IVIFN can be simply denoted by o = (y4,7,),
where p, = [y, ui] < [0,1], v, = [v,,7.] € [0,1], and
pr + 75 < 1. Let Q be the set of all IVIFNG.

Xu [10] introduced the following operational laws for
IVIFNS.
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Definition 4 (see [10]). Let a = (p4y, Vo) = ([et» i > [V Vi 1)
® = (tuocl’vle) = ([M;l’[’l;]’ [V;I,V;I]), and a, = (M(xz’vocz) =
([, ptzz], [, vzz]) be any three IVIFNSs. Then,

of = ([ va]s [ 1)) »
- -+ + - - +
o Va, = ([‘u"‘l V“‘xz’“‘xl V‘u‘xz] > [y"ﬁ /\vaz’v‘xl Avaz])’
o Nay = ([.”;1 /\P‘;Z’P‘; /\.”;2] ) [”;1 Vv;z,v; VVZZ])’
o @ oy = ([pg, + pty, — by b o the, + oy, — e i, ]
[v;l 1/;2’ v;—l vlz ]) >
@ ey = ([ug iy 1 i |

- - - = .+ + + .+
[val+va2—valva2,val+va2—v v, ),

do= ([1- =) - -] (02 0)]).
A >0,
o = ([ 6] - - - -)]),
A>0.

©)

Theorem 5 (see [10]). Let o = (,, V), &; = (‘ual,val), and
&, = (Ya,» Vy,) be any three IVIENs. Then, o, ®a,, a; ®0,, Aax,

and o are also IVIFNG.

Xu [10] introduced the score function s(ex) = (1/2)(p,, -
v, + py — V) to get the score of a and defined an accuracy
function h(a) = (1/2)(u, + v, + . + v,) to evaluate the
accuracy degree of a. Xu [10] gave an order relation between
two IVIFNs «, and «,.

(1) If s(er;) > s(«,), then o > «,.

(2) If s(«r;) = s(«,), then the following hold.

(a) If h(«a;) > h(w,), then a; > «,.
(b) If h(e;) = h(«,), then «; = av,.
(c) If h(e,) > h(«;), then o, > «;.

2.3. Interval-Valued Intuitionistic Hesitant Fuzzy Sets and
Interval-Valued Intuitionistic Hesitant Fuzzy Elements. In the
following, we propose the concept of interval-valued intu-
itionistic hesitant fuzzy sets, which permit the membership
of an element to be a set of several possible interval-valued
intuitionistic fuzzy numbers. The motivation is that when
defining the membership degree of an element, the difficulty
of establishing the membership degree is not because we have
a margin of error (as in intuitionistic fuzzy sets) or some
possibility distribution (as in type 2 fuzzy sets) on the possible
values, but because we have several possible interval-valued
intuitionistic fuzzy numbers.

Definition 6. Let X be a fixed set; an interval-valued intu-
itionistic hesitant fuzzy set (IVIHES) on X is given in terms
of a function that when applied to X returns a subset of Q).

To be easily understood, we express the IVIHFS by a
mathematical symbol

E={(xhz(x)) | x € X}, (6)

where hg(x) is a set of some IVIFNs in ), denoting the
possible membership degree intervals and nonmembership
degree intervals of the element x € X to the set E.
For convenience, we call i = hz(x) an interval-valued
intuitionistic hesitant fuzzy element (IVIHFE) and H the set
of all IVIHFEs. If « € h, then « is an IVIEN, and it can be
denoted by & = (4, V) = ([p> iy ], [V Vi ).

For any o € h, if « is a real number in [0,1], then
7 reduces to a hesitant fuzzy element (HFE) [9]; if « is a

closed subinterval of the unit interval, then % reduces to an
interval-valued hesitant fuzzy element (IVHFE) [6]; if « is

an intuitionistic fuzzy number (IFN) [11], then 7 reduces to
an intuitionistic hesitant fuzzy element (IHFE). Therefore,
HFEs, IVHFEs, and IHFEs are special cases of IVIHFEs.

Definition 7. Given three IVIHFEs represented by , h;, and

h,, one defines some operations on them, which can be
described as

B= o lace B} = {([ ) o)) 1w €,

hy Uh, = {0‘1 Va, oy €hy, a € fzz}
= {([t, Ve, v ],
[V A Vo7, A, ]) |
oy Efll, o, € flz},

hnhy = {0‘1 Aoy |y €hy,a € Tzz}
= { ([, Atz A2
[V, Vs VL)) |

a, €hy, a, € hz},

hyoh, = {ocl®oc2 |, € By, a, eﬁz}

= {([1a, oy 1 1z, ]

- - - .- .+ + + .+
[val Vo = Vo Vo Ve, ¥ Ve, ™ Yo, Y, ) |

a € hy, oy € Byl
711 @flz = {ocl @, |« € ‘le, «, € 712}
= {([Ha, + ta, = Moy o, + t, = b o]

- = o+t 7 7
[valvaz,valvaz]) |, €hy, ay € hz},



M= {da | €h}
{([-a-w)hr-a-w)',
[0S 60 ) 1aen}, A>o,
it ={a* |aeh}
= ([ @',
[1-(-)1-(-9)"]) 1aeh},

A>0.
(7)

Theorem 8. Let h, iy, and h, be three IVIHFEs, and A > 0.
Then, hy, & hy, by ® hy, Ah, and b are also IVIHFEs.

Proof. Since h = {(lp, il v, vi) | « € R}
hl = {([,u;l) AM;IL [v;li V:]]) | “1 € hl}: and hz =
(oo 31, 7,72 1) |y € hy} are three IVIHFEs, we

- o+ + - .t - + = .t
have 0 < P> Pop> Voo Voo B> o> V> Vo> By By Ve Yy S 1,

+ + + + + +
o + Vo <1 py +7, < Landy, +v, <1 Then, we can
obtain

0<py +py — gty = 1= (14t ) (1 - 14y)
<1-(1-pg ) (1= ) = u +p, — i iy, <1,
+

- - +
0< Vo Vo, < Vo Vo, <1,

by, + Hagy ~ Hoy gy + Ve Ve,
=1 (1-p ) (1 - pl) + v v
<1-(1-uy)(1-4)
(1w (1-p) =1,
0 < iy fhy, < Py g, S 1,
0<v, +v, =V =1-(1-7,)(1-)
<1-(1-vg ) (V=) = e +7e VeV <1,

+ o+
V
LSRCP)

Ho Hogy Ve + Ve, =V
= o oy + 1= (1= ) (1=
<(1-0)(1-9)

+1-(1-9 ) (1-9) =1,

0<1-(1-p) <1-(1-) <1,
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0< () <) <1,
A A
L= (1-p)" + (%)
st-(-u)) + (- =1,
0< (i) < () <1,
031—(1—1»;)%1—(1—7»;))‘31,
Y +1-(-v) -0 +1-(1-0) =1
(8)
Thus, b, & h,, h, ® h,, Ah, and " are IVIHFEs. O

Theorem 9. Leth, iy, and h, be three IVIHFEs, and A, A, and
A, > 0. Then, one has

)

Proof. Consider
B Uk
= ([ ve ] [t v, ]) 1o € By}
U{([7a, 7] [, i, ]) T 0 € Bo}
= ([, Ve e, Vv, ] [, Attt At ]) |
oy € T oy < )
= (b, Nty o, Nt ] [, Ve, V0, ]) |

o € le, o, € EZ}C = (711 ﬂﬁz)c,
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B 0k
=i ] [ 1) Lo € )
{([vaz “z] [‘M'xz M“z]) | X € h }

={([v“1/\v0‘2 val/\v ] [Malv‘ufxz"u%v‘u;z])l

ocleh,oczeh}

{([‘Mal M"‘z M"‘l V‘u“z] [V Avaz v“l /\V ]) |

a, € hy, oczehz} = (hluhz),

(7)' = {2 L)) 1 Y

a ehf = (AR),
A(R) = 2 {([vaval (e a]) @ € B}
={([1-a-wh1-a-",
[ ) ]) 1 @ e B} = (7
Y
= (e ] [ ) T €}
& {([v2, 78, ] [ 2, ]) 1 22 € o}

={([va, + V2, = Va Vo Vi, + Ve = Ve Ve
[t b st ]) L @1 € By oy € Iy}
= ([, ey 0,02, ]
[, + oy = i Vg Vo Vo = V2 |) |
oy €T, oy )" = (o)
Y
= ([ v [t 0, ]) 1 o1 €
@ {([va i) [ ) 1 s € o}
= {([7a e Yo 7] >
[, + b, = Py by o, + i, = o ]) |
a €hy, o €y}
= ([t + b, = i oy, + b, = b )
[V, Ve Ve Ve |) Tty € By oy € hy}

= (h @h,)",

{([eN o) [1-a-m) 1 --)])

h,®h,
= { ([t + o, — b by b, + = o by ]»
[V Ve v ve ) Loy € By, oy € By}
= {([[’4;2 +‘H;l _“;Ztu;l’tuocz +[’lo¢1 _nuocz[’lozl] >
[Va, Ve Ve, Ve |) L @2 € Py ety € Iy}
=h,eh,
A(hy ohy)
= M([ta, + b, — b s 2, + = b ] »
[vav VL )Ioclele, oczeflz}

{([1-0-1 -, +2)
1= (1=, - w i)'

|Ge) (i)'



a € hy, o ezz}
- {([1 -(1 —y;l)l(l —y;z)h,
- (=) (-,

a €hy, a, Ehz}.

Thus, we have A(i, ® h,) = A, ® AR,
Moreover,

@ ([1-0- 1.

(0260 ]) 1 e B
Ay (Ah)

=0 ({([r- =)™ - a-w)™

[62"062)"]) 1aeh})
_ {([1 -(1-1+01 —‘u;)kz)h,

1—(1—1+(1—y;)A2)A1],

(60" (60)"]) 1)

={([1- =" - -],
(0", 60) " ]) 1a el

Thus, we have that (A, 1,)k = A, (A, h).
Take

h, ®h,
= ([t e 0,02,
[V, + Vi, = Vi Vo Vi, + Ve = Ve

« €hy, a, € hz}
= ([t i, ]
[V, + Vi, = Vi Vs Vi, + Ve = VeV

a, €hy, oy €y} =h,eh,
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h & 1)

“{([6) Y]

(10)

(1) x(l—(l—v;)A ]>|

«, €hy, a eﬁz},
(R o) = ({([1e, 23]

[vl’ﬁ + Vaz - voclvtxz’

])l + + +  +
Vo, + 7V, ~ valvaz]) |

& €hy, a, € Ez}))t

il () )]

- _ A
[1—(1—1)0(1 = Vg, +lelva2) )
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1= (19 =+ )] )
aenf
([ ).
[1- (=) (-9
- (1) )

aehf. -
Thus, we have that /' 7 = (b, ® ,)’ .
Consider
A = ()™ )™,
[1- =)= -]
aeh},
()"
= ({ ()™ @™
[1-(-v) " 1-(-)"])1
aci})”
S ((CENGRNE "
[1 ~(1-140- v;)AI)AZ,
- (1-1e a0 ])
ae z}
= ([ ™™,
[1- =)= (=) ]
aehl.
Thus, we have that iM% = (), O

To compare the IVIHFEs, we define the following com-
parison laws.

Definition 10. For an IVIHFE h,s(h) = Youch s(a)/#h is called
the score function of h, where #E is the number of the
elements in h. h(h) = ) __; h(x)/#h is called the accuracy

ach

function of h. For any two IVIHFEs i, and h,,

Q) if s(h,) > s(h,), then h; > hy;
(2) if S(El) = S(Ez), then the following hold.

(a) Ifh(h) > h(h,), then h; > h,.
(b) If h(h,) = h(h,), then i, = h,.
(c) If h(h,) > h(h,), then k1, > h,.

