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We investigate the travelingwave solutions and their bifurcations for the BBM-like𝐵(𝑚, 𝑛) equations 𝑢
𝑡
+𝛼𝑢
𝑥
+𝛽(𝑢
𝑚
)
𝑥
−𝛾(𝑢
𝑛
)
𝑥𝑥𝑡
= 0

by using bifurcation method and numerical simulation approach of dynamical systems. Firstly, for BBM-like B(3, 2) equation, we
obtain some precise expressions of traveling wave solutions, which include periodic blow-up and periodic wave solution, peakon
and periodic peakon wave solution, and solitary wave and blow-up solution. Furthermore, we reveal the relationships among
these solutions theoretically. Secondly, for BBM-like B(4, 2) equation, we construct two periodic wave solutions and two blow-up
solutions. In order to confirm the correctness of these solutions, we also check them by software Mathematica.

1. Introduction

In recent years, the nonlinear phenomena exist in all fields
including either the scientific work or engineering fields,
such as fluid mechanics, plasma physics, optical fibers, biol-
ogy, solid-state physics, chemical kinematics, and chemical
physics. Many nonlinear evolution equations are playing
important roles in the analysis of the phenomena.

In order to find the traveling wave solutions of these non-
linear evolution equations, there have been many methods,
such as Jacobi elliptic function method [1, 2], F-expansion
and extended F-expansion method [3, 4], (𝐺󸀠/𝐺)-expansion
method [5, 6], and the bifurcation method of dynamical
systems [7–11].

BBM equation or regularized long-wave equation (RLW
equation)

𝑢
𝑡
+ 𝑢𝑢
𝑥
− 𝑢
𝑥𝑥𝑡
= 0 (1)

was derived by Peregine [12, 13] and Benjamin et al. [14] as an
alternative model to Korteweg-de Vries equation for small-
amplitude, long wavelength surface water waves.

There are various generalized form related to (1). Shang
[15] introduced a family of BBM-like equations with nonlin-
ear dispersion

𝑢
𝑡
+ (𝑢
𝑚
)
𝑥
− (𝑢
𝑛
)
𝑥𝑥𝑡
= 0, 𝑚, 𝑛 > 1, (2)

which were called BBM-like 𝐵(𝑚, 𝑛) equations as alternative
model to the nonlinear dispersive𝐾(𝑚, 𝑛) equations [16–18].
He presented a method called the extend sine-cosine method
to seek exact solitary-wave solutions with compact support
and exact special solutions with solitary patterns of (2).

When 𝑚 = 𝑛 = 2, (2) reduces to the BBM-like 𝐵(2, 2)
equation

𝑢
𝑡
+ (𝑢
2
)
𝑥
− (𝑢
2
)
𝑥𝑥𝑡
= 0. (3)

Jiang et al. [19] employed the bifurcation method of dynam-
ical systems to investigate (3). Under different parametric
conditions, they gave various sufficient conditions to guaran-
tee the existence of smooth and nonsmooth traveling wave
solutions. Furthermore, through some special phase orbits,
they obtained some solitary wave solutions expressed by
implicit functions, periodic cusp wave solution, compacton
solution, and peakon solution.
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Wazwaz [20] introduced a system of nonlinear variant
RLW equations

𝑢
𝑡
+ 𝑎𝑢
𝑥
− 𝑘(𝑢
𝑛
)
𝑥
+ 𝑏(𝑢
𝑛
)
𝑥𝑥𝑡
= 0 (4)

and derived some compact and noncompact exact solutions
by using the sine-cosine method and tanh method.

Feng et al. [21] studied the following generalized variant
RLW equations:

𝑢
𝑡
+ 𝑎𝑢
𝑥
− 𝑘(𝑢
𝑚
)
𝑥
+ 𝑏(𝑢
𝑛
)
𝑥𝑥𝑡
= 0. (5)

By using four different ansatzs, they obtained some exact
solutions such as compactons, solitary pattern solutions,
solitons, and periodic solutions.

Kuru [22–24] considered the following BBM-like equa-
tions with a fully nonlinear dispersive term:

𝑢
𝑡
+ 𝑢
𝑥
+ 𝑎(𝑢
𝑚
)
𝑥
− (𝑢
𝑛
)
𝑥𝑥𝑡
= 0, 𝑚, 𝑛 > 1. (6)

By means of the factorization technique, he obtained the
traveling wave solutions of (6) in terms of the Weierstrass
functions.

In the present paper, we use the bifurcation method
and numerical simulation approach of dynamical systems to
study the following BBM-like 𝐵(𝑚, 𝑛) equations:

𝑢
𝑡
+ 𝛼𝑢
𝑥
+ 𝛽(𝑢

𝑚
)
𝑥
− 𝛾(𝑢
𝑛
)
𝑥𝑥𝑡
= 0 𝑚, 𝑛 > 1. (7)

For BBM-like 𝐵(3, 2) equation, we obtain some precise
expressions of traveling wave solutions, which include peri-
odic blow-up and periodic wave solution, peakon and peri-
odic peakon wave solution, and solitary wave and blow-
up solution. We also reveal the relationships among these
solutions theoretically. For BBM-like 𝐵(4, 2) equation, we
construct two elliptic periodic wave solutions and two hyper-
bolic blow-up solutions.

This paper is organized as follows. In Section 2, we state
our main results which are included in two propositions. In
Sections 3 and 4, we give the derivations for the two proposi-
tions, respectively. A brief conclusion is given in Section 5.

2. Main Results and Remarks

In this section, we list our main results and give some
remarks. Firstly, let us recall some symbols.The symbols sn 𝑢
and cn 𝑢 denote the Jacobian elliptic functions sine amplitude
𝑢 and cosine amplitude 𝑢. cosh 𝑢, sinh 𝑢, sech 𝑢, and csch
𝑢 are the hyperbolic functions. Secondly, for the sake of
simplification, we only consider the case 𝛼 > 0, 𝛽 > 0, and
𝛾 > 0 (the other cases can be considered similarly). To relate
conveniently, for given constant wave speed 𝑐, let

𝜉 = 𝑥 − 𝑐𝑡,

𝑔
0
=
4

27

√
5|𝑐 − 𝛼|

3

𝛽
.

(8)

Proposition 1. Consider BBM-like 𝐵(3, 2) equation

𝑢
𝑡
+ 𝛼𝑢
𝑥
+ 𝛽(𝑢

3
)
𝑥
− 𝛾(𝑢

2
)
𝑥𝑥𝑡
= 0 (9)

and its traveling wave equation

(𝛼 − 𝑐) 𝜑 + 𝛽𝜑
3
+ 2𝛾𝑐(𝜑

󸀠
)
2

+ 2𝛾𝑐𝜑𝜑
󸀠󸀠
= 𝑔. (10)

For given constants 𝑐 and 𝑔, there are the following
results.

