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We use a nonlinear transformation method to develop equivalent equations of motion of nonlinear homogeneous oscillatory
systems with linear and nonlinear odd damping terms. We illustrate the applicability of our approach by using the equations of
motion that arise in many engineering problems and compare their amplitude-time curves with those obtained by the numerical
integration solutions of the original equations of motion.

1. Introduction

The dynamics response of some systems can be more pre-
cisely described when nonlinear damping terms are used
to model their dynamics behaviors. For instance, the elas-
tomeric vibration isolators [1], the motion of a rolling ship
subjected to the synchronous beam waves [2], the backlash
and impact phenomena [3], and the micromechanical oscil-
lators [4], to say a few, have been modeled by considering
nonlinear damping terms. In fact, the dynamic behavior
of double-well oscillators in which a nonlinear damping
term with a fractional exponent covers the gaps between
viscous, dry friction, and turbulent damping phenomena
has been used by Litak et al. in [5] to study, by using the
Melnikov criterion, the system global homoclinic bifurcation
and its transition to chaos. It is evident from the previously
mentioned works and references cited therein that the global
system dynamics behavior can be accurately described if
one is able to identify the order of the nonlinear stiffness
and the damping effects that agree with the experimental
observations [6]. Of course, the influence of the nonlin-
ear damping terms on the resulting equations of motion
increases the difficulty of finding their closed-form solu-
tions.

In this paper, a nonlinear transformation of the damped
nonlinear equation

𝑥̈ + 𝐹 (𝑥, 𝑥̇) = 0, 𝑥 (0) = 𝑥

10
, 𝑥̇ (0) = 0, (1)

is proposed to obtain its equivalent damped Duffing’s equa-
tion of motion. Here, we assume that 𝐹(𝑥, 𝑥̇) is the noncon-
servative system restoring force which could have rational
or irrational conservative force terms as well as linear or
nonlinear damping terms, and we assume that 𝑥

10
is the

initial amplitude. The main motivation to find a nonlinear
transformation form of (1) is based on the fact that exact
or approximate solutions of damped nonlinear oscillators
of the Duffing type can be found in the literature. See, for
instance, [7–10] and references cited therein. Therefore, if we
can transform (1) into the damped Duffing equation, one
could find its dynamical response in an easier way.

In order to achieve such transformation, we first assume
that the conservative terms of 𝐹(𝑥, ]𝑥̇) can be written in
equivalent forms by using, for instance, the Chebyshev
polynomials of the first kind [11–15]:
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Since the first three Chebyshev polynomials of the first kind
are given by

𝑇
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3
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(4)

thus, the equivalent conservative restoring force 𝑓(𝑥) can be
written as

𝑓 (𝑥) ≡ 𝑏
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(5)

One must notice that the coefficients 𝛼(𝑥
10
), 𝛽(𝑥

10
), and

𝛾(𝑥

10
) depend on the amplitude of oscillation, 𝑥

10
, and the

Chebyshev coefficient terms. Therefore, we assume that the
nonlinear differential equation (1) can be replaced by an
equivalent equation of the form

𝑑
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𝑥
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(6)

where 𝑓(𝑥̇) represents the system damping terms and ] is the
damping coefficient.We next use a cubication transformation
to write the restoring force term of (6) in the form
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Thus, the cubic-like equivalent representation form of (1)
is given as
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We next examine the application of our proposed nonlin-
ear transformation approach to obtain approximate solutions
of the damped oscillatory systems such as the damped cubic-
quintic Duffing equation, the damped general pendulum
equation of motion, the damped rational-form elastic term
oscillator, and the nonlinear damped cubic term oscillator.

2. The Damped Cubic-Quintic
Duffing Equation

It is well known that this equation is used to describe the
dynamical behavior of beams resting on an elastic substrate
[16], the nonlinear transverse vibration of a hinged-hinged
flexible beam subjected to constant excitation at its free end
[17], the biological rhythmicmovements [18], the propagation
of electromagnetic pulses in media with saturable nonlinear-
ity [19], the intermodulation distortion in radio-frequency
microelectromechanical systems (MEMS) capacitors [20],
the motion of a rolling ship subjected to synchronous beam
waves [2], and so forth. This equation has the form

̈𝑦 + 2] ̇𝑦 + 𝛼𝑦 + 𝛽𝑦

3
+ 𝛾𝑦

5
= 0,

with 𝑦 (0) = 𝑦
10
, ̇𝑦 (0) = 0,

(12)

where 𝑦 denotes the displacement of the system, ] is the
damping coefficient, and 𝛼, 𝛽, and 𝛾 are the system constant
parameters. We next introduce the following change of the
variable 𝑥 = 𝐴/𝑦 which transforms (13) into an equation of
the form