3. Aggregation Operators for Interval-Valued
Intuitionistic Hesitant Fuzzy Information

In the current section, we propose a series of operators for
aggregating the interval-valued intuitionistic hesitant fuzzy
information and investigate some desired properties of these
operators.

3.1. The IVIHFWA, IVIHFWG, GIVIHFWA, and
GIVIHFWG Operators

Definition 11. Let fl,- i = 1,2,...,n) be a collection of
IVIHFEs, and let w = (w;, w,, ..., w,)" be the weight vector
of h; (i = 1,2,...,n) with w; € [0,1] and ¥, w; = 1. An
interval-valued intuitionistic hesitant fuzzy weighted averag-
ing (IVIHFWA) operator is a mapping H" — H such that

n

h) =P (wh). )

i=1

IVIHFWA (R, by, ..

fw=~1/m1/n,...,1/n)T" especially, then the IVIHFWA
operator reduces to the interval-valued intuitionistic hesitant
fuzzy averaging (IVIHFA) operator:

IVIHFA (hy, hy,..., ) = é} (%’ﬁ) (15)

i=1

Theorem 12. Let h, (i = 1,2,...,n) be a collection of
IVIHFEs. Then, their aggregated value calculated using the
IVIHFWA operator is an IVIHFE and

IVIHFWA (hy, hy, ..., 1)

{(-foe

=) - T10-0)" |

i=1 i=1

160" 1100 ) "

i=1 i=1

o €h,o€hy,.. ., a, € hn}.
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Proof. The first result follows quickly from Definition 11 and
Theorem 8. In the following, we prove the second result by
using mathematical induction on #. First, we show that (16)
holds for n = 2.

Because

(
) ,
o @
(
)

we have

w i, @ w,h,
={([r-(1-w)"
[6a)™ (00)" D) T €
of([1-(1-p,) 1= (1))

1= (L) 1= (1) (18)
(1= (-p)") (- (=) ™))
(%)™ ()™ ()" ()] |
R
={([1-(-pe)" (- 0)™
b= (1) (1-6)" ]
(%) ()™ ()" () ) |

& €Ty, o €Ty}
If (16) holds for n = k, in other words,
IVIHFWA (hy, . ..., Iy )

(19)
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then, when n = k + 1, IVIHFE operations yield

o {([1- (1w )™ 1= (1w )™
[(v;kﬂ )wlﬁ-1 > (v;kﬂ )wk+1 ] ) | ‘xk+1 € flk+1}

i {< [1 - ﬁ(l ) = (- )

i=1

) (1 ) :1(1 Wé)t%) (1-(1-p, )™,

k

-TT0-w)" + 1= (-, )™

i=1

(1107 ) 0-0- ).

i=1

A([-T0-wya-Tlo-w) .

i=1 i=1

Tewr T )

i=1 i=1

(20)

In other words, (16) holds for n = k + 1. Equation (16)
therefore holds for all 7.
This completes the proof of Theorem 12. O
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Definition 13. Let b, (i = 1,2,...
IVIHFEs, and let w = ) wn)T be the weight vector
of iy i = 1,2,...,n) with w, € [0,1] and Y w; =
1. An interval-valued intuitionistic hesitant fuzzy weighted

geometric (IVIHFWG) operator is a mapping H” — H such
that

,n) be a collection of
(wy,wy, ...

IVIHFWG (hy, hy, .., h,) = Q) (B). (D)
i=1
Especially, it w = (1/n,1/n,..., l/n)T, then the IVIH-
FWG operator reduces to the interval-valued intuitionistic
hesitant fuzzy averaging (IVIHFA) operator:

IVIHFG (hy, by, ... h,) = ® (mm). (22)
i=1

Theorem 14. Let h, (i = 1,2,...,n) be a collection of
IVIHFEs. Then, their aggregated value calculated using the
IVIHFWG operator is an IVIHFE, and

)
Al )

[1 = H(l —v, ) 1= ﬁ(l _ vZ)Wi]) | (23)

IVIHFWG (hy,hy, ...

B

i=1 i=1
a €h,a€h,,...,q € hn}.

In the following, by combining the IVIHFWA and IVIH-
FWG operators with the generalized mean [12], we develop
the generalized interval-valued intuitionistic hesitant fuzzy
weighted averaging (GIVIHFWA) operator and the gener-
alized interval-valued intuitionistic hesitant fuzzy weighted
geometric (GIVIHFWG) operator, respectively. The main
characteristic of the GIVIHFWA and GIVIHFWG operators
is that they have an additional parameter A controlling the
power to which the argument values are raised. Different
from the IVIHFWA and IVIHFWG operators, the GIVIH-
FWA and GIVIHFWG operators extend them with addition
of a parameter controlling the power to which the argument
values are raised. When we use different choices of the
parameters A, we will get some special cases.

Definition 15. Let b, (i = 1,2,...,n) be a collection of
IVIHFEs, and let w = (wy, w,, ..., wn)T be the weight vector
ofh; (i=1,2,...,n) withw, € [0,1] and Y| w; = 1.

(1) A generalized interval-valued intuitionistic hesitant
fuzzy weighted averaging (GIVIHFWA) operator is a
mapping H" — H, where

n 1/A
GIVIHFWA, (hy, hy,....h,) = <€B (wﬁ?)) (24)

i=1

with A > 0.

(2) A generalized interval-valued intuitionistic hesitant
fuzzy weighted geometric (GIVIHFWG) operator is
a mapping H" — H, where

GIVIHFWG, (i, Ty .- ) = % <® (Xfl,.)“”) (25)
i=1

with A > 0.

If A = 1, then the GIVIHFWA operator reduces to the
IVIHFWA operator and the GIVIHFWG operator reduces to
the IVIHFWG operator.

Using IVIHFE operations and mathematical induction
on n, (24) and (25) can be transformed into the following
forms:

GIVIHFWA, (hy, hy,..., )

: {< !(1 ) (1 - (u;i)l)wf)”*)
()]

::

[<,=1

1:1

2
—_
=
=
—
[\
[®))
=

/—\
By
_
|
=
2+
N—"
~
~—
kS
=
=
| S
~—

S

[<1 _LKI B (voc,-)l)wi>w, (27)
(110~ (v;,.))‘)“*)“D |

o €hy,a €hy,... ehn}.

Example 16. Suppose that El = {([0.2,0.3],[0.5,0.6]),
({0.5,08],[0.1,0.2]), ([0.1,0.3],[0.4, 0.5])}, l~12 = {([0.4,0.6],
[0.3,0.4]), ([0.3,0.5],[0.1,0.2])}, and E3 = {([0.5,0.5],
[0.2,0.3]), ([0.2,0.4], [0.3,0.6]), ([0.8,0.9],[0.1,0.1])} are
three IVIHFEs, and w = (0.6,0.3,0.1)” is their weight vector.
Then, by Definition 15, we can obtain
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GIVIHFWA, (hy, 7y, By)
= IVIHFWA (h,, 7y, 1)
([0.2998,0.4278] , [0.3914, 0.4957]), ([0.2661,0.4172] , [0.4076,0.5313]

([0.2667,0.3881] , [0.2815,0.4026]) , ([0.2314, 0.3769] , [0.2932, 0.4315]

[ [ 0.3611,0.5128], [0.3652, 0.4441
[ [
([0.4719,0.7301] , [0.1490, 0.2564]) , ([0.4465, 0.7252] , [0.1552, 0.2748]
[ [
[ [

> >

( D
,([0.3309,0.4791] , [0.2627, 0.3607]) ,
,([0.5181,0.7703] , [0.1390, 0.2297])

& :

>

— e
_— — —

1 ([0.4469,0.7115] , [0.1072, 0.2083]) , ([0.4203, 0.7062] , [0.1116, 0.2232]), ([0.4953, 0.7544] , [0.1000, 0.1866]) ,
([0.2486, 0.4278] , [0.3424, 0.4443]), ([0.2124, 0.4172] , [0.3565, 0.4762]) , ([0.3144, 0.5128] , [0.3194, 0.3981]) ,
| ([0.2130,0.3881] , [0.2462,0.3609]) , ([0.1751,0.3769] , [0.2564, 0.3868]) , ([0.2819, 0.4791] , [0.2297,0.3234]) |

GIVIHFWA; (hy, 7y, By

([0.3645,0.4909] , [0.3596, 0.4559]) , ([0.3191, 0.4835] , [0.3843, 0.5008]) , ([0.5306, 0.6415] , [0.3150, 0.3536]
([0.3329, 0.4262] , [0.2255,0.3312]) , ([0.2488, 0.4125] , [0.2344, 0.3471]) , ([0.5248, 0.6250] , [0.2070, 0.2803]
1 (0.4782,0.7475] , [0.1410,0.2453]) , ([0.4658, 0.7464] , [0.1452,0.2536]) , ([0.5696, 0.7842] , [0.1317,0.2158]
(( [ D, ]
(( [ ) (

> >
>

>

— — — —

0.4690, 0.7400] , [0.1064, 0.2072]) , ([0.4555, 0.7389] , [0.1094, 0.2134]),, ([0.5653, 0.7786] , [0.1000, 0.1847
0.3624,0.4909] , [0.3314, 0.4306]) , ([0.3154, 0.4835] , [0.3512, 0.4661]) , ([0.5302, 0.6415] , [0.2939, 0.3411])
| ([0.3298,0.4262], [0.2142, 0.3204]), ([0.2382, 0.4125] , [0.2223,0.3351]) , ([0.5243,0.6250] , [0.1972,0.2728]) |

GIVIHFWG, (hy, by, ;)

>

= IVIHFWG (hy, hy, by )

([0.2699, 0.3887] , [0.4203,0.5223]), ([0.2462, 0.3801] , [0.4280, 0.5483]) , ([0.2828, 0.4122] , [0.4134, 0.5101])
([0.2475,0.3680] , [0.3749, 0.4792]) , ([0.2259, 0.3599] , [0.3832, 0.5075]) , ([0.2595, 0.3903] , [0.3675, 0.4659]) ,
([0.4676,0.7002] , [0.1751,0.2759]) , ([0.4267, 0.6847] , [0.1861, 0.3153]), ([0.4901, 0.7425] , [0.1654, 0.2575]) ,
1 ([0.4290, 0.6629] , [0.1105,0.2106]) , ([0.3914, 0.6483] , [0.1223, 0.2536]) , ([0.4496, 0.7030] , [0.1000, 0.1905]) ,
([0.1780, 0.3887] , [0.3533, 0.4538]) , ([0.1625, 0.3801] , [0.3618, 0.4835]) , ([0.1866, 0.4122] , [0.3456, 0.4399]) ,

| ([0.1633,0.3680] , [0.3026, 0.4046]) , ([0.1490, 0.3599] , [0.3119, 0.4370]),, ([0.1712,0.3903] , [0.2944, 0.3894]) |
GIVIHFWG; (hy, iy, 115

0.2525,0.3568] , [0.4555,0.5505]) , ([0.2357, 0.3517] , [0.4565, 0.5658] ]

0.2382,0.3502] , [0.4522, 0.5442]) , ([0.2229, 0.3454] , [0.4532, 0.5602]) , ([0.2395, 0.3534] , [0.4520, 0.5437]) ,
] ]
] ]

(( [ ), ([0.2541,0.3601] , [0.4554, 0.5500])
( [ ) ( )
([0.4611,0.6355] ,[0.2382,0.3230]), ([0.3971,0.5920] , [0.2501, 0.4080] ), ([0.4684, 0.6815] , [0.2363,0.3185]),, |
( [ ) ( )
( [ ) ( )

>

0.4051,0.5817], [0.1326,0.2213]), ([0.3596, 0.5540] , [0.1907, 0.3840]) , ([0.4098, 0.6046] , [0.1000, 0.1960]) ,
0.1551,0.3568] , [0.3698, 0.4667]) , ([0.1472, 0.3517] , [0.3720, 0.4952]) , ([0.1558, 0.3601] , [0.3694, 0.4657]) ,
| ([0.1484,0.3502] , [0.3617, 0.4536]) , ([0.1410, 0.3454] , [0.3641,0.4851]) , ([0.1491, 0.3534], [0.3613, 0.4525])

" (28)

Theorem 17. Let Ei (i = 1,2,...,n) be a collection of  Proof. According to the proof of Theorem 3.8 in [13],
IVIHFESLA > 0, and w = (W, w,,...,w, ) is the weight we can obtain that (1 - []L,(1 - (H;i)A)wi)l/A
vector of h; (i = 1,2,...,n) with w; € [0, 1] and ZI Jw; = 1 a
Then, the GIVIHFWA opemtor GIVIHFWA, (h, hy,.. ., h,)
is monotonically increasing with respect to the parameter A.