(1)When 0 < 𝑐 < 𝛼 or 𝑐 > 𝛼, 𝑔 < −𝑔
0
, (9) has two elliptic

periodic blow-up solutions

𝑢
1
(𝜉) = 𝜑

1
+ 𝐴
1
−

2𝐴
1

1 − cn (𝜂
1
𝜉, 𝑘
1
)
,

𝑢
2
(𝜉) = 𝜑

1
+ 𝐴
1
−

2𝐴
1

1 + cn (𝜂
1
𝜉, 𝑘
1
)
,

(11)

where

𝐴
1
= √(𝜑

1
− 𝜑
2
) (𝜑
1
− 𝜑
3
), (12)

𝜂
1
= √

𝛽𝐴
1

5𝛾𝑐
, (13)

𝑘
1
= √

2𝐴
1
+ 2𝜑
1
− 𝜑
2
− 𝜑
3

4𝐴
1

, (14)

𝜑
1
=
2
3
√100𝛽 (𝛼 − 𝑐) −

3
√10Ω

2/3

6𝛽Ω1/3
, (15)

𝜑
2
=

3
√5 (2𝛽

3
√10 (1 − √3𝑖) (𝑐 − 𝛼) + (1 + √3𝑖)Ω

2/3
)

6
3
√4𝛽Ω1/3

,

(16)

𝜑
3
=

3
√5 (2𝛽

3
√10 (1 + √3𝑖) (𝑐 − 𝛼) + (1 − √3𝑖)Ω

2/3
)

6
3
√4𝛽Ω1/3

, (17)

Ω = √729𝑔2𝛽4 − 80(𝑐 − 𝛼)
3
𝛽3 − 27𝑔𝛽

2
. (18)

For the graphs of 𝑢
1
(𝜉) and 𝑢

2
(𝜉), see Figures 1(a) and 1(b).

(2)When 𝑐 > 𝛼 and 𝑔 = −𝑔
0
, (9) has two trigonometric

periodic blow-up solutions

𝑢
3
(𝜉) = √

5 (𝑐 − 𝛼)

9𝛽
(1 − 3csc2(√

𝛽

𝛾𝑐

4
√
𝑐 − 𝛼

80𝛽
𝜉)) , (19)

𝑢
4
(𝜉) = √

5 (𝑐 − 𝛼)

9𝛽
(1 − 3sec2(√

𝛽

𝛾𝑐

4
√
𝑐 − 𝛼

80𝛽
𝜉)) . (20)

The graphs of 𝑢
3
(𝜉) and 𝑢

4
(𝜉) are similar to Figure 1.
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Figure 1: The graphs of 𝑢
1
(𝜉) and 𝑢

2
(𝜉) when 𝛼 = 𝛽 = 𝛾 = 1, 𝑐 = 2, and 𝑔 = −2√3/9.

(3)When 𝑐 > 𝛼 and −𝑔
0
< 𝑔 < 𝑔

0
, (9) has two elliptic

periodic blow-up solutions 𝑢
5
(𝜉), 𝑢
6
(𝜉) and two symmetric

elliptic periodic wave solutions 𝑢
7
(𝜉), 𝑢
8
(𝜉)

𝑢
5
(𝜉) = 𝜑

3
− (𝜑
3
− 𝜑
1
) sn−2 (𝜂

2
𝜉, 𝑘
2
) ,

𝑢
6
(𝜉) =

𝜑
1
− 𝜑
2
sn2 (𝜂

2
𝜉, 𝑘
2
)

1 − sn2 (𝜂
2
𝜉, 𝑘
2
)
,

𝑢
7
(𝜉) = 𝜑

3
− (𝜑
3
− 𝜑
2
) sn2 (𝜂

2
𝜉, 𝑘
2
) ,

𝑢
8
(𝜉) =

𝜑
2
− 𝜑
1
𝑘
2

2
sn2 (𝜂

2
𝜉, 𝑘
2
)

1 − 𝑘
2

2
sn2 (𝜂

2
𝜉, 𝑘
2
)
,

(21)

where

𝜂
2
=
1

2

√
𝛽 (𝜑
3
− 𝜑
1
)

5𝛾𝑐
,

𝑘
2
= √

𝜑
3
− 𝜑
2

𝜑
3
− 𝜑
1

.

(22)

For the graphs of 𝑢
𝑖
(𝜉) (𝑖 = 5–8), see Figures 2–4.

(4)When 𝑐 > 𝛼 and 𝑔 = 𝑔
0
, (9) has a hyperbolic smooth

solitary wave solution

𝑢
9
(𝜉) = −√

5 (𝑐 − 𝛼)

9𝛽
(1 − 3sech2(√

𝛽

𝛾𝑐

4
√
𝑐 − 𝛼

80𝛽
𝜉)) ,

(23)

a hyperbolic blow-up solution

𝑢
10
(𝜉) = −√

5 (𝑐 − 𝛼)

9𝛽
(1 + 3csch2(√

𝛽

𝛾𝑐

4
√
𝑐 − 𝛼

80𝛽
𝜉)) ,

(24)

a hyperbolic peakon wave solution

𝑢
11
(𝜉) = −√

5 (𝑐 − 𝛼)

9𝛽

× (1 − 3sech2(𝛿
1
− √

𝛽

𝛾𝑐

4
√
𝑐 − 𝛼

80𝛽

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨)) ,

(25)

and a hyperbolic periodic peakon wave solution

𝑢
12
(𝜉) = −√

5 (𝑐 − 𝛼)

9𝛽

× (1 − 3sech2(𝛿
1
+ √

𝛽

𝛾𝑐

4
√
𝑐 − 𝛼

80𝛽

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨)) ,

𝜉 ∈ [(2𝑛 − 1) 𝑇, (2𝑛 + 1) 𝑇) ,

(26)

where

𝛿
1
=
1

2
ln (5 − 2√6) ,

𝑇 = √
5𝛾𝑐

𝛽

4
√

𝛽

5 (𝑐 − 𝛼)

󵄨󵄨󵄨󵄨󵄨
ln (5 − 2√6)󵄨󵄨󵄨󵄨󵄨 ,

𝑛 = 0, ±1, ±2, . . . .

(27)

For the graphs of 𝑢
9
(𝜉) and 𝑢

10
(𝜉), see Figures 4(d) and 3(d).

For the graphs of 𝑢
11
(𝜉) and 𝑢

12
(𝜉), see Figures 7(a) and 7(b).

(5)When 𝑐 > 𝛼 and 𝑔 > 𝑔
0
, (9) has two elliptic periodic

blow-up solutions

𝑢
13
(𝜉) = 𝜑

3
+ 𝐴
2
−

2𝐴
2

1 − cn (𝜂
3
𝜉, 𝑘
3
)
,

𝑢
14
(𝜉) = 𝜑

3
+ 𝐴
2
−

2𝐴
2

1 + cn (𝜂
3
𝜉, 𝑘
3
)
,

(28)

where

𝐴
2
= √(𝜑

3
− 𝜑
2
) (𝜑
3
− 𝜑
1
),

𝜂
3
= √

𝛽𝐴
2

5𝛾𝑐
,

𝑘
3
= √

2𝐴
2
+ 2𝜑
3
− 𝜑
2
− 𝜑
1

4𝐴
2

.

(29)

For the graphs of 𝑢
13
(𝜉) and 𝑢

14
(𝜉), see Figures 5(a) and 6(a).
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Figure 2:The varying process for graphs of 𝑢
7
(𝜉) and 𝑢

8
(𝜉)when 𝑐 > 𝛼 and 𝑔 → −𝑔

0
+0where 𝛼 = 𝛽 = 𝛾 = 1, 𝑐 = 2, and (a) 𝑔 = −𝑔

0
+10
−1.

(b) 𝑔 = −𝑔
0
+ 10
−2. (c) 𝑔 = −𝑔

0
+ 10
−4. (d) 𝑔 = −𝑔

0
+ 10
−6.