𝑥̈ + 2]𝑥̇ + 𝐴𝑥 + 𝐵𝑥
3
+ 𝐺𝑥

5
= 0,

with 𝑥 (0) = 1, 𝑥̇ (0) = 0.
(13)

Here, 𝐴 = 𝛼, 𝐵 = 𝛽𝑦

2

10
, and 𝐺 = 𝛾𝑦

4

10
. In accordance with

our proposed nonlinear transformation approach, we first
replace the restoring force 𝐹(𝑥, 𝑥̇) = 2]𝑥̇ + 𝐴𝑥 + 𝐵𝑥3 + 𝐺𝑥5

by an equivalent cubic-like polynomial expression by using
(8), (9), and (10). This provides the following restoring force
expression:

𝐹 (𝑥, 𝑥̇) = 2]𝑥̇ + 𝐴𝑥 + 𝐵𝑥
3
+ 𝐺𝑥

5
≡ 2]
1
𝑥̇ + 𝛿𝑥 + 𝜖𝑥

3
. (14)

Thus, (13) can be written in an equivalent form as follows:

𝑥̈ + 2]
1
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3
≈ 0, (15)
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Notice that 𝜎 and 𝜐 are the parameter values that must satisfy
(9) and (10). Figure 1 illustrates the numerical integration
solutions of (12) and (15) by considering the parameter values
𝛼 = 5, 𝛽 = 2, 𝛾 = 0.5, and ] = 0.1 with the initial conditions
𝑦(0) = 1 and ̇𝑦(0) = 0. To obtain the smallest root-mean-
square error (RMSE) between both numerical solutions, we
have fitted the values 𝜎 = 0.94 and 𝜐 = 100000 in (17). Thus,
the parameter values of the damped cubic Duffing equation
(15) become 𝛿 = 4.9601, 𝜖 = 2.4441, and ]

1
= 0.0999 with an

RMSE value of 0.0111 for the time interval shown in Figure 1.
Also, we have computed the RMSE values by considering
different system initial conditions as showed in Table 1. As we
may see from Table 1, the RMSE values are not bigger than
0.667. As a second example, we now assume the following
system parameter values 𝛼 = 1, 𝛽 = 20, 𝛾 = 0.1, and
] = 0.25. The RMSE values obtained from the comparison
of the numerical integration solutions of (14) and (15) are
shown in Table 2. Notice that the maximum RMSE value is
now 0.318 when 𝑦

10
= 10.

We will next examine the applicability of our pro-
posed approach by deriving the equivalent expression of the
damped general pendulum equation.

3. A Damped Pendulum Equation

We now use our nonlinear transformation approach to find
the equivalent equation of motion of the damped pendulum
equation [21]
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and ̇𝑦(0) = 0. Here, 𝑎

and 𝑏 represent the system constant parameter values. First,
let us introduce the transformation 𝑥 = 𝑦/𝑦
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and re-write

(18) as follows:
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0 5 10 15 20

0.0

0.5

1.0

−0.5

O
sc

ill
at

io
n 

am
pl

itu
de

,x

Time, t

Figure 1: Amplitude-time response curves of (1) and (15). Here,
the solid line represents the numerical integration solution of (1),
while the dashed line represents the prediction obtained by using
the derived equivalent equation ofmotion by applying our enhanced
cubication procedure. The parameter values are 𝛼 = 5, 𝛽 = 2, and
𝛾 = 0.5, and ] = 0.1 with 𝑦(0) = 1 and ̇𝑦(0) = 0.

We next use our proposed approach and write (19) in its
equivalent cubic-like form
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Here, 𝐽
1
(𝑦

10
) and 𝐽

2
(𝑦

10
) are the first and second-order Bessel

functions of the first kind, respectively. Once again, 𝜎 and 𝜐
are the fitting parameters that must satisfy (8) and (9). We
next illustrate in Figure 2 the numerical integration solutions
of (19) and (20) by considering the system parameter values
𝑎 = 3, 𝑏 = 4, and ] = 0.1. In this particular case, the
values of 𝜎, 𝜐, and ]

1
are 0.8, 1000, and 0.099. The initial

angular displacement amplitude is assumed to have the value
of 175∘. As we may see from Figure 2, both solutions are
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Table 1: Comparison of the numerical integration solutions of the
equivalent and the original equations of motion for the parameter
values 𝛼 = 5, 𝛽 = 2, 𝛾 = 0.5, ] = 0.1, 𝜎 = 0.94, and 𝜐 = 100, 000.

𝑦

10
𝛿 𝜖 ]

1
RMSE

0.1 5 0.02 0.1 0.0
1 4.9601 2.4441 0.0999 0.0111
5 −19.8963 327.586 0.0999 0.5378
10 −393.341 4641.38 0.0999 0.5620

Table 2: Comparison of the numerical integration solutions of the
equivalent and the original equations of motion for the parameter
values 𝛼 = 1, 𝛽 = 20, 𝛾 = 0.1, ] = 0.25, 𝜎 = 0.773, and 𝜐 = 100, 000.