- [T, - (,u;_)'l)w")w are monotonically increasing
with respect to the parameter A. Furthermore, 1 — (1 —

~\Mw, Muw,
[T, -1 =) and 1- (=TT, (-1 = v} ) )*)'
are monotonically decreasing with respect to the parameter A.
Therefore, by Definition 10,

s (GIVIHFWA, (hy, h,

»)

R
(2 << [0 ) (- fl-0)) -
+ (1 —ﬁ(l - (y;i)k>wi)m— 1+ (1 —ﬁ(l -(1 —v;i)A>wi>l/A>> “ <ﬁ#71i)1

i=1 i=1
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is monotonically increasing with respect to the parameter A,

which implies that GIVIHFWA, (i,, h,, . . ., i) is monoton-
ically increasing with respect to the parameter A. O

Theorem 18. Let b, (i = 1,2,...
FEs, A > 0, and w = (wl,wz,...,wn)T is the weight vector
of b, i = 1,2,...,n) with w;, € [Ol]cde?1 = 1
Then, the GIVIHFWG operator GIVIHFWGA(hl,hZ,...,h )
is monotonically decreasing with respect to the parameter \.

,n) be a collection of IVIH-

s (GIVIHFWG, (hy, ..., 1))

—

a €hy,0,€hy,..0,€R,

is monotonically decreasing with respect to the parameter A,
which implies that GIVIHFWG, (i, hy, . . ., h,) is monoton-
ically decreasing with respect to the parameter A. O

Lemma 19 (see [14,15]). Letx; > 0, A; > 0,i = 1,2,...,n,
and Y| A; =1, then

H(x ‘<

(31)

I\Mx

with equality if and only if x, = x, = -+ = x

ne

Theorem 20. Leth; (i = 1,2,...,n) bea collection of IVIHFEs

having the weight vector w = (w,, w,, ..., w,)" such that w; €
[0,1] and ¥\, w; = 1, A > 0; then

IVIHFWG (hy, hy, ... hy,) < GIVIHFWA, (hy, hy, ..., ).

(32)

Proof. Forany &, € h),a, € h,,...,a, € h,, from Lemma 19,
we have

1

Proof. According to the proof of Theorem 17, we can obtain
that 1 — (1 -T2, (1 - (1 - ,A;i_ﬂ)“’f)l/A and 1 - (1 -], (1 -
1-p )A)w')l/ * are monotonically decreasing with respect to
the parameter A. Furthermore, (1- [T, (1 - (v, ) ) an

Q-TIL,a-( ai) it )1/ A are monotonically increasing with
respect to the parameter A. Therefore, by Definition 10,

=<5 ) Z ~<1—<1—ﬁ<1—(l—pt;,‘)A>Wi>1M‘(1—11[(1—(”;,))‘)%) (30)
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:<% y [ﬁ(ﬂ;i)wf_<1_f[(1—v;i)'”f>+1ﬂ[(u;i)wi—(1—ﬁ(l—v;)w)])

o, 6711 0, eﬂz,.,,,an eﬂn i=1
x (# (IVIHFWG (R, Ry, ..., En)))‘1

s<% ) [(1—ﬁ(l—(#;,.)l)w)w—(p(1_ﬁ<1_(1_v;i)a>wi)l/”> (35)

a, €hy,a,€hy,....x,€h,

x (# (GIVIHFWA, (B, Py ., 1)) = s (GIVIHFWA, (R, s . 1))
If SAVIHFWG(hy, hy, ..., h,)) < s(GIVIHFWA, (h,, h,, < s(GIVIHFWA, (1, h,,...,h,)).
..., h,)), then by Definition 10, we have (36)
o ~ If sSAOVIHFWG(h,, by, ..., B,)) = s(GIVIHFWA, (b, by,
IVIHFWG (hy, by, ) 1)), that is,

(% . [ o (1 o _v;i)wf) 1) - (1 -T10 _v;,,)"”)D

o Eﬂl,azeﬁz,...,aneﬁn i=1 i=1

x (# (IVIHEWG (B}, oo, 7, )))

:(% Y [(1—ﬁ<1—(y;i)k>wi)m—<1—(1—ﬁ(1—(1—v;i)l>wi>l/k> (37)
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then, by the conditions that

, 2
2 = |
«, €hy,a, €hy,..x,€h,, L

(IVIHFWG (R,

x (#(

1

2
alehlazehz Saneh, L

(38)

(-TI0-wr))
_ <1 _ (1 _ ﬁKl B _v;i)A>Wi>I/A>. (39)

Furthermore, by the conditions that

166" = (1110 -6))")

i=1 i=1

1- ﬁ(l —v, ) 2 1= (1 - ﬁ(l ~(1- v;x_)A)Wi>1/A,

i=1

we have

(42)
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which implies that

IVIHFWG (Ry, by, .., h,) = GIVIHEWA, (R}, by, ..., ],,) -
(43)

Based on the previous analysis, we can conclude that (32)
always holds. O

According to Theorem 20, we can conclude that the
values obtained by the IVIHFWG operator are not bigger
than the ones obtained by the GIVIHFWA operator for any
A>0.

If we let A = 1 in Theorem 20, then we can obtain the
following result.

Corollary 21. Suppose that b, (i = 1,2,...,n) is a collection
of IVIHFEs, and w = (wy,w,, ..., w,)" is their weight vector
withw; € [0,1] and Y., w; = 1; then one has

IVIHFWG (hy, hy, ..., h,) < IVIHFWA (hy, hy, ..., h,).
(44)

Corollary 21 shows that the values obtained by the IVIH-
FWG operator are not bigger than the ones obtained by the
IVIHFWA operator.

Theorem 22. Leth; (i = 1,2,...,n) bea collection of IVIHFEs

having the weight vector w = (w,, w,, ..., w,)" such that w; €
[0,1] and Y, w; = 1, A > 0; then

GIVIHFWG, (hy, hy,...,h,) < IVIHFWA (hy, by, 1) -
(45)

Proof. For any &, € hj,a&, € h,,...,«, € h,, by Lemma 19,
we have

R

i=1

<1- (1 - iwf (1 -(1- yai)A)>w

i=1

" 1/2
=1—< wi(l—‘u;i)A>
i=1

e (1‘[(1 _#ai)mi)w

S

=1

s(GIVIHFWG, (hy, by, ..., 1))

(2 (e ) (i)
V(i) )

+1- (1 —ﬁ<1 -(1 —M;i)A>w’

i=1
n

i=1

Journal of Applied Mathematics

<1- (1 —gw, (1 -(1 _M;)A>>W
_ 1_<§wi(1_y;i)h>m

v
/N
2
—
—~
=
R+
N—
~
~—
&
~__—
Il
=
=
o+
N—
RS

i=1 . (46)

By Definition 10, we have that

1/A
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x (# (GIVIHFWG, (B By ., T1,)))
1 1 —\W; z —\Wi = w; £ w;
(33 [ T oo e
&, €hy 00, €Ny sty €N, i=1 i=1 i=1 i=1
x (# (IVIHFWA (Fy, By 1)) = s (IVIHEWA (R, By, . ). "
7
If sS(GIVIHFWG, (hy, hy, ..., h,)) < s(IVIHEWA(h,, by, < IVIHFWA (hy, by, ..., h,) .
..., h,)), then by Definition 10, we have (48)
o If s(GIVIHFWG, (b, hy, ..., h,)) = s(IVIHEWA(h,, h,,
GIVIHFWG, (R, hy, ..., h,) ...,h,)), that s,
. : RARL, } i\ A
(s [(efeeem)) (e f0-e))
&, €hy,0, €Rysensy €N, i=1 i=1
" W\ A " W\ A
+1—<1— <1—(1—M;)> > —<1—H(1—(v;)A) ) D
i=1 i=1
_ 49
x (# (GIVIHFWG, (A, By .. 1)) ()
1 1 _\W; 1 N 1 O\ Wi n +\Wi
(35 [T Tl i)
&, €y ,0, €Rysensty €, i=1 i=1 i=1 i=1
x (# (IVIHEWA (B, Byy ... 7))
then, by the conditions that we have
" W\ A " W\ A
1—<1-H<1—(1-M%)A)1> 1—<1—H<1—(1—y;i)A>'>
i=1 i=1
n N 1/A ; o\ 1A
(-T10-62)") (0110020
i=1 i=1 x
<1 TT(= ) =TT ()™ n e T e
1:1[( n"loci) izl(vm) =1_H(1_H°‘i) _ (vai) ,
i=1 i=1
(50) (51)

) (o)
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Furthermore, by the conditions that we have

S (RS ) BT R SN B 1 (R ()

i=1

Va, € fll,ocz € Ez ..... a, € En, (53)
(52) Thus,
h(GIVIHFWG, (R, hy,...,h,))
" o\ 1A " W\ 172
:<l y {1—(1— <1—(1—y;i)l>’> +<1—H(1—(v;i)k> )
2 aleﬂl,azeﬁz,...,aneﬁﬂ i=1 i=1
" 1/2 " W\ A
+1—<1—H(1—(1—u2)) ) +<1—H<1—(v;)A> ) D
i=1 i=1 (54)
x (# (GIVIHFWG, (R, By, .. 1))
S CI R B (Bl RS (R 3 )
&, €hy,0, €Ny ..,y €N, i=1 i=1 i=1 i=1
x (# (IVIHFWA (hy, hy,...,h,))) = h(IVIHFWA (hy, by, ..., n,))
which implies that Proof. According to the proof of Theorem 3.10 in [13], we can

B obtain
GIVIHFWG, (I, hy,...,h,) = IVIHFWA (hy, hy,..., )

@ ()

Based on the previous analysis, we can conclude that (56)
always holds. O

n _ 2 w;
Theorem 22 tells us that the values obtained by the = <1 a i (1 B (1 B M“i) ) >
GIVIHFWG operator are not bigger than the ones obtained
by the IVIHFWA operator for any A > 0. ( n
1-

Theorem 23. Leth; (i=1,2,..., n) be a collection of IVIHFEs
having the weight vector w = (w, w,, ..., wn)T such that w; €

[0,1] and Y, w; = 1, A > 0; then 21_<1_
GIVIHFWG, (hy, hy,.... )

L (56) z B
< GIVIHFWA, (hy, hy,....h,). 1—<1‘. (1‘(1‘%,-)) >
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< <1 - ﬁ(l - (v;,_)A>wi>w, < (1 - ﬁ(l - (v;i)l>wi>w.

i=1 i=1

1/A
n A\ Wi
N
1- (1_H<1_(1_va;) ) ) By Definition 10, we have

i=1

(57)

s (GIVIHFWG, (hy, hy,..., 1))

(o kB )

a, €hy,o,€h,y,....x,€h,

x (# (GIVIHFWG, (A, By . 1)) (58)

(2R )
(1000 ) (- (- f10-0-7) )

x (# (GIVIHFWA, (B, Py, 1)) = s (GIVIHFWA, (i, s . 1))

If s(GIVIHFWG, (), hy, ..., 1)) < s(GIVIHFWA, (R, by, < GIVIHFWA, (hy, hy, ..., 1) .
..., h,)), then by Definition 10, we have (59)
o If s(GIVIHFWG, (hy, hy,..., 1)) = s(GIVIHFWA, (h;, h,,
GIVIHFWG, (hy, hy,..., ) ... ), that s,

(2 L) ()

« €hy,0,€hy,..., €h,

(60)

IRIN(C ST REE RN
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then, by the conditions that

Journal of Applied Mathematics

Furthermore, by the conditions that

v\ (63)
) )
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I_Mm

Thus,
I)A>w")w+(1—!_11[(1—(va,.)k)wi>w
. 1_<1_ ln (1—(1—M;,.)A) 1>1M+(1_ﬁ<1_(ﬁ’y> 1>1M]>
(65)

x (# (GIVIHFWG,, (hy, hy,...,1,)))

SCI I (B ()

i=1

n<'tn

) (- (i-0-2)) )

) )]

x (# (GIVIHFWA, (B, By ., 1,))) " = b (GIVIHEWA, (i, T ..

which implies that
GIVIHFWG, (hy,hy, ..., h,)

= GIVIHFWA, (hy, by, ...