(6) When 𝑐 < 0, (9) has two elliptic periodic blow-up
solutions

𝑢
15
(𝜉) = 𝜑

1
− 𝐴
1
+

2𝐴
1

1 − cn (𝜂
4
𝜉, 𝑘
4
)
,

𝑢
16
(𝜉) = 𝜑

1
− 𝐴
1
+

2𝐴
1

1 + cn (𝜂
4
𝜉, 𝑘
4
)
,

(30)

𝜂
4
= √

𝛽𝐴
1

−5𝛾𝑐
,

𝑘
4
= √

2𝐴
1
− 2𝜑
1
+ 𝜑
2
+ 𝜑
3

4𝐴
1

.

(31)

For the graphs of 𝑢
15
(𝜉) and 𝑢

16
(𝜉), see Figures 7(c) and 7(d).

Remark 2. When 𝑐 > 𝛼 and𝑔 → −𝑔
0
−0, the elliptic periodic

blow-up solutions 𝑢
1
(𝜉) and 𝑢

2
(𝜉) become the trigonometric

periodic blow-up solutions 𝑢
3
(𝜉) and 𝑢

4
(𝜉), respectively.

Remark 3. When 𝑐 > 𝛼 and𝑔 → −𝑔
0
+0, the elliptic periodic

blow-up solutions 𝑢
5
(𝜉) and 𝑢

6
(𝜉) become the trigonometric

periodic blow-up solutions 𝑢
3
(𝜉) and 𝑢

4
(𝜉), respectively.

The symmetric elliptic periodic wave solutions 𝑢
7
(𝜉) and

𝑢
8
(𝜉) become a trivial solution 𝑢(𝜉) = √5(𝑐 − 𝛼)/9𝛽, and for

the varying process, see Figure 2.

Remark 4. When 𝑐 > 𝛼 and 𝑔 → 𝑔
0
− 0, the elliptic periodic

blow-up solution 𝑢
5
(𝜉) becomes the hyperbolic blow-up

solution 𝑢
10
(𝜉), for the varying process, see Figure 3. The

elliptic periodic wave solutions 𝑢
7
(𝜉) become the hyperbolic

smooth solitary wave solution 𝑢
9
(𝜉), and for the varying

process, see Figure 4. The elliptic solutions 𝑢
6
(𝜉) and 𝑢

8
(𝜉)

become a trivial solution 𝑢(𝜉) = −√5(𝑐 − 𝛼)/9𝛽.

Remark 5. When 𝑐 > 𝛼 and 𝑔 → 𝑔
0
+ 0, the elliptic periodic

blow-up solution 𝑢
13
(𝜉) becomes the hyperbolic blow-up

solution 𝑢
10
(𝜉), and for the varying process, see Figure 5.

The elliptic periodic blow-up solution 𝑢
14
(𝜉) becomes the

hyperbolic smooth solitary wave solution 𝑢
9
(𝜉), and for the

varying process, see Figure 6.

Proposition 6. Consider BBM-like 𝐵(4, 2) equation

𝑢
𝑡
+ 𝛼𝑢
𝑥
+ 𝛽(𝑢

4
)
𝑥
− 𝛾(𝑢

2
)
𝑥𝑥𝑡
= 0 (32)
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Figure 3: The varying process for graphs of 𝑢
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Figure 6: The varying process for graphs of 𝑢
14
(𝜉) when 𝑐 > 𝛼 and 𝑔 → 𝑔

0
+ 0 where 𝛼 = 𝛽 = 𝛾 = 1, 𝑐 = 2, and (a) 𝑔 = 𝑔

0
+ 1/5. (b)

𝑔 = 𝑔
0
+ 10
−2. (c) 𝑔 = 𝑔

0
+ 10
−6. (d) 𝑔 = 𝑔

0
+ 10
−8.
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16
(𝜉)

Figure 7: The graphs of 𝑢
11
(𝜉), 𝑢
12
(𝜉) when 𝑐 = 2, 𝑔 = 4√5/27 and 𝑢

15
(𝜉), 𝑢
16
(𝜉) when 𝑐 = −1, 𝑔 = −10.

and its traveling wave equation

(𝛼 − 𝑐) 𝜓 + 𝛽𝜓
4
+ 2𝛾𝑐(𝜓

󸀠
)
2

+ 2𝛾𝑐𝜓𝜓
󸀠󸀠
= 𝑔. (33)

For given constants 𝑐 and 𝑔, there are the following
results.

(1∘) When 𝑐 > 𝛼 and 𝑔 = 0, (32) has two elliptic periodic
wave solutions

𝑢
17
(𝜉) =

1 − cn (𝜂
5
𝜉, 𝑘
5
)

3
√𝛽/2 (𝑐 − 𝛼) (1 + √3 + (√3 − 1) cn (𝜂

5
𝜉, 𝑘
5
))

,

𝑢
18
(𝜉) =

1 + cn (𝜂
5
𝜉, 𝑘
5
)

3
√𝛽/2 (𝑐 − 𝛼) (1 + √3 − (√3 − 1) cn (𝜂

5
𝜉, 𝑘
5
))

,

(34)

where

𝜂
5
=
4
√3√

𝑐 − 𝛼

3𝛾𝑐

6
√

𝛽

2 (𝑐 − 𝛼)
,

𝑘
5
=
√3 − 1

2√2

.

(35)

(2∘) When 𝑐 < 0 and 𝑔 = − 3√(𝑐 − 𝛼)4/16𝛽, (32) has two
hyperbolic blow-up solutions

𝑢
19
(𝜉) =

3
√𝑐 − 𝛼 (−4 − 2 cosh (𝜂

6
𝜉) + √6 sinh (𝜂

6

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨))

3
√2𝛽 (2 − 2 cosh (𝜂

6
𝜉) + √6 sinh (𝜂

6

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨))

,

𝑢
20
(𝜉) =

3
√𝑐 − 𝛼 (4 + 2 cosh (𝜂

6
𝜉) + √6 sinh (𝜂

6

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨))

3
√2𝛽 (−2 + 2 cosh (𝜂

6
𝜉) + √6 sinh (𝜂

6

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨))

,

(36)

where

𝜂
6
= −√

𝛽

−𝛾𝑐

3
√
𝑐 − 𝛼

2𝛽
. (37)

For the graphs of 𝑢
𝑖
(𝜉) (𝑖 = 17–20), see Figure 8.

Remark 7. In order to confirm the correctness of these
solutions, we have verified them by using the software
Mathematica; for instance, about 𝑢

20
(𝜉) the commands are as

follows:

𝜉 = 𝑥 − 𝑐𝑡

𝜂 = −√
𝛽

−𝛾𝑐

3
√𝑐 − 𝛼

3
√2𝛽
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Figure 8: The graphs of 𝑢
17
(𝜉), 𝑢
18
(𝜉) when 𝑐 = 20, 𝑔 = 0 and 𝑢

19
(𝜉), 𝑢
20
(𝜉) when 𝑐 = −16.

𝑢 =

3
√𝑐 − 𝛼 (4 + 2 cosh [𝜂𝜉] + √6 sinh [𝜂𝜉])
3
√2𝛽 (−2 + 2 cosh [𝜂𝜉] + √6 sinh [𝜂𝜉])

.

Simplify [𝐷 [𝑢, 𝑡] + 𝛼𝐷 [𝑢, 𝑥]

+ 𝛽𝐷 [𝑢
4
, 𝑥] − 𝛾𝐷 [𝑢

2
, {𝑥, 2} , 𝑡]]

0.