𝑦

10
𝛿 𝜖 ]

1
RMSE

0.1 1 0.2 0.25 0.0
1 0.9963 20.060 0.25 0.0004
5 −1.2773 537.545 0.249 0.0676
10 −35.437 2600.73 0.249 0.318

almost the same. In fact, the maximum RMSE value attained
is 0.0466 with the computed parameter values 𝛼 = 6.9589,
𝛽 = −4.3253, 𝛾 = 1.4577, 𝛿 = 6.8167, and 𝜖 = −3.2887.

To further assess the applicability of our proposed
approach, we next derive the equivalent cubic-like represen-
tation form of a damped oscillator with a mass attached to
two stretched elastic springs.

4. The Damped Nonlinear Oscillator with
an Irrational Restoring Force

Oscillators with irrational restoring forces are used to model
the oscillations of amass attached to a stretched wire [22] and
are also used to study the dynamical response of vibration
isolators or vibration absorbers in two-degree-of-freedom
systems [23]. In this case, we assume that, besides the
nonlinear irrational restoring force due to the stretchedwires,
we have a damper attached to themass system, and hence, the
nonlinear differential equation of motion for a single-degree-
of-freedom system can be written as
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Figure 2: Amplitude-time response curves of (18) and (20). Here,
the solid line represents the numerical integration solution of (18),
while the dashed line represents the prediction obtained by using
the derived equivalent equation ofmotion by applying our enhanced
cubication procedure. The parameter values are 𝑎 = 3, 𝑏 = 4, and
] = 0.1 with 𝑦

10
= 175

∘.

with the initial conditions 𝑥(0) = 1 and 𝑥̇(0) = 0. We next
apply our proposed nonlinear transformation approach to get
the equivalent representation form of (23) as follows:
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Figure 3: Amplitude-time response curves of (22) and (24). Here,
the solid line represents the numerical integration solution of (18),
while the dashed line represents the prediction obtained by using
the derived equivalent equation ofmotion by applying our enhanced
cubication procedure. The parameter values are𝐷 = 1, 𝜆

1
= 1, 𝜆

2
=

−1, and ] = 0.1 with 𝑦
10
= 1 and ̇𝑦(0) = 0.
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Here, 𝐾(−𝑦2
10
/𝐷) and 𝐸(−𝑦

2

10
/𝐷) represent the complete

elliptic integrals of the first and second kinds, respectively,
with modulus equal to −𝑦2

10
/𝐷. To assess the accuracy of our

equivalent damped equation of motion (24), let us consider
the case for which 𝐷 = 1, 𝜆

1
= 1, 𝜆

2
= −1, and ] = 0.1.

Figure 3 shows the numerical integration solutions of (22)
and (24) with 𝑦

10
= 1. As we can see from Figure 3, both

solutions are almost the same for most of the time interval
shown. The computed parameter values are 𝛿 = 0.016, 𝜖 =

0.3169, ]
1
= 0.1, 𝜎 = 0.85, 𝜐 = 1000, 𝛼 = 0.0097, 𝛽 =

0.4091, and 𝛾 = −0.1269. In this case, the RMSE value is
equal to 0.01974. It is easy to show that the RMSE values
do not exceed 0.0648 on 𝑦

10
∈ [0.01, 10]. It is evident from

our numerical results that the usage of irrational restoring
forces with damping effects can be equivalently described
by the damped Duffing oscillator. This could help us in
better understanding the influence of irrational forces on the
dynamical responses of the vibrational systems with two or
more degrees of freedom.

We next derive the equivalent equation of motion of a
Duffing oscillator with linear and cubic damped terms.

5. The Duffing Equation with Linear and
Cubic Damped Terms

The equation of motion

𝑑

2
𝑥

𝑑𝑡

2
+ ]𝑥̇ + 𝐴𝑥 + 𝐵𝑥

3
+ 𝜅𝑥̇

3
= 0, 𝑥 (0) = 𝑥

10
, 𝑥̇ (0) = 0,

(26)

with linear and cubic damped terms is used to model the
dynamical responses of several engineering applications such
as the nanomechanical dynamical response of a doubly
clamped beam [24], the nonlinear rolling motion of a ship
in random beam seas [25], the modeling of nonlinear elas-
tomeric vibration isolators [1], and the generalized damped
general pendulum equation [26], among others. In (26), ] and
𝜅 represent the magnitude of the linear and nonlinear cubic
damped terms, respectively. Of course, the exact solution of
(26) is unknown, and thus, the numerical methods or per-
turbation techniques must be used to obtain its approximate
solution.