_ (66)
).

Based on the previous analysis, we can conclude that (56)
always holds. O

Theorem 23 shows us that, for the same value of the
parameter A > 0 and the same aggregation values, the values
obtained by the GIVIHFWA operator are always greater than
the ones obtained by the GIVIHFWG operator.

We now look at some special cases of the IVIHFWA, IVI-
HFWG, GIVIHFWA, and GIVIHFWG operators obtained by
using different choices of the input arguments and the weight
vector.

(1) If h; G = 1,2,...,n) is a collection of HFEs,
then the IVIHFWA operator reduces to the hesitant fuzzy
weighted averaging (HFWA) operator [9], the IVIHFWG
operator reduces to the hesitant fuzzy weighted geometric
(HFWG) operator [9], the GIVIHFWA operator reduces to
the generalized hesitant fuzzy weighted averaging (GHFWA)
operator [9], and the GIVIHFWG operator reduces to the
generalized hesitant fuzzy weighted geometric (GHFWG)
operator [9].

2) 1t Ei (i = 1,2,...,n) is a collection of IVHFEs, then
the IVIHFWA operator reduces to the interval-valued hesi-
tant fuzzy weighted averaging (IVHFWA) operator [6], the
IVIHFWG operator reduces to the interval-valued hesitant
fuzzy weighted geometric IVHFWG) operator [6], the GIVI-
HFWA operator reduces to the generalized interval-valued
hesitant fuzzy weighted averaging (GIVHFWA) operator [6],

)

and the GIVIHFWG operator reduces to the generalized
interval-valued hesitant fuzzy weighted geometric (GIVH-
FWG) operator [6].

3) If Ei (i = 1,2,...,n) are a collection of IHFEs, then
the IVIHFWA operator reduces to the intuitionistic hesitant
fuzzy weighted averaging (IHFWA) operator:

IHFWA (hy, by, ],

= @ ()
A(-T10-m) 170207

i=1 i=1

(67)

o €hy,a €hy,... € hn}.

If fli (i = 1,2,...,n) are a collection of IHFEs, then the
IVIHFWG operator reduces to the intuitionistic hesitant
fuzzy weighted geometric IHFWG) operator:

IHFWG (hy, by, ],

- & (i)
AT -110-007) 0

i=1 i=1

a €hj,a, €hy,...
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If fli (i = 1,2,...,n) are a collection of IHFEs, then the
GIVIHFWA operator reduces to the generalized intuitionistic
hesitant fuzzy weighted averaging (GIHFWA) operator:

GIHFWA (hy, by, ..., h,)

(D)

i=1

- {(1—(hﬁ(l-(l‘”ﬂf)l)wi)w’ (69)

& €h,o€h,y,.. ., q Ehn}.

If fli (i = 1,2,...,n) are a collection of IHFEs, then the
GIVIHFWG operator reduces to the generalized intuitionis-
tic hesitant fuzzy weighted geometric (GIHFWG) operator:

)
1104

GIHFWG (hy, by, .

:1<
w, 1/A
>> " (70)

1]
e
A
/\
: =

«, €h,a, €h,,... eﬁn}.

3.2. The IVIHFOWA, IVIHFOWG, GIVIHFOWA, and
GIVIHFOWG Operators

Definition 24. Let h; (i = 1,2,...,n) be a collection of
IVIHFEs, h, the ith largest one of them, and w =

(@, @,,...,w,)" the aggregation-associated vector such that
w; € [0,1] and Y| w; = 1, then the following hold.

(1) An interval-valued intuitionistic hesitant fuzzy
ordered weighted averaging (IVIHFOWA) operator is

amapping H" — H, where

IVIHFOWA (hy, hy,..., ) = T (whyw). @)

i=1

Journal of Applied Mathematics

(2) An interval-valued intuitionistic hesitant fuzzy
ordered weighted geometric IVIHFOWG) operator

is a mapping H" — H, where

IVIHFOWG (hy, By, ..., h,) = ® (re). (72)

i=1
(3) A generalized interval-valued intuitionistic hes-

itant fuzzy ordered weighted averaging (GIVIH-
FOWA) operator is a mapping H” — H, where

~-’f‘n) = (é (“’iﬁia)))l“

i=1
(73)

GIVIHFOWA, (hy, h,,

with A > 0.

(4) A generalized interval-valued intuitionistic hes-
itant fuzzy ordered weighted geometric (GIVIH-
FOWG) operator is a mapping H” — H, where

GIVIHFOWG, (B, By .. ) = % <® (/\710<i>)wi>

i=1
(74)

with A > 0.

In Definition 24, if @ = (1/m,1/n,...,1/n)", then the
IVIHFOWA operator degenerates to the IVIHFA operator
and the IVIHFOWG operator becomes the IVIHFG operator.
If A = 1, then the GIVIHFOWA operator reduces to
the IVIHFOWA operator and the GIVIHFOWG operator
reduces to the IVIHFOWG operator.

Using IVIHFE operations and mathematical induction
on n, (71), (72), (73), and (74) can be transformed into the
following forms:

IVIHFOWA (hy, hy, ..., h,)

(e e}

i=1 i=1

e 1027 ])

i=1 i=1

(Xo.(l) € ho‘(l)’ 0(0.(2) € ha‘(Z)’ v ,(Xo.(n) € ha.(n } N

GIVIHFOWA, (hy, by, ..., ],

: {([(1 _H(l ‘(u%(,_))")”fy“’
)]

i=1
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n e\ Definition 24, the IVIHFOWA, IVIHFOWG, GIVIHFOWA,

1- ( 1- (1 -V, ()> ) ) > and GIVIHFOWG operators weight the ordered positions
of the interval-valued intuitionistic hesitant fuzzy

; e\ arguments instead of weighting the interval-valued

1— <1 _ H 1— (1 oyt ) ) ) ) | intuitionistic hesitant fuzzy arguments themselves. The
prominent characteristic of the IVIHFOWA, IVIHFOWG,

GIVIHFOWA, and GIVIHFOWG operators is the reordering

step in which the input arguments are rearranged

Oyp) € rl,,(l),%(z) € Eg(z),-.-,%(n) € Eg(n) ) in descending order; in particular, an interval-valued
intuitionistic hesitant fuzzy argument h; is not associated
IVIHFOWG (B, oo, ... o with a particular weight w;, but rather a weight w; is
( P ") associated with a particular ordered position i of the
~ N SN interval-valued intuitionistic hesitant fuzzy arguments.
- H(‘u"‘a(i)) ’ H(H"‘om) ’ _
=1 =1 Example 26. Assume that h; = {([0.5,0.6],[0.3,0.4]),

n N n L \@ (10.7,0.8],[0.1,0.2]), ([0.1,0.4], [0.5,0.6])}, 1, = {([0.3,0.5],
[l‘g(l"”%m) ,1—1:1[(1—%@) D' [0.3,0.5]),([0.7,0.9],[0.1,0.1])}, and Fh; = {([0.2,0.4],

[0.1,0.3]), ([0.6,0.8],[0.1,0.2])} are three IVIHFEs, and the
7 7 7 aggregation-associated vector is w = (0.2,0.5,0.3)". From
Fo(1) € M) %) € M@y +>Fotm) € Mot > Definition 24, we can calculate the score values of h,, h,, and

- - - h; as follows:
GIVIHFOWG, (hy, hy,.... )

() = (0.2+0.2) + (0.6 + 0.6) + (-0.2 — 0.4)

1/A —
" o s = 0.1667,
i < 1_(1_1’_[(1_(1_”;”“’)) ) ) 0+0 606 0.8
- s(Ry) = QrO+O6+08) 550,
n A\ Wi /A 4
+ _
1= <1 _H<1 - (1 _P‘aam) ) > ’ s(s) = ©1 +0'1)Z(0'5+0'6) = 0.3250.
n A w; 1//1 (76)
<1—H(1—(%g<,-,) ) ) ’ Since s(hy) > s(h;) > s(h,), then
( ﬁ ( )A o\ VA Ry =y = {(10.3,0.5],[0.3,0.5]), ([0.7,0.9],[0.1,0.1])} ,
1- (1— vy ) ) I = =
i o0 Fioy = 3 = 1([0.2,0.4],[0.1,0.3]), ([0.6,0.8],[0.1,0.2])} ,
2 7 7 P =P
€ 02y € Mgy Ui € Bgn
Fot) € Ho1) %o 2) € Ho@)> > %otm) € Hotn) ={([0.5,0.6], [0.3,0.4]), ([0.7,0.8] , [0.1,0.2]) ,
(75)
Remark 25. The IVIHFWA, IVIHFWG, GIVIHFWA, and ([0.1,0.4],[0.5,0.6])},
GIVIHFWG operators weight only the interval-valued 77)

intuitionistic hesitant fuzzy arguments. However, by

GIVIHFOWA, (hy, hy, )
= IVIHFOWA (T, hy, h5)

([0.3235,0.4877] , [0.1732, 0.3622]) , ([0.4196, 0.5839] , [0.1246, 0.2942]) , ([0.1931,0.4215] , [0.2019, 0.4091]),
([0.5217,0.7042] , [0.1732, 0.2958]) , ([0.5896, 0.7598] , [0.1246, 0.2402]) , ([0.4294, 0.6660] , [0.2019, 0.3340]),
([0.4290,0.6287] , [0.1390, 0.2625]) , ([0.5101, 0.6984] , [0.1000, 0.2132]) , ([0.3189, 0.5807] , [0.1621, 0.2965]), [ °
([0.5962, 0.7856] , [0.1390, 0.2144]) , ([0.6536, 0.8259] , [0.1000, 0.1741]) , ([0.5184, 0.7579] , [0.1333, 0.2421])

GIVIHFOWA, (hy, hy, hs)

([0.4224, 0.5240] , [0.1548, 0.3451]) , ([0.5921, 0.6845] , [0.1178, 0.2716]) , ([0.2431,0.4335] , [0.1614, 0.3599]) ,
([0.5561,0.7386] , [0.1548,0.2614]) , ([0.6296, 0.7783] , [0.1178, 0.2217]), ([0.5442, 0.7322] , [0.1614, 0.2678]) ,
([0.5692,0.7473] , [0.1284, 0.2262]),, ([0.6359, 0.7843] , [0.1000, 0.1965]) , ([0.5590, 0.7414] , [0.1333,0.2308]) , [ °
([0.6147,0.8087] , [0.1284, 0.1913]),, ([0.6617, 0.8306] , [0.1000, 0.1694]) , ([0.6085, 0.8054] , [0.1333, 0.1946])
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GIVIHFOWG, (hy, hy, hy)

IVIHFOWG (y, hy, by )
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([0.2855,0.4724] , [0.2063,0.3751]) , ([0.3158, 0.5149] , [0.1441, 0.3188]) , ([0.1762, 0.4183] , [0.2825, 0.4467]) ,

) (
([0.4945, 0.6680] , [0.2063,0.3320]), ([0.5471, 0.7282] , [0.1441, 0.2718]), ([0.3051, 0.5915] , [0.2825, 0.4085]) ,
) (

([0.3382,0.5313], [0.1654, 0.2972]),, ([0.3742, 0.5792] , [0.1000, 0.2338]) , ([0.2087, 0.4704] , [0.2455,0.3777]), [
([0.5858,0.7513] , [0.1654, 0.2487]), ([0.6481, 0.8191] , [0.1000, 0.1809]) , ([0.3615, 0.6653] , [0.2455, 0.3347])

GIVIHFOWG, (hy, by, By

([0.2543,0.4455] , [0.2717,0.4163]) , ([0.2560, 0.4479] , [0.2384, 0.4014]) , ([0.1658,0.4131] , [0.4223,0.5190]) ,
([0.4275,0.5866] , [0.2717,0.4134]), ([0.4371, 0.6022] , [0.2384, 0.3978]) , ([0.2100, 0.4817] , [0.4223,0.5183])
([0.2675,0.4534] , [0.2526, 0.3466]) , ([0.2694, 0.4560] , [0.1000, 0.2731]), ([0.1712, 0.4186] , [0.4212, 0.5068]) ,
([0.5596, 0.6626] , [0.2526, 0.3374]), ([0.6312, 0.8062] , [0.1000, 0.1938]) , ([0.2185, 0.4940] , [0.4212, 0.5060])

Similar to Theorem 17, we have the following result.