(38)

3. The Derivations for Proposition 1

In this section, firstly, we derive the precise expressions of
the traveling wave solutions for BBM-like 𝐵(3, 2) equation.
Secondly we show the relationships among these solutions
theoretically. Substituting 𝑢(𝑥, 𝑡) = 𝜑(𝜉) with 𝜉 = 𝑥 − 𝑐𝑡 into
(9), it follows that

(𝛼 − 𝑐) 𝜑
󸀠
+ 𝛽(𝜑

3
)
󸀠

+ 𝛾𝑐(𝜑
2
)
󸀠󸀠󸀠

= 0. (39)

Integrating (39) once, we have

(𝛼 − 𝑐) 𝜑 + 𝛽𝜑
3
+ 2𝛾𝑐(𝜑

󸀠
)
2

+ 2𝛾𝑐𝜑𝜑
󸀠󸀠
= 𝑔, (40)

where 𝑔 is an integral constant.

Letting 𝑦 = 𝜑󸀠, we obtain the following planar system

𝑑𝜑

𝑑𝜉
= 𝑦,

𝑑𝑦

𝑑𝜉
=
𝑔 + (𝑐 − 𝛼) 𝜑 − 𝛽𝜑

3
− 2𝛾𝑐𝑦

2

2𝛾𝑐𝜑
.

(41)

Under the transformation

𝑑𝜉 = 2𝛾𝑐𝜑𝑑𝜏, (42)

system (41) becomes

𝑑𝜑

𝑑𝜏
= 2𝛾𝑐𝜑𝑦,

𝑑𝑦

𝑑𝜏
= 𝑔 + (𝑐 − 𝛼) 𝜑 − 𝛽𝜑

3
− 2𝛾𝑐𝑦

2
.

(43)

Clearly, system (41) and system (43) have the same first
integral

𝛾𝑐𝜑
2
𝑦
2
−
𝑔

2
𝜑
2
−
𝑐 − 𝛼

3
𝜑
3
+
𝛽

5
𝜑
5
= ℎ, (44)

where ℎ is an integral constant. Consequently, these two
systems have the same topological phase portraits except for
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y
Γ1

𝜑1 o 𝜑𝜑∗1

(a) 0 < 𝑐 < 𝛼, 𝑔 < 0

y
Γ1

o 𝜑𝜑∗1 = 𝜑1 = 0

(b) 0 < 𝑐 < 𝛼, 𝑔 = 0

y

Γ1

𝜑1o 𝜑𝜑∗1

(c) 0 < 𝑐 < 𝛼, 𝑔 > 0

y
Γ1

𝜑1 o 𝜑𝜑∗1 𝜑∗2 𝜑∗3

(d) 𝑐 > 𝛼, 𝑔 ≤ −𝑔
0

y
Γ1

Γ2

𝜑1 𝜑2 𝜑3o 𝜑𝜑∗1 𝜑∗2 𝜑∗3

(e) 𝑐 > 𝛼, −𝑔
0
< 𝑔 < 0

y
Γ1

Γ2

𝜑1 𝜑3o 𝜑𝜑∗1 𝜑∗3𝜑2 = 𝜑∗2 = 0

(f) 𝑐 > 𝛼, 𝑔 = 0

y
Γ1 Γ2

𝜑1 𝜑3o 𝜑𝜑∗1 𝜑∗3𝜑2 𝜑∗2

(g) 𝑐 > 𝛼, 0 < 𝑔 < 𝑔
0

y
Γ3 Γ4

𝜑3 𝜑𝜑∗2 𝜑∗3𝜑∗1 = 𝜑1 = 𝜑2 o

(h) 𝑐 > 𝛼, 𝑔 = 𝑔
0

y
Γ5

𝜑3o 𝜑𝜑∗1 𝜑∗3𝜑∗2

(i) 𝑐 > 𝛼, 𝑔 > 𝑔
0

Figure 9: The phase portraits of system (43) when 𝑐 > 0 and 𝑐 ̸= 𝛼.

y

Γ6

𝜑1 o 𝜑𝜑∗1

(a) 𝑔 < 0

y

Γ6

o 𝜑𝜑∗1 = 𝜑1 = 0

(b) 𝑔 = 0

y
Γ6

𝜑1o 𝜑𝜑∗1

(c) 𝑔 > 0

Figure 10: The phase portraits of system (43) when 𝑐 < 0.

the straight line 𝜑 = 0. Thus, we can understand the phase
portraits of system (41) from that of system (43).

When the integral constant ℎ = 0, (44) becomes

𝛾𝑐𝜑
2
𝑦
2
− 𝜑
2
(
𝑔

2
+
𝑐 − 𝛼

3
𝜑 −

𝛽

5
𝜑
3
) = 0. (45)

Solving equation 𝑔/2+ ((𝑐 −𝛼)/3)𝜑− (𝛽/5)𝜑3 = 0, we get
three roots 𝜑

1
, 𝜑
2
, and 𝜑

3
as (15), (16), and (17).

On the other hand, solving equation

𝑦 = 0,

𝑔 + (𝑐 − 𝛼) 𝜑 − 𝛽𝜑
3
− 2𝛾𝑐𝑦

2
= 0,

(46)

we get three three singular points (𝜑∗
𝑖
, 0) (𝑖 = 1, 2, 3), where

𝜑
∗

1
=
2𝛽
3
√18 (𝛼 − 𝑐) −

3
√12Δ

2/3

6𝛽Δ1/3
,

𝜑
∗

2
=

2𝛽
3
√2
6
√3 (√3 − 3𝑖) (𝑐 − 𝛼) +

3
√4
6
√9 (1 + √3𝑖) Δ

2/3

12𝛽Δ1/3
,

𝜑
∗

3
=

2𝛽
3
√2
6
√3 (√3 + 3𝑖) (𝑐 − 𝛼) +

3
√4
6
√9 (1 − √3𝑖) Δ

2/3

12𝛽Δ1/3
,

Δ = √81𝑔2𝛽4 − 12(𝑐 − 𝛼)
3
𝛽3 − 9𝑔𝛽

2
.

(47)
According to the qualitative theory, we obtain the phase

portraits of system (43) as Figures 9 and 10.
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From Figures 9 and 10, one can see that there are six kinds
of orbits Γ

𝑖
(𝑖 = 1–6), where Γ

1
(Γ
6
) passes (𝜑

1
, 0), Γ
2
passes

(𝜑
2
, 0) and (𝜑

3
, 0), Γ
3
and Γ
4
pass (𝜑

1
, 0) and (𝜑

3
, 0), and Γ

5

passes (𝜑
3
, 0). Now, we will derive the explicit expressions of

solutions for the BBM-like 𝐵(3, 2) equation, respectively.
(1) When 0 < 𝑐 < 𝛼 or 𝑐 > 𝛼, 𝑔 < −𝑔

0
, Γ
1
has the

expression

Γ
1
: 𝑦 = ±√

𝛽

5𝛾𝑐
√(𝜑
1
− 𝜑) (𝜑 − 𝜑

2
) (𝜑 − 𝜑

3
), 𝜑 ≤ 𝜑

1
,

(48)

where 𝜑
2
and 𝜑

3
are complex numbers.

Substituting (48) into 𝑑𝜑/𝑑𝜉 = 𝑦 and integrating it, we
have

∫

𝜑

−∞

𝑑𝑠

√(𝜑
1
− 𝑠) (𝑠 − 𝜑

2
) (𝑠 − 𝜑

3
)

= √
𝛽

5𝛾𝑐

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨 ,

∫

𝜑1

𝜑

𝑑𝑠

√(𝜑
1
− 𝑠) (𝑠 − 𝜑

2
) (𝑠 − 𝜑

3
)

= √
𝛽

5𝛾𝑐

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨 .

(49)

Completing the integrals in the above two equations and
noting that 𝑢 = 𝜑(𝜉), we obtain 𝑢

1
(𝜉) and 𝑢

2
(𝜉) as (11).

(2)When 𝑐 > 𝛼 and 𝑔 = −𝑔
0
, Γ
1
has the expression

Γ
1
: 𝑦 = ±√

𝛽

5𝛾𝑐
(𝜑
2
− 𝜑)√𝜑

1
− 𝜑, 𝜑 ≤ 𝜑

1
, (50)

where 𝜑
1
= −2√5(𝑐 − 𝛼)/9𝛽, 𝜑

2
= √5(𝑐 − 𝛼)/9𝛽.

Substituting (50) into 𝑑𝜑/𝑑𝜉 = 𝑦 and integrating it, we
have

∫

𝜑

−∞

𝑑𝑠

(𝜑
2
− 𝑠)√𝜑1 − 𝑠

= √
𝛽

5𝛾𝑐

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨 ,

∫

𝜑1

𝜑

𝑑𝑠

(𝜑
2
− 𝑠)√𝜑1 − 𝑠

= √
𝛽

5𝛾𝑐

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨 .

(51)

Completing the integrals in the two above equations and
noting that 𝑢 = 𝜑(𝜉), we obtain 𝑢

3
(𝜉) and 𝑢

4
(𝜉) as (19) and

(20).
(3) When 𝑐 > 𝛼 and −𝑔

0
< 𝑔 < 𝑔

0
, Γ
1
and Γ
2
have the

expressions

Γ
1
: 𝑦 = ±√

𝛽

5𝛾𝑐
√(𝜑
1
− 𝜑) (𝜑

2
− 𝜑) (𝜑

3
− 𝜑), 𝜑 ≤ 𝜑

1
,

Γ
2
: 𝑦 = ±√

𝛽

5𝛾𝑐
√(𝜑 − 𝜑

1
) (𝜑 − 𝜑

2
) (𝜑
3
− 𝜑), 𝜑

2
≤ 𝜑 ≤ 𝜑

3
.

(52)

Substituting (52) into 𝑑𝜑/𝑑𝜉 = 𝑦 and integrating them,
we have

∫

𝜑

−∞

𝑑𝑠

√(𝜑
1
− 𝑠) (𝜑

2
− 𝑠) (𝜑

3
− 𝑠)

= √
𝛽

5𝛾𝑐

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨 ,

∫

𝜑1

𝜑

𝑑𝑠

√(𝜑
1
− 𝑠) (𝜑

2
− 𝑠) (𝜑

3
− 𝑠)

= √
𝛽

5𝛾𝑐

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨 ,

∫

𝜑

𝜑2

𝑑𝑠

√(𝑠 − 𝜑
1
) (𝑠 − 𝜑

2
) (𝜑
3
− 𝑠)

= √
𝛽

5𝛾𝑐

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨 ,

∫

𝜑3

𝜑

𝑑𝑠

√(𝑠 − 𝜑
1
) (𝑠 − 𝜑

2
) (𝜑
3
− 𝑠)

= √
𝛽

5𝛾𝑐

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨 .

(53)

Completing the integrals in the above four equations and
noting that 𝑢 = 𝜑(𝜉), we obtain 𝑢

𝑖
(𝜉) (𝑖 = 5–8) as (21).

(4)When 𝑐 > 𝛼 and𝑔 = 𝑔
0
, Γ
3
and Γ
4
have the expressions

Γ
3
: 𝑦 = ±√

𝛽

5𝛾𝑐
(𝜑
1
− 𝜑)√𝜑

3
− 𝜑, 𝜑 < 𝜑

1
,

Γ
4
: 𝑦 = ±√

𝛽

5𝛾𝑐
(𝜑 − 𝜑

1
)√𝜑
3
− 𝜑, 𝜑

1
< 𝜑 ≤ 𝜑

3
,

(54)

where 𝜑
1
= −√5(𝑐 − 𝛼)/9𝛽, 𝜑

3
= 2√5(𝑐 − 𝛼)/9𝛽.

Substituting (54) into 𝑑𝜑/𝑑𝜉 = 𝑦 and integrating them,
we have

∫

𝜑3

𝜑

𝑑𝑠

(𝑠 − 𝜑
1
)√𝜑3 − 𝑠

= √
𝛽

5𝛾𝑐

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨 ,

∫

𝜑1

−∞

𝑑𝑠

(𝜑
1
− 𝑠)√𝜑3 − 𝑠

= √
𝛽

5𝛾𝑐

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨 .

(55)

Completing the integrals in the two equations above and
noting that 𝑢 = 𝜑(𝜉), we obtain 𝑢

9
(𝜉) and 𝑢

10
(𝜉) as (23) and

(24).
(5)When 𝑐 > 𝛼 and 𝑔

0
< 𝑔, Γ

5
has the expression

Γ
5
: 𝑦 = ±√

𝛽

5𝛾𝑐
√(𝜑
3
− 𝜑) (𝜑 − 𝜑

2
) (𝜑 − 𝜑

1
), 𝜑 ≤ 𝜑

3
,

(56)

where 𝜑
1
and 𝜑

2
are complex numbers.

Substituting (56) into 𝑑𝜑/𝑑𝜉 = 𝑦 and integrating it, we
have

∫

𝜑

−∞

𝑑𝑠

√(𝜑
3
− 𝑠) (𝑠 − 𝜑

2
) (𝑠 − 𝜑

1
)

= √
𝛽

5𝛾𝑐

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨 ,

∫

𝜑3

𝜑

𝑑𝑠

√(𝜑
3
− 𝑠) (𝑠 − 𝜑

2
) (𝑠 − 𝜑

1
)

= √
𝛽

5𝛾𝑐

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨 .

(57)
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Figure 11: The simulation of integral curves of (40) when 𝛼 = 𝛽 = 𝛾 = 1, 𝑐 = 2, 𝑔 = 4√5/27, (a) initial value 𝜑(0) = −0.2, (b) initial value
𝜑(0) = −0.01, and (c) initial value 𝜑(0) = −0.00001.

Completing the integrals in the two above equations and
noting that 𝑢 = 𝜑(𝜉), we obtain 𝑢

13
(𝜉) and 𝑢

14
(𝜉) as (28).

(6)When 𝑐 < 0, Γ
6
has the expression

Γ
6
: 𝑦 = ±√

𝛽

−5𝛾𝑐
√(𝜑 − 𝜑

1
) (𝜑 − 𝜑

2
) (𝜑 − 𝜑

3
), 𝜑

1
≤ 𝜑,

(58)

where 𝜑
2
and 𝜑

3
are complex numbers.

Substituting (58) into 𝑑𝜑/𝑑𝜉 = 𝑦 and integrating it, we
have

∫

+∞

𝜑

𝑑𝑠

√(𝑠 − 𝜑
1
) (𝑠 − 𝜑

2
) (𝑠 − 𝜑

3
)

= √
𝛽

−5𝛾𝑐

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨 ,

∫

𝜑

𝜑1

𝑑𝑠

√(𝑠 − 𝜑
1
) (𝑠 − 𝜑

2
) (𝑠 − 𝜑

3
)

= √
𝛽

−5𝛾𝑐

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨 .

(59)

Completing the integrals in the two above equations and
noting that 𝑢 = 𝜑(𝜉), we obtain 𝑢

15
(𝜉) and 𝑢

16
(𝜉) as (30).