Theorem 27. Let h; (i = 1,2,...,n) be a collection of IVIH-
FEs, A > 0, and let w = (w,,,,...,w,)" be the aggregation-
associated vector such that w; € [0,1] and Y, w; = 1; then
the GIVIHFOWA operator is monotonically increasing with
respect to the parameter A.

Similar to Theorem 18, we have the following result.

Theorem 28. Let ﬁi (i =1,2,...,n) be a collection of IVIH-
FEs, A > 0, and let 0 = (0, w,,...,w,)" be the aggregation-
associated vector such that w; € [0,1] and Y, w; = 1; then
the GIVIHFOWG operator is monotonically decreasing with
respect to the parameter A.

Similar to Theorems 20, 22, and 23 and Corollary 21, we
can obtain the following theorem.

Theorem 29. Let fl,- (i = 1,2,...,n) be a collection of IVIH-
FEs, A > 0, and let w = (w,,w,,...,w,)" be the aggregation-
associated vector such that w; € [0,1] and Y|, w; = 1; then

IVIHFOWG (hy, hy, ..., h,)

< IVIHFOWA (hy, hy, ..., h,) .
IVIHFOWG (hy, hy, ..., h,)
< GIVIHFOWA, (hy, by, 1),

R (79)
GIVIHFOWG, (hy, hy, ..., h,)

< IVIHFOWA (hy, I, .

hy)
GIVIHFOWG, (hy, hy,..., h,)

< GIVIHFOWA, (hy, hy,...,],,).

We now look at some special cases of the IVIHFOWA,
IVIHFOWG, GIVIHFOWA, and GIVIHFOWG operators
obtained by using different choices of the input arguments
and the weight vector.

(1) If ;t,» (i =1,2,...,n) is a collection of HFEs, then the
IVIHFOWA operator reduces to the hesitant fuzzy ordered
weighted averaging (HFOWA) operator [9], the IVIHFOWG
operator reduces to the hesitant fuzzy ordered weighted geo-
metric (HFOWG) operator [9], the GIVIHFOWA operator
reduces to the generalized hesitant fuzzy ordered weighted
averaging (GHFOWA) operator [9], and the GIVIHFOWG
operator reduces to the generalized hesitant fuzzy ordered
weighted geometric (GHFOWG) operator [9].

(2) Iffzi (i=1,2,...,n)isacollection of IVHFEs, then the
IVIHFOWA operator reduces to the interval-valued hesitant
fuzzy ordered weighted averaging IVHFOWA) operator [6],
the IVIHFOWG operator reduces to the interval-valued hes-
itant fuzzy ordered weighted geometric (IVHFOWG) opera-
tor [6], the GIVIHFOWA operator reduces to the generalized
interval-valued hesitant fuzzy ordered weighted averaging
(GIVHFOWA) operator [6], and the GIVIHFOWG operator
reduces to the generalized interval-valued hesitant fuzzy
ordered weighted geometric (GIVHFOWG) operator [6].

3) If fzi (i = 1,2,...,n) is a collection of IHFEs, then
the IVIHFOWA operator reduces to the intuitionistic hesitant
fuzzy ordered weighted averaging (IHFOWA) operator:

THFOWA (Fi,, By, ..., T,
= 6_19 (w,-ﬁg(,»))
) . . (80)
= {(1 - 1:!:(1 _AM‘XU(,‘)) > 1 (vacr(i)) ) |

i=1

B

0(0.(1) € ho(l),ag(z) € hg(Z)’ cees “G(H) € hd(ﬂ)} .
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If Ei (i = 1,2,...,n) is a collection of IHFEs, then the IVI-
HFOWG operator reduces to the intuitionistic hesitant fuzzy
ordered weighted geometric (IHFOWG) operator:

IHFOWG (hy, hy, ..., h,)
= @ (71:;)21‘))
. . . (81)
AT -TT0-7))

i=1 i=1

(Xo'(l) € ho‘(l)’ 0(0.(2) € ho’(Z)’ ey (XO'(VL) € ho.(n)} .

If fzi (i=1,2,...,n)is a collection of IHFEs, then the GIVI-
HFOWA operator reduces to the generalized intuitionistic
hesitant fuzzy ordered weighted averaging (GIHFOWA)
operator:

GIHFOWA (R, hy, .., h,)

(&)

i=1

<<H<<u>))

i=1

(1-T10-6)) )

i=1

OCU(I) € ho(l)’ (XO‘(Z) € hO‘(Z)’ . ,(Xa(n) € ]’l

o(n)
(82)

If Ei (i =1,2,...,n)is a collection of IHFEs, then the GIVI-
HFOWG operator reduces to the generalized intuitionistic
hesitant fuzzy ordered weighted geometric (GIHFOWG)
operator:

GIHFOWG (hy, hy,..., h,)

-3 (& 0m

i=1

A= (F16-0-m))

i=1

(Xo.(l) € ho‘(l)’ 060.(2) € ho‘(Z)’ . “O'(?l) € ho.(n)

(83)

23

By Definitions 11, 13, 15, and 24, it is worth noting that
all the operators mentioned previously have some inherent
limitations. Concretely, IVIHFWA, IVIHFWG, GIVIHFWA,
and GIVIHFWG operators only weight the interval-valued
intuitionistic hesitant fuzzy argument itself but ignore the
importance of the ordered position of the arguments, whereas
the IVIHFOWA, IVIHFOWG, GIVIHFOWA, and GIVIH-
FOWG operators only weight the ordered position of each
given argument but ignore the importance of the argument.
To overcome this drawback, we present some hybrid aggrega-
tion operators for interval-valued intuitionistic hesitant fuzzy
arguments, which weight not only all the given arguments but
also their ordered positions.

3.3. The IVIHFHA, IVIHFHG, GIVIHFHA, and
GIVIHFHG Operators

Definition 30. For a collection of IVIHFEs Ei i=12,...,n),
w = (W), Wy, ..., w,)" is the weight vector of them with w;, €
[0,1]and Y, w; = 1,and nis the balancing coefficient which
plays a role of balance; then we define the following aggrega-
tion operators, which are all based on the mapping H" — H

with an aggregation-associated vector @ = (w;, @, ..., w®,)"
such that w; € [0,1] and Y| w; = 1.

(1) The interval-valued intuitionistic hesitant fuzzy
hybrid averaging (IVIHFHA) operator is

’Tln) = @ (wi’ljlo(i)> >

IVIHFHA (R, by, ..

(84)

where flg(,-) is the largest ith of i, = nwhy (k =
1,2,...,n).

(2) The interval-valued intuitionistic hesitant fuzzy
hybrid geometric (IVIHFHG) operator is

) - @1) ((z()>>

(85)

IVIHFHG (hy, by, ..

nwy

where Ea(i) is the largest ith of i, = (h)
1,2,...,n).

(k =

(3) The generalized interval-valued intuitionistic hes-
itant fuzzy hybrid averaging (GIVIHFHA) operator is

n A 1/A
(@)

(86)

GIVIHFHA, (hy, by, ...

where A > 0 and ﬁa(i) is the largest ith of hy, = nwhy
(k=1,2,...,n).
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(4) The generalized interval-valued intuitionistic hes-
itant fuzzy hybrid geometric (GIVIHFHG) operator

7)=3(& () ).

=1
(87)

GIVIHFHG, (hy, by, ...

where A > 0 and Ea(i) is the largest ith of iy = (flk)nwk
(k=1,2,...,n).

Ifw = (1/n,1/n,...,1/n)" especially, then the IVIHFHA
operator reduces to the IVIHFOWA operator, the IVIHFHG
operator reduces to the IVIHFOWG operator, the GIVI-
HFHA operator reduces to the GIVIHFOWA operator, and
the GIVIHFHG operator reduces to the GIVIHFOWG oper-
ator; ifw = (1/n,1/n,...,1/n)’, then the IVIHFHA operator
reduces to the IVIHFWA operator, the IVIHFHG operator
reduces to the IVIHFWG operator, the GIVIHFHA operator
reduces to the GIVIHFWA operator, and the GIVIHFHG
operator reduces to the GIVIHFWG operator; if A = 1, then
the GIVIHFHA operator reduces to the IVIHFHA operator
and the GIVIHFHG operator reduces to the IVIHFHG
operator.

Using IVIHFE operations and mathematical induction
on n, (84), (85), (86), and (87) can be transformed into the
following forms:

IVIHFHA (hy, ,,..., h,)

Al

n

1—]_[<1 —;A;U(i))wi,l—

i=1 i=1

aa(l) € ho(l)’“a(Z) € h0(2)> e (Xa(n) € ha(n)} 5

IVIHFHG (hy, hy, ..., B,

%51) € Bo(1) Fo2) € o)== -> Xotm) € ot [ >

(89)

Journal of Applied Mathematics

GIVIHFHA, (A, hy, ..., B,

%51y € Ba1)s Xo(2) € P2y -+ > Ky € ha(n)]’ >
(90)
GIVIHFHG, (hy, by, ..., )

(1) ))

OCD.(I) € ho‘(l)’ 0(0(2) € ho‘(Z)’ e ’OCG(H) € ho.(n)} .

Example 31 Let h, = {([0.1,0.2],[0.5,0.7]),([0.6,0.9],
[0.1,0.1])}, Ez ={([0.5,0.6],[0.4,0.4]),([0.7,0.8],[0.1,0.2])},

and h; = {([0.6,0.7],[0.2,0.3]), ([0.2,0.5], [0.3,0.4]),
([0.4,0.6],[0.2,0.3])} be three IVIHFEs, whose weight vector

is w = (0.1,0.5,0.4)", and the aggregation-associated vector
is @ = (0.3,0.5,0.2)T. Then we can obtain

21 3.0.1-h,
={([r-0-w)™ ==,
(02 007]) 1 ehi}

= {([0.0311,0.0648] , [0.8123, 0.8985]) ,

([0.2403,0.4988],[0.5012, 0.5012])},
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Zz =3.05-h,
“{([-a-m) ==,
(627,60 ]) 1a e By}

= {([0.6464, 0.7470] , [0.2530, 0.2530]) ,
([0.8357,0.9106] , [0.0316, 0.0894])}

23 =3- 0.4-}]3
(-0-w - 007,
[62)%.02)7]) 1T}

= {([0.6670, 0.7642] , [0.1450, 0.2358]) ,
([0.2349, 0.5647] , [0.2358, 0.3330]),
([0.4583,0.6670] , [0.1450, 0.2358])} ,

s (E) =-0.4695 s <'sz> = 0.6282,

s (E) = 0.3376.

GIVIHFHA, (hy, hy, h3)
= IVIHFHA (h,, iy, By

Since 5(712) > s(ﬁ3) > s(ﬁl), then we have
EU(I) = le
= {([0.6464,0.7470] , [0.2530, 0.2530]),

([0.8357,0.9106] , [0.0316, 0.0894])},

ha(2) = h3
(92) = {([0.6670,0.7642] , [0.1450, 0.2358]),
([0.2349,0.5647],[0.2358,0.3330]),

([0.4583,0.6670] , [0.1450, 0.2358])} ,
710(3) = ‘I:ll
= {([0.0311,0.0648] , [0.8123,0.8985]),
([0.2403, 0.4988] , [0.5012, 0.5012])} .

According to Definition 30, we can obtain

(([0.3579,0.4634] , [0.3937,0.4931]) , ([0.5387, 0.6969] , [0.2628, 0.3031]), ([0.2124, 0.3983] , [0.4268, 0.5265]) ,
([0.3197,0.5991] , [0.3031, 0.3489]) , ([0.2967, 0.4329] , [0.3937, 0.4931]) , ([0.4466, 0.6511] , [0.2628, 0.3031]) ,
I ) (

| ([0.3453,0.6358] , [0.2466,0.3091]) , ([0.3204, 0.4594] , [0.3446, 0.4621]), ([0.4823, 0.6909] , [0.2031, 0.2604]) |
GIVIHFHA, (hy, 1y, h3)
]
]

(([0.1831,0.2362] , [0.6350,0.7196]) , ([0.4081, 0.6131] , [0.3853, 0.3869]) , ([0.1523, 0.2345] , [0.6351, 0.7201]) , )
([0.2762,0.5662] , [0.3869, 0.3976]) , ([0.1793, 0.2359] , [0.6350, 0.7196]) , ([0.3842, 0.6024] , [0.3853, 0.3869]) ,
[

1 ([0.3866,0.4917] , [0.3446, 0.4621]), ([0.5819, 0.7396] , [0.2031, 0.2604]) , ([0.2294, 0.4227] , [0.3804, 0.4975]), [

1 ([0.1833,0.2363], [0.6349, 0.7196]) , ([0.4094, 0.6146] , [0.3838, 0.3854]) , ([0.1524, 0.2346] , [0.6350, 0.7200]) , [

(10.2766,0.5670] , [0.3854,0.3962]), ([0.1795,0.2360] , [0.6349, 0.7196]) , ([0.3852, 0.6038] , [0.3838, 0.3854]) |

If we utilizci th~e GIVIHFHG operator to aggregate the ilz _ (E2)3‘0-5
three IVIHFEs h,, h,, and h;, then we have
= ()™ = ([ w0,
= {([(.‘4;)0.3’ (#;)0'3] J [1 —(1- 1/;)1.5’ 1-(1- v;)l.S:I) |
[1- (=) 1-(1-9)"]) 1 i
oe E1} s hz}

— (([0.5012,0.6170] , [0.1877,0.3032]) , = {([0.3536, 0.4648] , [0.5352, 0.5352]) ,

([0.8579,0.9689] , [0.0311, 0.0311])}, ([0.5857,0.7155] , [0.1462, 0.2845])}

25

(93)

(94)
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{([e)" W)™
[1 (- 1/;)1.2’ 1-(1- 1);)1.2]) |
«e 713}
= {([0.5417,0.6518] , [0.2349,0.3482]), (95)

([0.1450, 0.4353] , [0.3482, 0.4583]),

([0.3330,0.5417] , [0.2349, 0.3482])},

s (El) =0.5980, s <E2> = 0.1546,
s (E) =0.1126.

GIVIHFHG, (hy, hy, hs)
= IVIHFHG (hy, by, ;)

GIVIHFHG; (hy, hy, by )
]
]

We now look at some special cases of the IVIHFHA, IVI-
HFHG, GIVIHFHA, and GIVIHFHG operators obtained by
using different choices of the input arguments and the weight
vector.

(1) If Ei (i =1,2,...,n) is a collection of HFEs, then the
IVIHFHA operator reduces to the hesitant fuzzy hybrid aver-
aging (HFHA) operator [9], the IVIHFHG operator reduces
to the hesitant fuzzy hybrid geometric (HFHG) operator
[9], the GIVIHFHA operator reduces to the generalized
hesitant fuzzy hybrid averaging (GHFHA) operator [9], and
the GIVIHFHG operator reduces to the generalized hesitant
fuzzy hybrid geometric (GHFHG) operator [9].

(2) If ﬁi i = 1,2,...,n) is a collection of IVHFEs,
then the IVIHFHA operator reduces to the interval-valued
hesitant fuzzy hybrid averaging (IVHFHA) operator [6], the
IVIHFHG operator reduces to the interval-valued hesitant
fuzzy hybrid geometric (IVHFHG) operator [6], the GIVI-
HFHA operator reduces to the generalized interval-valued

([0.4417,0.5558] , [0.3315,0.4141]) , ([0.3676, 0.5107] , [0.3586, 0.4375]) , ([0.3982, 0.5307] , [0.3315, 0.4141]) ,
J([0.5530,0.6761],[0.1733,0.3019]), ([0.4937, 0.6432] , [0.1874, 0.3190]) , ([0.5182,0.6578] , [0.1733,0.3019)),, |

([0.6169,0.7909] , [0.1933,0.2091]) , ([0.5661, 0.7696] , [0.2091, 0.2210]) , ([0.5871, 0.7790] , [0.1933,0.2091]), [ °
| ([0.6933,0.8475] , [0.1010,0.1525]), ([0.6526,0.8320] , [0.1093, 0.1611]),, ([0.6694, 0.8389] , [0.1010,0.1525]) |

(([0.4704, 0.5781], [0.2790, 0.3817]) , ([0.4233, 0.5340] , [0.3022, 0.4023]), ([0.4266, 0.5472] , [0.2790, 0.3817]) ,
J([0.5576,0.6809] , [0.1713,0.3006]) , ([0.5410, 0.6650] , [0.1800, 0.3106]) , ([0.5420,0.6693] , [0.1713,0.3006]) , |
([0.7263,0.8660] , [0.1285,0.1340]) , ([0.7226, 0.8631] , [0.1340, 0.1362]) , ([0.7228, 0.8638] , [0.1285, 0.1340]) ,
| ([0.7393,0.8784], [0.0926,0.1216]), ([0.7361,0.8758] , [0.0962, 0.1235]) , ([0.7362, 0.8765] , [0.0926,0.1216]) |
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Since 5(711) > s(ﬁz) > s(ﬁ3), then we have

Tlo(l) = ;‘1
={([0.5012,0.6170] , [0.1877,0.3032]),
([0.8579,0.9689],[0.0311,0.0311])},

ha(2) = hz
= {([0.3536, 0.4648] , [0.5352,0.5352]),
([0.5857,0.7155] , [0.1462,0.2845])},

(96)
Eo(3) = f’s
= {([0.5417,0.6518] , [0.2349, 0.3482]),
([0.1450,0.4353],[0.3482,0.4583]),
([0.3330,0.5417],[0.2349,0.3482])} .

According to Definition 30, we can obtain

(97)

hesitant fuzzy hybrid averaging (GIVHFHA) operator [6],
and the GIVIHFHG operator reduces to the generalized
interval-valued hesitant fuzzy hybrid geometric (GIVHFHG)
operator [6].

(3) Iffli (i=1,2,...,n)is a collection of IHFEs, then the
IVIHFHA operator reduces to the intuitionistic hesitant
fuzzy hybrid averaging (IHFHA) operator:

IHFHA (hy, hy,.... )
:Gj?(wizo(i)>
Al TI00, ) TT6,))1

i=1
%) € h‘,(l),ocg(z) € h‘,(z),...,cxo(n) € ho(n)]» .

(98)

B

plem'®
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Ifh; (i = 1,2,...,n) is a collection of IHFEs, then the IVI-
HFHG operator reduces to the intuitionistic hesitant fuzzy
hybrid geometric (IHFHG) operator:

IHFHG (hy, hy, ..., h,)

(99)

(XU(I) € ho(l)’aa(Z) € hG(Z)’ e (Xa(n) € ha(n)} .

If 71,» (i = 1,2,...,n) is a collection of IHFEs, then the
GIVIHFHA operator reduces to the generalized intuitionistic
hesitant fuzzy hybrid averaging (GIHFHA) operator:

GIHFHA, (hy, hy, ..., B,

1] 1]
/N
—
T —_
= —
' e
Ry -
o >
/ =
= ~—
I ~
e N =
= =
2
~
>~
~—
£
~_—

%) € hg(l),%@ € hd(z),...,ocg(n) ch

o(n)
(100)

If Ei (i = 1,2,...,n) is a collection of IHFEs, then the
GIVIHFHG operator reduces to the generalized intuitionistic
hesitant fuzzy hybrid geometric (GIHFHG) operator:

GIHFHG, (hy,hy, ..., h,)
1 n - w;
! (@ (Whei) >

(101)

(XU(I) € ha(l),(xd(z) € hU(Z)’ e ,(Xa(n) € ]’l

o(n)

In the present section, we introduce twelve kinds of
aggregation operators for aggregating the interval-valued
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TABLE 1: Interval-valued intuitionistic hesitant fuzzy aggregation
operators.

Order The names of operators

1 The IVIHFWA operator
2 The IVIHFWG operator
3 The GIVIHFWA operator
4 The GIVIHFWG operator
5 The IVIHFOWA operator
6 The IVIHFOWG operator
7 The GIVIHFOWA operator
8 The GIVIHFOWG operator
9 The IVIHFHA operator
10 The IVIHFHG operator
11 The GIVIHFHA operator
12 The GIVIHFHG operator

intuitionistic hesitant fuzzy information. To exhibit these
operators more clearly, we list all of them in Table 1.

4. An Approach to Multiple Attribute Group
Decision-Making with Interval-Valued
Intuitionistic Hesitant Fuzzy Information

In this section, we utilize the proposed interval-valued
intuitionistic hesitant fuzzy aggregation operators to develop
an approach to multiple attribute group decision-making
with interval-valued intuitionistic hesitant fuzzy informa-
tion. First, a multiple attribute group decision-making with
interval-valued intuitionistic hesitant fuzzy information can
be described as follows.

LetY = {Y},Y,,...,
{G1,G,, ...

Y,,} be a set of m alternatives, G =
,G,} a collection of n attributes, whose weight
vector is w = (wl,wz,...,wn)T, with w; € [0,1],i = 1,2,
.onmand Y w; = 1,and let D = {D;,D,,...,D} be
a set of | decision makers, whose weight vector is w =
(@, @,,...,w), with w, € [0,1], k = 1,2,...,1, and
Zi_l w, = 1. Let RW = (?@) be an interval—valued intu-
itionistic hes1tant fuzzy dec131on matrix, where = {y(k) |

Y,] 1] } {([ (k))[/‘(k)] v (k)aV (k ]) | Y A{k)} e H

is an IVIHPE given by the dec1510n ‘maker D, € D, where
[;4 "> y o ,] indicates the possible degree range that the alter-

']
native YI € Y satisfies the attribute G; € G, while [vy_(_k), vy_(_k ]
indicates the possible degree range that the alternative Y; €y
does not satisfy the attribute G; € G.