(7) When 𝑐 > 𝛼 and 𝑔 = 𝑔
0
, there are two special

kinds of orbits Γ
7
surrounding the center point (𝜑∗

2
, 0) (see

Figure 11(d)) and Γ
8
surrounding the center point (𝜑∗

3
, 0) (see

Figure 12(a)), which are the boundaries of two families of

closed orbits. Note that the periodic waves of (9) correspond
to the periodic integral curves of (40), and the periodic
integral curves correspond to the closed orbits of system (41).
For given constants 𝑐, 𝑔 and the corresponding initial value
𝜑(0), we simulate the integral curves of (40) as shown in
Figures 11 and 12.

From Figure 11, we see that when the initial value 𝜑(0)
tends to 0 − 0, the periodic integral curve tends to peakon.
This implies that the orbit Γ

7
corresponds to peakon. On 𝜑−𝑦

plane, Γ
7
has the expression

Γ
7
: 𝑦 = ±√

𝛽

5𝛾𝑐
(𝜑 − 𝜑

1
)√𝜑
3
− 𝜑, 𝜑

1
< 𝜑 < 0, (60)

where 𝜑
1
= −√5(𝑐 − 𝛼)/9𝛽, 𝜑

3
= 2√5(𝑐 − 𝛼)/9𝛽.

Substituting (60) into 𝑑𝜑/𝑑𝜉 = 𝑦 and integrating it, we
have

∫

0

𝜑

𝑑𝑠

(𝑠 − 𝜑
1
)√𝜑2 − 𝑠

= √
𝛽

5𝛾𝑐

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨 .

(61)

Completing the integral in the above equation andnoting that
𝑢 = 𝜑(𝜉), we obtain 𝑢

11
(𝜉) as (25).

Similarly, from Figure 12, we see that when the initial
value 𝜑(0) tends to 0 + 0, the periodic integral curve tends to
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Figure 12: The simulation of integral curves of (40) when 𝛼 = 𝛽 = 𝛾 = 1, 𝑐 = 2, 𝑔 = 4√5/27, (b) initial value 𝜑(0) = 0.5, (c) initial value
𝜑(0) = 0.1, and (d) initial value 𝜑(0) = 0.0001.

a periodic peakon. This implies that the orbit Γ
8
corresponds

to a periodic peakon. On 𝜑 − 𝑦 plane, Γ
8
has the expression

Γ
8
: 𝑦 = ±√

𝛽

5𝛾𝑐
(𝜑 − 𝜑

1
)√𝜑
3
− 𝜑, 0 < 𝜑 ≤ 𝜑

3
. (62)

Substituting (62) into 𝑑𝜑/𝑑𝜉 = 𝑦 and integrating it, we have

∫

𝜑

0

𝑑𝑠

(𝑠 − 𝜑
1
)√𝜑3 − 𝑠

= √
𝛽

5𝛾𝑐

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨 .

(63)

Completing the integral in the above equation andnoting that
𝑢 = 𝜑(𝜉), we obtain 𝑢

12
(𝜉) as (26), where

𝑇 = √
5𝛾𝑐

𝛽

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝜑3

0

𝑑𝑠

(𝑠 − 𝜑
1
)√𝜑3 − 𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= √
5𝛾𝑐

𝛽

4
√

𝛽

5 (𝑐 − 𝛼)

󵄨󵄨󵄨󵄨󵄨
ln (5 − 2√6)󵄨󵄨󵄨󵄨󵄨 .

(64)

Hereto, we have finished the derivations for the solutions
𝑢
𝑖
(𝜉) (𝑖 = 1–16). In what follows, we shall derive the

relationships among these solutions.

(1∘) When 𝑐 > 𝛼 and 𝑔 → −𝑔
0
, it follows that

𝜑
1
󳨀→ −2√

5 (𝑐 − 𝛼)

9𝛽
,

𝜑
2
󳨀→ √

5 (𝑐 − 𝛼)

9𝛽
,

𝜑
3
󳨀→ √

5 (𝑐 − 𝛼)

9𝛽
,

𝐴
1
󳨀→ √

5 (𝑐 − 𝛼)

𝛽
,

𝜂
1
󳨀→ √

𝛽

𝛾𝑐

4
√
𝑐 − 𝛼

5𝛽
,

𝑘
1
󳨀→ 0,

cn (𝜂
1
𝜉, 𝑘
1
) 󳨀→ cn(√

𝛽

𝛾𝑐

4
√
𝑐 − 𝛼

5𝛽
𝜉, 0)

= cos(√
𝛽

𝛾𝑐

4
√
𝑐 − 𝛼

5𝛽
𝜉) ,
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𝜂
2
󳨀→ √

𝛽

𝛾𝑐

4
√
𝑐 − 𝛼

80𝛽
,

𝑘
2
󳨀→ 0,

sn (𝜂
2
𝜉, 𝑘
2
) 󳨀→ sn(√

𝛽

𝛾𝑐

4
√
𝑐 − 𝛼

80𝛽
𝜉, 0)

= sin(√
𝛽

𝛾𝑐

4
√
𝑐 − 𝛼

80𝛽
𝜉) .

(65)
Thus, we have

𝑢
1
(𝜉) 󳨀→ −2√

5 (𝑐 − 𝛼)

9𝛽
+ √

5 (𝑐 − 𝛼)

𝛽

−
2√5 (𝑐 − 𝛼) /𝛽

1 − cn (√𝛽/𝛾𝑐 4√(𝑐 − 𝛼) /5𝛽 𝜉, 0)

= √
5 (𝑐 − 𝛼)

9𝛽
−

2√5 (𝑐 − 𝛼) /𝛽

1 − cos (√𝛽/𝛾𝑐 4√(𝑐 − 𝛼) /5𝛽 𝜉)

= √
5 (𝑐 − 𝛼)

9𝛽
− √

5 (𝑐 − 𝛼)

𝛽
csc2(√

𝛽

𝛾𝑐

4
√
𝑐 − 𝛼

80𝛽
𝜉)

= 𝑢
3
(𝜉) (see (19)) ,

𝑢
2
(𝜉) 󳨀→ −2√

5 (𝑐 − 𝛼)

9𝛽
+ √

5 (𝑐 − 𝛼)

𝛽

−
2√5 (𝑐 − 𝛼) /𝛽

1 + cn (√𝛽/𝛾𝑐 4√(𝑐 − 𝛼) /5𝛽 𝜉, 0)

= √
5 (𝑐 − 𝛼)

9𝛽

−
2√5 (𝑐 − 𝛼) /𝛽

1 + cos (√𝛽/𝛾𝑐 4√(𝑐 − 𝛼) /5𝛽 𝜉)

= √
5 (𝑐 − 𝛼)

9𝛽
− √

5 (𝑐 − 𝛼)

𝛽
sec2(√

𝛽

𝛾𝑐

4
√
𝑐 − 𝛼

80𝛽
𝜉)

= 𝑢
4
(𝜉) (see (20)) ,

𝑢
5
(𝜉) 󳨀→ √

5 (𝑐 − 𝛼)

9𝛽
− √

5 (𝑐 − 𝛼)

𝛽
sn−2(√

𝛽

𝛾𝑐

4
√
𝑐 − 𝛼

80𝛽
𝜉, 0)

= √
5 (𝑐 − 𝛼)

9𝛽
− √

5 (𝑐 − 𝛼)