In general, there are benefit attributes (i.e., the bigger
the attribute values, the better) and cost attributes (i.e., the
smaller the attribute values, the better) in a multiple attribute
group decision-making problem. In such cases, we transform
the attribute values of cost type into the attribute values of
benefit type; that is, normalize the interval-valued intuition-

istic hesitant fuzzy decision matrix RW = (?f}‘)) . into
mxn
a corresponding interval-valued intuitionistic hesitant fuzzy
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decision matrix

;ﬁk)—(a("’)m = (o | ea’y =
(bt 00V ol) e €a’}) by the method

ij ij mxn
given 1n [16 17], where

o _ ?fjk), for benefit attribute G;,
g (71(]")) , for cost attribute G;, (102)
i= 1,2,...,m, _] =12,...,m, k= 1’2""’1’
where (r ) is the complement of 7 ‘U() such that
) ~(k)
( z] ) {(YU ) | Y }
(103)

k
= {([Vyf]k),vy}]m] [I/‘ > Y y’] ]) | Yz Az(])}'

In the following, we utilize the proposed operators to
develop an approach to multiple attribute group decision-
making with interval-valued intuitionistic hesitant fuzzy
information, which involves the following steps.

Algorithm 32. Consider the following.

Step 1. Transform the decision matrix R® = into

k k k
— (~{ )) _ ({(x() | (ngj) c
ealy)

mxn

~(k)

@)

a normalized matrix A® =
k —

a®) = ({([Magm
ij

i Dimxn k>] [v, k)sV (k)]) | 06

based on (102).

Step 2. Utilize the GIVIHFWA operator (26):

‘Xz(]l) c 51(11),“(2)

cg® ,oc( €~(l) ,

ij 1]""

(104)
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or the GIVIHFWG operator (27):

= GIVIHFWG, (a,a,....a)

] g
: e\ VA
= 1—(1—1—[<1—<1—‘I4;(k)> > > 5

k=1 v
1 AN\ Yk 174

1—<1—H<1—<1—,M;<k>)> ) )
k=1 y
/A

(105)

1) o A1) (2) o ~(2) (ORF0)
O € Gy 50 €A, .0 €A
i=12,....m, j=12,...,n,

to aggregate all the individual interval-valued intuitionistic

hesitant fuzzy decision matrix AW = (a k)) . (k=1,2,...,]
mxn

into the collective interval-valued 1ntu1t10nlstic hesitant fuzzy

decision matrix A = (@) ({oj | oy € a;}) =

mxn mxn

_ + _ + ~
({([‘M‘xij’ M‘xij]’ [V‘xij)v“ij]) | ocij € aij})mxn'

Step 3. Utilize the GIVIHFHA operator (90):

a = GIVIHFHA, (@, @, ..., @)

(1))

j=1
" A
(-n0-62,))) |
n g\
1—(1—!1(1—(1—1»&{6(1))) ) ,
" g\
1—(1—11(1—(1—@6(])) ) ) |

s Xig(2) € Qg2+ -+ > Fig(n) € Big(n) [ >
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or the GIVIHFHG operator (91):

@ = GIVIHFHG, (@, @y, .. ., @,

A(b-(rio--a) )Y

=1
. g\ A
1-{1- 1- (1 -l > > ,
g( H"‘ic(j)
., g\ A
1- 1- (1/7 > > ,
H( Fia(j)
., G\ A
1- 1—(vT ) >
H( Kio ) |
Xig(1) € Big(1) Xig(2) € ig(2)> -+ > Fin) € Fio(w) [ >
i=1,2,...,m,
(107)
to aggregate all the preference values a; (j = 1,2,...,n)

in the ith line of A, and then derive the collective overall
preference value @; = {oy; | o; € @} = {([p» 4y 1, [V, v 1) |
a; € a} (i=1,2,...,m)of the alternative Yi!(i - 1,2,1. ..,Im),
where & = (£,,&,,...,&,)" is the associated weight vector of
the GIVIHFHA (or GIVIHFHG) operator, with & ;€ [0,1],
j= 1,2,...,;1,and2}1:1 §&=1

Step 4. According to Definition 10, we calculate the score
values s(a@;) (i=1,2,...,m)ofa; (i=1,2,...,m):

(U2 Y (e 7+ - 8)
s(a) = #(a@) :

Step 5. Get the priority of the alternatives Y; (i = 1,2,...,m)
by ranking s(@;) (i=1,2,...,m).

Step 6. End.

(108)

5. The Application of the Developed Approach
in Group Decision-Making Problems

5.1. An Illustrative Example. In the following, we use a
practical example to illustrate the application of the approach
proposed in Section 4.

Example I (see [18]). Let us consider a factory which intends
to select a new site for new buildings. Three alternatives Y;
(i = 1,2,3) are available, and the three decision makers D,
(k = 1,2,3) consider three criteria to decide which site to
choose: (1) G, (price); (2) G, (location); and (3) G; (envi-
ronment). Among the considered attributes, G, is of cost
type, and G; (j = 2,3) are of benefit type. The weight
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vector of the decision makers D, (k = 1,2,3) is w =
(0.1,0.6,0.3)". The weight vector of the criteria G; (G =1,
2,3)isw = (0.5,0.2,0.3)". Suppose that each decision maker
provides his/her own interval-valued intuitionistic hesitant
fuzzy decision matrix R® = (71?](‘))3X3 (k = 1,2,3) as listed
in Tables 2, 3, and 4, where ?f}‘) = {yg‘) | yl.(f) € ?g‘)} is an
IVIHEE given by the decision maker Dy.

Step 1. Based on (102), we transform the interval-valued intui-

tionistic hesitant fuzzy decision matrices RW = (?g())3>< 5 (k =
k)

1,2,3) into the normalized matrices A% = (Zi,(] )3><3 (k =1,
2,3) (see Tables 5, 6, and 7).

Step 2. Let A = 6, and utilize the GIVIHFWA operator (104)
to aggregate all the individual interval-valued intuitionistic
hesitant fuzzy decision matrices AW = (iii(}‘))p(3 (k=1,2,3)
into the collective interval-valued intuitionistic hesitant fuzzy
decision matrix A = (fiij)3x3 (see Table 8).

Step 3. Utilize the GIVIHFHA operator (106) (whose asso-
ciated weighting vector is & = (0.25,0.65, 0.7 and A = 6)
to aggregate all the preference values @; (j = 1,2,3) in the

ith line of A, and then derive the collective overall preference
value a; (i = 1,2, 3) of the alternative Y; (i = 1,2, 3). We will
not list the collective overall preference values here because
of space limitations.

Step 4. According to (108), we calculate the score values s(a;)
(i=1,2,3)0fa (i =1,2,3):
s(a;) =0.4314, s(a,) = 0.3990,

(109)
s(a;) = 0.4852.

Step 5. By (a;) (i = 1,2,3), rank all the alternatives Y; (i =
1,2,3) in descending order:

Y;>Y, >Y,. (110)

Thus, the best alternative is Y.

As the parameter A changes, we can get different results
(see Table 9). From Table 9, we can find that the score values
obtained by the GIVIHFWA and GIVIHFHA operators
become bigger as the parameter A increases for the same
aggregation arguments, and the decision makers can choose
the values of A according to their preferences.

Furthermore, it is possible to analyze how the differ-
ent attitudinal character A plays a role in the aggregation
results; in this case, we consider different values of A:
0.0001, 0.0002, 0.0003, 0.0004, 0.0005, ... ., 50, which are pro-
vided by the decision maker. The score functions s(a;) (i =
1,2,3) of the collective overall preference values a; (i =
1,2, 3) of the alternatives Y; (i = 1,2, 3) are shown in Figure 1.

It is observed from Figure1 that all of s(@;) (i = 1,2,3)
increase as A increases. From Figure 1, we can find that

(1) when A € (0, 1.4234), the ranking of the three alter-
natives is Y; > Y, > Y, and the best choice is Y5;
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TaBLE 2: The interval-valued intuitionistic hesitant fuzzy decision matrix R provided by D;.
2 Gl G2 G3
{([0.6, 0.8], [0.1, 0.2]),
Y, {(10.4, 0.5], [0.3, 0.5])} {(10.2, 03], [0.6, 0.7])} ([0.6, 0.7], [0.3, 0.3]),
(10.7,0.9], [0.1, 0.1]}
{([0.4, 0.5], [0.5, 0.5]),
{([0.1,0.1], [0.8, 0.9]),
Y. ([0.6, 0.7], [0.1, 0.2]), {([0.8,0.9], [0.1, 0.1])}
2 ([0.2,0.4], [0.5, 0.6])} (105071, [0.1.0.2)
Y, {(([[g 120033]][3066007611)1 1([0.8,0.9], [0.1, 0.1])} ([0.3,0.5], [0.4, 0.4])}
TABLE 3: The interval-valued intuitionistic hesitant fuzzy decision matrix R® provided by D,.
3 G, G, G,
{(10.7,0.9], [0.1, 0.1]),
{([0.4, 0.6], [0.3, 0.3]),
Y, (([[8.'2’, (())88]] [[(())..11,, gi]];} (05,071, 102, 03]} {([0.9, 0.9], [0.1, 0.1])}
{([0.5,0.7], [0.2, 0.3]),
Y, {([0.7,0.8], [0.1, 0.2])} {([0.8, 0.9], [0.1, 0.1])} ([0.6.0.8]. [0.1. 0211
{([0.1, 0.3], [0.6, 0.7]),
{([0.6, 0.8], [0.2, 0.2]),
Y. {(10.2,0.3], [0.5, 0.6])} ([0.2,0.2], [0.7,0.8]),
’ ([0.7,0.9], [0.1, 0.1])} (105 0.4].[0.6, 0,61}
TaBLE 4: The interval-valued intuitionistic hesitant fuzzy decision matrix R® provided by D,.
4 Gl G2 G3
{([0.2,0.3], [0.5, 0.6]),
Y {([0.3,0.5], [0.4, 0.5])} ([0.1, 0.1], [0.8, 0.9} {((0.7,0.8], [0.2,0.2])}
{([0.3, 0.5], [0.5, 0.5]),
{([0.4, 0.6], [0.3, 0.4]),
Y, {(10.1, 0.3], [0.6, 0.6])} ([0.1, 0.2, [0.7, 0.7]),
2 ([0.4, 0.5], [0.5, 0.5])} ([0 0.4, [05. 0.6}
{([0.3, 0.6], [0.4, 0.4]),
{(10.8, 0.9], [0.1, 0.1]),
Y. ([0.4, 0.5], [0.4, 0.5]), {(10.9, 0.9], [0.1, 0.1])}
’ (105,0.7], [0.1,0.2])} (03, 0.5]. [0.4.0.51)
TaBLE 5: The interval-valued intuitionistic hesitant fuzzy decision matrix
5 Gl Gz G3
{([0.6, 0.8], [0.1, 0.2]),
Y, {([0.3,0.5], [0.4, 0.5])} {([0.2, 0.3], [0.6, 0.7])} (0.6, 0.7], [0.3, 0.3]),
(10.7,0.9], [0.1, 0.1]}
{([0.4, 0.5], [0.5, 0.5]),
{([0.8, 0.9], [0.1, 0.1]),
Y. ([0.6,0.7], [0.1, 0.2]), ((0.8,0.9],(0.1, 0.1])
2 ([0.5, 0.6], [0.2, 0.4])} (05071, [0, 0.2)]
Y, {(([[g ey {([0.8, 0.9, [0.1, 0.1} (103, 0.5, [0.4, 0.4])}
TABLE 6: The interval-valued intuitionistic hesitant fuzzy decision matrix
6 G, G, G,
{([0.1, 0.1], [0.7, 0.9]),
{([0.4, 0.6], [0.3, 0.3]),
Y,
1 (([[811 8.'12]],’ [[()967: g:g]];i ([0.5,0.7], [0.2, 03])} {([0.9,0.9], [0.1, 0.1])}
{([0.5, 0.7], [0.2, 0.3]),
Y, {([0.1,0.2], [0.7, 0.8])} {([0.8, 0.9], [0.1, 0.1])} 10:6.0.8]. [0 02D}
{([0.1,0.3], [0.6, 0.7]),
Y, (105, 0.6], [0.2, 0.3} ([0.6, 081, [0.2, 0.2D), (102, 0.2], (07, 0.8]),