𝛽
sin−2(√

𝛽

𝛾𝑐

4
√
𝑐 − 𝛼

80𝛽
𝜉)

= √
5 (𝑐 − 𝛼)

9𝛽
− √

5 (𝑐 − 𝛼)

𝛽
csc2(√

𝛽

𝛾𝑐

4
√
𝑐 − 𝛼

80𝛽
𝜉)

= 𝑢
3
(𝜉) (see (19)) ,

𝑢
6
(𝜉) 󳨀→ ( − 2√

5 (𝑐 − 𝛼)

9𝛽
− √

5 (𝑐 − 𝛼)

9𝛽

× sn2(√
𝛽

𝛾𝑐

4
√
𝑐 − 𝛼

80𝛽
𝜉, 0))

× (1 − sn2(√
𝛽

𝛾𝑐

4
√
𝑐 − 𝛼

80𝛽
𝜉, 0))

−1

= ( − 2√
5 (𝑐 − 𝛼)

9𝛽
− √

5 (𝑐 − 𝛼)

9𝛽

× sin2(√
𝛽

𝛾𝑐

4
√
𝑐 − 𝛼

80𝛽
𝜉))

×(1 − sin2(√
𝛽

𝛾𝑐

4
√
𝑐 − 𝛼

80𝛽
𝜉))

−1

= ( − √
5 (𝑐 − 𝛼)

𝛽
+ √

5 (𝑐 − 𝛼)

9𝛽

× cos2(√
𝛽

𝛾𝑐

4
√
𝑐 − 𝛼

80𝛽
𝜉))

× (cos2(√
𝛽

𝛾𝑐

4
√
𝑐 − 𝛼

80𝛽
𝜉))

−1

= √
5 (𝑐 − 𝛼)

9𝛽
− √

5 (𝑐 − 𝛼)

𝛽

× sec2(√
𝛽

𝛾𝑐

4
√
𝑐 − 𝛼

80𝛽
𝜉)

= 𝑢
4
(𝜉) (see (20)) ,

𝑢
7
(𝜉) 󳨀→ √

5 (𝑐 − 𝛼)

9𝛽
− (√

5 (𝑐 − 𝛼)

9𝛽
− √

5 (𝑐 − 𝛼)

9𝛽
)

× sn2(√
𝛽

𝛾𝑐

4
√
𝑐 − 𝛼

80𝛽
𝜉, 0)

= √
5 (𝑐 − 𝛼)

9𝛽
,

𝑢
8
(𝜉) 󳨀→

√5 (𝑐 − 𝛼) /9𝛽 − 0

1 − 0

= √
5 (𝑐 − 𝛼)

9𝛽
.

(66)
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(2∘) When 𝑐 > 𝛼 and 𝑔 → 𝑔
0
, it follows that

𝜑
1
󳨀→ −√

5 (𝑐 − 𝛼)

9𝛽
,

𝜑
2
󳨀→ −√

5 (𝑐 − 𝛼)

9𝛽
,

𝜑
3
󳨀→ 2√

5 (𝑐 − 𝛼)

9𝛽
,

𝜂
2
󳨀→ √

𝛽

𝛾𝑐

4
√
𝑐 − 𝛼

80𝛽
,

𝑘
2
󳨀→ 1,

sn (𝜂
2
𝜉, 𝑘
2
) 󳨀→ sn(√

𝛽

𝛾𝑐

4
√
𝑐 − 𝛼

80𝛽
𝜉, 1)

= tanh(√
𝛽

𝛾𝑐

4
√
𝑐 − 𝛼

80𝛽
𝜉) .

𝐴
2
󳨀→ √

5 (𝑐 − 𝛼)

𝛽
,

𝜂
3
󳨀→ √

𝛽

𝛾𝑐

4
√
𝑐 − 𝛼

5𝛽
,

𝑘
3
󳨀→ 1,

cn (𝜂
3
𝜉, 𝑘
3
) 󳨀→ cn(√

𝛽

𝛾𝑐

4
√
𝑐 − 𝛼

5𝛽
𝜉, 1)

= sech(√
𝛽

𝛾𝑐

4
√
𝑐 − 𝛼

5𝛽
𝜉) .

(67)

Thus, we have

𝑢
5
(𝜉) 󳨀→ 2√

5 (𝑐 − 𝛼)

9𝛽

− (2√
5 (𝑐 − 𝛼)

9𝛽
+ √

5 (𝑐 − 𝛼)

9𝛽
)

× sn−2(√
𝛽

𝛾𝑐

4
√
𝑐 − 𝛼

80𝛽
𝜉, 1)

= 2√
5 (𝑐 − 𝛼)

9𝛽
− √

5 (𝑐 − 𝛼)

𝛽

× tanh−2(√
𝛽

𝛾𝑐

4
√
𝑐 − 𝛼

80𝛽
𝜉)

= 2√
5 (𝑐 − 𝛼)

9𝛽
− √

5 (𝑐 − 𝛼)

𝛽

× (1 + csch2(√
𝛽

𝛾𝑐

4
√
𝑐 − 𝛼

80𝛽
𝜉))

= 𝑢
10
(𝜉) (see (24)) ,

𝑢
6
(𝜉) (or 𝑢

8
(𝜉)) 󳨀→ (− √

5 (𝑐 − 𝛼)

9𝛽
+ √

5 (𝑐 − 𝛼)

9𝛽

× sn2(√
𝛽

𝛾𝑐

4
√
𝑐 − 𝛼

80𝛽
𝜉, 1))

× (1 − sn2(√
𝛽

𝛾𝑐

4
√
𝑐 − 𝛼

80𝛽
𝜉, 1))

−1

= −√
5 (𝑐 − 𝛼)

9𝛽
,

𝑢
7
(𝜉) 󳨀→ 2√

5 (𝑐 − 𝛼)

9𝛽

− (2√
5 (𝑐 − 𝛼)

9𝛽
+ √

5 (𝑐 − 𝛼)

9𝛽
)

× sn2(√
𝛽

𝛾𝑐

4
√
𝑐 − 𝛼

80𝛽
𝜉, 1)

= 2√
5 (𝑐 − 𝛼)

9𝛽
− √

5 (𝑐 − 𝛼)

𝛽

× tanh2(√
𝛽

𝛾𝑐

4
√
𝑐 − 𝛼

80𝛽
𝜉)

= 2√
5 (𝑐 − 𝛼)

9𝛽
− √

5 (𝑐 − 𝛼)

𝛽

× (1 − sech2(√
𝛽

𝛾𝑐

4
√
𝑐 − 𝛼

80𝛽
𝜉))

= 𝑢
9
(𝜉) (see (23)) ,

𝑢
13
(𝜉) 󳨀→ 2√

5 (𝑐 − 𝛼)

9𝛽
+ √

5 (𝑐 − 𝛼)

𝛽

−
2√5 (𝑐 − 𝛼) /𝛽

1 − cn (√𝛽/𝛾𝑐 4√(𝑐 − 𝛼) /5𝛽 𝜉, 1)
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= 5√
5 (𝑐 − 𝛼)

9𝛽

−
2√5 (𝑐 − 𝛼) /𝛽

1 − sech (√𝛽/𝛾𝑐 4√(𝑐 − 𝛼) /5𝛽 𝜉)

= 5√
5 (𝑐 − 𝛼)

9𝛽

− (2√
5 (𝑐 − 𝛼)

𝛽

× cosh (√
𝛽

𝛾𝑐

4
√
𝑐 − 𝛼

5𝛽
𝜉))