([0.7,0.9], [0.1, 0.1])}

([0.3,0.4], [0.6, 0.6])}
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TABLE 7: The interval-valued intuitionistic hesitant fuzzy decision matrix A,

7 G, G, Gy
0.2, 0.3],[0.5, 0.6]),
Y, ((104,03), 03,05} SRRy (07,08, [0.2,0.2])
{([0.3,0.5], [0.5, 0.5]),
0.3, 0.4], (0.4, 0.6]),
Y, {(([[O 2 5]] [[0 e 5]])1 {(10.1, 03], [0.6, 0.6])} ([0.1,0.2], [0.7, 0.7]),
.5,0.5],[0.4, 0. ([0.3, 0.4], [0.5, 0.6])}
{([0.3, 0.6], [0.4, 0.4]),
0.1, 0.1], [0.8, 0.9]),
Y, {(([E)l A 2]] [[0 s 07]]))} ([0.4, 0.5], [0.4, 0.5]), {(10.9, 0.9], [0.1, 0.1])}
b Vel 1P B ([0.3,0.5], [0.4, 0.5])}
TaBLE 8: The collective interval-valued intuitionistic hesitant fuzzy decision matrix A.
8 G, G, G;
{(10.3680, 0.5528], [0.3476, 0.3527]),
o Wemseemoanoms SO omsom oo ou,
! ) e P e ’ 0.4596, 0.6459], [0.2550, 0.3527]), . e A ’
([0.3305, 0.4295], [0.4063, 0.5700])} E%o. 1295 0.6 456} [[0'2578 0954 4]]))} ([0.8571, 0.8796], [0.1204, 0.1204])}
{(10.5830, 0.7241], [0.2166, 0.2759]),
(DS 06U OSOOB o g oo iy, (OO0 020
Y2 ([0.3485, 0.4266]. [0.4055, 0.5734]), gg;ﬁg’ 8 ‘88:8866]]’ [[3 115’7722 (()) '11:;8]]))}’ ([0.6214, 0.7834], [0.1365, 0.2166]).
([0.4295, 0.4602], [0.4055, 0.5398])} ' T T T ([0.6210, 0.7814], [0.1374, 0.2185]),
([0.6214, 0.7819], [0.1365, 0.2181])}
{([0.6214, 0.7875], [0.2125, 0.2125]),
{(10.4917, 0.5660], [0.2407, 0.3384]), ([0.6231, 0.7834], [0.2125, 0.2166]),
{([0.7669, 0.7679], [0.2295, 0.2305]),
y, ([0.4917, 0.5661], [0.2382, 0.3381]), ([0.6214, 0.7834], [0.2125, 0.2166]), ([0.7669. 096771, [0.9305, 0.23071),

([0.4917, 0.5856], [0.2186, 0.3384]),
([0.4917, 0.5857], [0.2166, 0.3381])}

([0.6817, 0.8654], [0.1346, 0.1346]),
([0.6827, 0.8635], [0.1346, 0.1365]),
([0.6817, 0.8635], [0.1346, 0.1365])}

([0.7671, 0.7689], [0.2295, 0.2295])}

(2) when A € [1.4234,22.2700], the ranking of the three
alternatives is Y3 > Y; > Y, and the best choice is Y;;

(3) when A € (22.2700, 37.7207), the ranking of the three
alternatives is Y3 > Y, > Y, and the best choice is Y;;

(4) when A € [37.7207, 50], the ranking of the three alter-
natives is Y, > Y; > Y; and the best choice is Y.

In Steps 2 and 3, instead of the GIVIHFWA and GIVI-
HFHA operators, if we use the GIVIHFWG and GIVIHFHG
operators to aggregate the values of the alternatives, the
score values and the rankings of the alternatives are listed
in Table 10. By Table 10, we can find that the score values
obtained by the GIVIHFWG and GIVIHFHG operators
become smaller as the parameter A increases for the same
aggregation arguments, and the decision makers can choose
the values of A according to their preferences.

Furthermore, it is possible to analyze how the differ-
ent attitudinal character A plays a role in the aggregation
results; in this case, we consider different values of A:
0.0001, 0.0002, 0.0003, 0.0004, 0.0005, ... ., 50, which are pro-
vided by the decision maker. The score functions s(a;) (i
1,2,3) of the collective overall preference values a; (i =
1,2,3) of the alternatives Y; (i = 1,2, 3) are shown in Figure 2.

A = 222700 h(ay) = 0.9885
s(a) = s(a,) = 0.6173 h(a,) = 0.9408

A =37.7207 h(a,) = 0.9467
s(ay) = s(a;) = 0.6869  h(a;) = 0.9414

Score functions
o
=

0.2
A=14234 h(a,) = 0.9029
0.1 s(ay) = s(ay) = 0.2154  h(a,) = 0.8957
0 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50
A
— s(ay)
— s(ay)
—— s(az)

FIGURE 1: Variation of the score functions with respect to the
parameter A.

It is observed from Figure 2 that all of s(@;) (i = 1,2,3)
decrease as A increases. From Figure 2, we can find that

(1) when A € (0,6.1065), the ranking of the three alter-
natives is Y, > Y, > Y; and the best choice is Y5;
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TABLE 9: Score values obtained by the GIVIHFWA and GIVIHFHA operators and the rankings of alternatives.

9 A=0.1 A=10 A =20 A =30 A =40 A =50
Y, 0.0994 0.5120 0.6054 0.6464 0.6693 0.6839
Y, 0.1512 0.4834 0.6006 0.6593 0.6933 0.7151
Y, 0.1946 0.5602 0.6320 0.6688 0.6912 0.7061
Ranking Y;>Y,>Y, Y,>Y, >Y, Y;>Y, >Y, Y;>Y,>Y, Y,>Y;>Y, Y,>Y;>Y,
TABLE 10: Score values obtained by the GIVIHFWG and GIVIHFHG operators and the rankings of alternatives.
10 A=0.1 A=10 A =20 A =30 A =40 A =50
Y, 0.2199 -0.4576 -0.6175 —-0.6812 -0.7152 —-0.7363
Y, 0.2350 —-0.4422 -0.6012 —-0.6656 -0.7001 -0.7216
Y, 0.1199 —-0.4236 -0.5704 —-0.6359 -0.6724 —-0.6953
Ranking Y,>Y, >Y; Y;>Y,>Y, Y;>Y,>Y, Y;>Y,>Y, Y;>Y,>Y, Y;>Y,>Y,
0.6 (98), (99), (100), and (101)). Thus, the developed interval-
04l valued intuitionistic hesitant fuzzy MAGDM method is
a substantial and important generalization of the existing
2 02 hesitant fuzzy MAGDM method [9], interval-valued hesitant
g fuzzy MAGDM method [6], and generalized hesitant fuzzy
g o e MAGDM method [7]. Concretely, our operators and meth-
s 02} k ’ ods can be applied to decision-making problems in which
3 the attribute values take the form of hesitant fuzzy elements,
-0.4 ¢ . . . e .
interval-valued hesitant fuzzy elements, and intuitionistic
-0.6 f——o T hesitant fuzzy elements. In contrast, the existing hesitant
ol e fuzzy aggregation operators and MAGDM method, interval-

0 5 10 15 20 25 30 35 40 45 50

— s(ay)
— s(ay)
—— s(az)

FIGURE 2: Variation of the score functions with respect to the
parameter A.

(2) when A € [6.1065,7.1504], the ranking of the three
alternatives is Y, > Y; > Y; and the best choice is Y,;

(3) when A € (7.1504, 50], the ranking of the three alter-
natives is Y; > Y, > Y, and the best choice is 5.

5.2. Comparison with the Existing Hesitant Fuzzy Aggregation
Operators and MAGDM Methods. In the following, we com-
pare our operators and methods with the existing aggregation
operators and methods to demonstrate the advantages of the
operators and methods proposed here.

Because interval-valued intuitionistic hesitant fuzzy set is
a substantial and important generalization of hesitant fuzzy
set, interval-valued hesitant fuzzy set, and intuitionistic hes-
itant fuzzy set, the developed interval-valued intuitionistic
hesitant fuzzy aggregation operators are substantial and
important generalizations of the existing hesitant fuzzy aggre-
gation operators [9], interval-valued hesitant fuzzy aggrega-
tion operators [6], and intuitionistic hesitant fuzzy aggrega-
tion operators ((67), (68), (69), (70), (80), (81), (82), (83),

valued hesitant fuzzy aggregation operators and MAGDM
method, and intuitionistic hesitant fuzzy aggregation oper-
ators and MAGDM method cannot be applied to decision-
making problems in which the attribute values are given
in the form of interval-valued intuitionistic hesitant fuzzy
elements. In other words, our operators and methods have
much wider applications than the existing hesitant fuzzy
aggregation operators and MAGDM method, interval-valued
hesitant fuzzy aggregation operators and MAGDM method,
and intuitionistic hesitant fuzzy aggregation operators and
MAGDM method. For example, Example 1 cannot be han-
dled by the existing hesitant fuzzy aggregation operators and
MAGDM method, interval-valued hesitant fuzzy aggregation
operators and MAGDM method, and intuitionistic hesitant
fuzzy aggregation operators and MAGDM method, whereas
our operators and methods can deal with Example 4 in [9],
Example 6 in [6], and Example 4 in [7].

5.3. Comparison with the Existing Intuitionistic Fuzzy Aggre-
gation Operators and MAGDM Methods. Considering that
interval-valued intuitionistic hesitant fuzzy set is a sub-
stantial and important generalization of intuitionistic fuzzy
set and interval-valued intuitionistic fuzzy set, the devel-
oped interval-valued intuitionistic hesitant fuzzy aggrega-
tion operators and MAGDM method are substantial and
important generalizations of the existing intuitionistic fuzzy
aggregation operators and MAGDM methods and the exist-
ing interval-valued intuitionistic fuzzy aggregation opera-
tors and MAGDM methods. In other words, our operators
and methods can be applied to decision-making problems
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in which the attribute values are in the form of intu-
itionistic fuzzy numbers and interval-valued intuitionistic
fuzzy numbers, whereas the existing intuitionistic fuzzy
aggregation operators and MAGDM methods and the exist-
ing interval-valued intuitionistic fuzzy aggregation opera-
tors and MAGDM methods have difficulty in dealing with
decision-making problems in which the attribute values are
given in the form of interval-valued intuitionistic hesitant
fuzzy elements. In short, our operators and methods have
much wider applications than the existing intuitionistic fuzzy
aggregation operators and MAGDM methods and the exist-
ing interval-valued intuitionistic fuzzy aggregation operators
and MAGDM methods.

6. Conclusions

In this paper, we first propose the concept of interval-valued
intuitionistic hesitant fuzzy sets, discuss their some basic
properties, and develop some operational rules for interval-
valued intuitionistic hesitant fuzzy elements. Then, we focus
on interval-valued intuitionistic hesitant fuzzy information
aggregation techniques and propose a series of interval-
valued intuitionistic hesitant fuzzy aggregation operators.
Moreover, we apply the developed aggregation operators to
multiple attribute group decision-making with interval-
valued intuitionistic hesitant fuzzy information. Finally, a
numerical example is used to illustrate the validity of the pro-
posed approach in group decision-making problems.

In group decision-making problems, because the experts
usually come from different specialty fields and have different
backgrounds and levels of knowledge, they usually have
diverging opinions. Therefore, how to obtain the maximum
degree of consensus or agreement from these experts for the
given alternatives is an interesting and important research
topic which has been receiving more and more attention in
recent years. However, there are not similar studies completed
for group decision-makings with interval-valued intuitionis-
tic hesitant fuzzy information. Thus, in future work, we will
present a consensus model for group decision-making with
interval-valued intuitionistic hesitant fuzzy information.
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