×(cosh(√
𝛽

𝛾𝑐

4
√
𝑐 − 𝛼

5𝛽
𝜉) − 1)

−1

= 5√
5 (𝑐 − 𝛼)

9𝛽

− (2√
5 (𝑐 − 𝛼)

𝛽
+ 4√

5 (𝑐 − 𝛼)

𝛽

× sinh2(√
𝛽

𝛾𝑐

4
√
𝑐 − 𝛼

80𝛽
𝜉))

× (2sinh2(√
𝛽

𝛾𝑐

4
√
𝑐 − 𝛼

80𝛽
𝜉))

−1

= −√
5 (𝑐 − 𝛼)

9𝛽
− √

5 (𝑐 − 𝛼)

𝛽

× csch2(√
𝛽

𝛾𝑐

4
√
(𝑐 − 𝛼)

80𝛽
𝜉)

= 𝑢
10
(𝜉) (see (24)) ,

𝑢
14
(𝜉) 󳨀→ 2√

5 (𝑐 − 𝛼)

9𝛽
+ √

5 (𝑐 − 𝛼)

𝛽

−
2√5 (𝑐 − 𝛼) /𝛽

1 + cn (√𝛽/𝛾𝑐 4√(𝑐 − 𝛼) /5𝛽 𝜉, 1)

= 5√
5 (𝑐 − 𝛼)

9𝛽

−
2√5 (𝑐 − 𝛼) /𝛽

1 + sech (√𝛽/𝛾𝑐 4√(𝑐 − 𝛼) /5𝛽 𝜉)

= 5√
5 (𝑐 − 𝛼)

9𝛽

− (2√
5 (𝑐 − 𝛼)

𝛽

× cosh (√
𝛽

𝛾𝑐

4
√
𝑐 − 𝛼

5𝛽
𝜉))

× (cosh(√
𝛽

𝛾𝑐

4
√
𝑐 − 𝛼

5𝛽
𝜉) + 1)

−1

= 5√
5 (𝑐 − 𝛼)

9𝛽

− (−2√
5 (𝑐 − 𝛼)

𝛽
+ 4√

5 (𝑐 − 𝛼)

𝛽

× cosh2(√
𝛽

𝛾𝑐

4
√
𝑐 − 𝛼

80𝛽
𝜉))

× (2cosh2(√
𝛽

𝛾𝑐

4
√
𝑐 − 𝛼

80𝛽
𝜉))

−1

= −√
5 (𝑐 − 𝛼)

9𝛽
+ √

5 (𝑐 − 𝛼)

𝛽

× sech2(√
𝛽

𝛾𝑐

4
√
𝑐 − 𝛼

80𝛽
𝜉)

= 𝑢
9
(𝜉) (see (23)) .

(68)

Hereto, we have completed the derivations for
Proposition 1.

4. The Derivations for Proposition 6

In this section, we derive the precise expressions of the trav-
eling wave solutions for BBM-like𝐵(4, 2) equation. Similar to
the derivations in Section 3, substituting 𝑢(𝑥, 𝑡) = 𝜓(𝜉) with
𝜉 = 𝑥 − 𝑐𝑡 into (32) and integrating it, we have the following
planar system:

𝑑𝜓

𝑑𝜉
= 𝑦,

𝑑𝑦

𝑑𝜉
=
𝑔 + (𝑐 − 𝛼) 𝜓 − 𝛽𝜓

4
− 2𝛾𝑐𝑦

2

2𝛾𝑐𝜓
,

(69)

with the first integral

𝛾𝑐𝜓
2
𝑦
2
−
𝑔

2
𝜓
2
−
𝑐 − 𝛼

3
𝜓
3
+
𝛽

6
𝜓
6
= ℎ, (70)

where 𝑔 and ℎ are the integral constants.
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When 𝑐 > 𝛼, ℎ = 0, and 𝑔 = 0, (70) becomes

𝑦 = ±√
𝑐 − 𝛼

3𝛾𝑐
√𝜓(1 −

𝛽

2 (𝑐 − 𝛼)
𝜓3), 0 ≤ 𝜓 ≤

3
√
2 (𝑐 − 𝛼)

𝛽
.

(71)

Substituting (71) into the first equation of (69) and
integrating it from 0 to 𝜓 or 𝜓 to 3√2(𝑐 − 𝛼)/𝛽, respectively,
it follows that

∫

𝜓

0

𝑑𝑠

√𝑠 (1 − (𝛽/2 (𝑐 − 𝛼)) 𝑠
3)

= √
𝑐 − 𝛼

3𝛾𝑐

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨 ,

∫

3
√2(𝑐−𝛼)/𝛽

𝜓

𝑑𝑠

√𝑠 (1 − (𝛽/2 (𝑐 − 𝛼)) 𝑠
3)

= √
𝑐 − 𝛼

3𝛾𝑐

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨 .

(72)

Completing the integrals in the two above equations and
noting that 𝑢 = 𝜓(𝜉), we obtain the two elliptic periodic wave
solutions 𝑢

17
(𝜉) and 𝑢

18
(𝜉) as (34).

When 𝑐 < 0, ℎ = 0, and 𝑔 = −
3
√(𝑐 − 𝛼)

4
/16𝛽, (70)

becomes

𝑦 = ±√
𝛽

−6𝛾𝑐

󵄨󵄨󵄨󵄨𝜓 − 𝑝
󵄨󵄨󵄨󵄨
√𝜓2 + 𝑞𝜓 + 𝑟, (73)

where

𝑝 = 3√
𝑐 − 𝛼

2𝛽
, 𝑞 =

3
√
4 (𝑐 − 𝛼)

𝛽
, 𝑟 =

3
√
27(𝑐 − 𝛼)

2

4𝛽2
.

(74)

Substituting (73) into the first equation of (69) and
integrating it from −∞ to 𝜓 or 𝜓 to +∞, respectively, it
follows that

∫

𝜓

−∞

𝑑𝑠

(𝑝 − 𝑠)√𝑠2 + 𝑞𝑠 + 𝑟

=
𝛽

√−6𝛾𝑐

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨 , (𝜓 < 𝑝) ,

∫

+∞

𝜓

𝑑𝑠

(𝑠 − 𝑝)√𝑠2 + 𝑞𝑠 + 𝑟

=
𝛽

√−6𝛾𝑐

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨 , (𝑝 < 𝜓) .

(75)

Completing the integrals in the two above equations and
noting that 𝑢 = 𝜓(𝜉), we obtain the two hyperbolic blow-up
solutions 𝑢

19
(𝜉) and 𝑢

20
(𝜉) as (36).

Hereto, we have completed the derivations for
Proposition 6.

5. Conclusion

In this paper, we have investigated the nonlinear wave
solutions and their bifurcations for BBM-like 𝐵(𝑚, 2) (𝑚 =

3, 4) equations. For BBM-like 𝐵 (3, 2) equation, we obtain
some precise expressions of traveling wave solutions (see
𝑢
𝑖
(𝜉) (𝑖 = 1–16)), which include periodic blow-up and

periodic wave solution, peakon and periodic peakon wave
solution, and solitary wave and blow-up solution. We also

reveal the relationships among these solutions theoretically
(see Remarks 2–5 and the corresponding derivations). For
BBM-like 𝐵(4, 2) equation, we construct two elliptic periodic
wave solutions and two hyperbolic blow-up solutions (see
𝑢
𝑖
(𝜉) (𝑖 = 17–20)). We would like to study the BBM-like

𝐵(𝑚, 𝑛) equations further.
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