Trueba and coworkers in [26] used the Melnikov analysis
to write the forced version of (26) as the damped Duffing
equation

𝑑

2
𝑥

𝑑𝑡

2
+ 𝜇𝑥̇ + 𝐴𝑥 + 𝐵𝑥

3
= 𝐹 (𝑡) , 𝑥 (0) = 𝑥

10
, 𝑥̇ (0) = 0,

(27)

in which 𝐹(𝑡) is the forcing term, 𝐴 = −1, and

𝜇 = ] +
12

35

𝜅. (28)

Our aim in this section is to use our proposed approach
to develop an equivalent representation form of (26) and
compare its theoretical predictions with respect to those of
(26) and (27) with 𝐹(𝑡) = 0.

First, let us assume that the restoring force in (26) can
be written in an equivalent form by using the following
equations:

𝐹

1
(𝛿, 𝜖, ]

1
)

= ∫

𝜎

0

(]𝑥̇ + 𝐴𝑥 + 𝐵𝑥
3
+ 𝜅𝑥̇

3

− (𝜅

󵄨

󵄨

󵄨

󵄨

]
1

󵄨

󵄨

󵄨

󵄨

+ ]) 𝑥̇ − 𝛿𝑥 − 𝜖𝑥
3
)

2

𝑑𝑥 󳨀→ min,

𝐹

2
(𝛿, 𝜖, ]

1
)

= ∫

𝜐

0

(]𝑥̇ + 𝐴𝑥 + 𝐵𝑥
3
+ 𝜅𝑥̇

3

− (𝜅

󵄨

󵄨

󵄨

󵄨

]
1

󵄨

󵄨

󵄨

󵄨

+ ]) 𝑥̇ − 𝛿𝑥 − 𝜖𝑥
3
)

2

𝑑𝑥̇ 󳨀→ min,
(29)

where the coefficients ]
1
, 𝛿, and 𝜖 can be determined by

using the expressions (10). Notice that we have introduced a
slight modification in the damping coefficient terms of (29)
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Figure 4: Amplitude-time response curves of (26), (27), and (31).
Here, the solid line represents the numerical integration solution of
(18), while the red and purple dashed lines represent, respectively,
the numerical integration solutions of (27) and (30). The parameter
values are ] = 0.1, 𝐴 = 1, 𝐵 = 1, and 𝜅 = 0.1 with 𝑥

10
= 1.

to take into account the influence of the cubic nonlinear
damping term, 𝜅, in the dynamical system response. We then
follow our nonlinear transformation method to obtain the
equivalent representation form of (26) which is given as

𝑑

2
𝑥

𝑑𝑡

2
+ (𝜅

󵄨

󵄨

󵄨

󵄨

]
1

󵄨

󵄨

󵄨

󵄨

+ ]) 𝑥̇ + 𝛿𝑥 + 𝜖𝑥
3
≈ 0,

(30)

𝛿 =

18𝜅𝜐

3
+ 𝐴𝜎

𝜎

, 𝜖 =

𝐵𝜎

3
− 14𝜅𝜐

3

𝜎

3
, ]

1
=

27𝜐

2

5

.

(31)

To numerically evaluate the accuracy of our proposed equiv-
alent representation form (30), let us consider the following
system parameter values ] = 0.1, 𝐴 = 1, 𝐵 = 1, and 𝜅 = 0.1

with 𝑥
10

= 1. As we may see from Figure 4, the numerical
integration solution of (30) with the estimated parameter
values 𝜎 = 0.4, 𝜐 = 0.25, 𝛿 = 1.0703, 𝜖 = 0.6582, and ]

1
=

0.3375 agrees well with the numerical integration solution
of (26). In this case, the computed RMSE value does not
exceed 0.0426, while the corresponding RMSE value found
by using (27) is about 0.05196. In Figure 4, the solid line and
the red and purple dashed lines represent, respectively, the
numerical integration solutions of (26), (27), and (30). It is
evident from Figure 4 that our developed cubic-like solution
exhibits good accuracy when compared with the numerical
predictions of (27). To further assess the precision of our
equivalent representation form (30), we next consider the
system parameter values ] = 0.1, 𝐴 = −1, 𝐵 = 0.1, and
𝜅 = 0.01 with 𝑥

10
= 1. In this case, we found that 𝜎 = −1.65,

𝜐 = 0.4, 𝛿 = −1.0069, 𝜖 = 0.1019, and ]
1
= 0.864, with the

computed RMSE values 0.0607 and 0.0313 obtained by using
(27) and (30), respectively. Figure 5 illustrates the numerical
integration amplitude-time response curves of (26), (27), and
(30). As expected, our equivalent equation of motion (30)
follows well the numerical solution of (26). This confirms
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Figure 5: Amplitude-time response curves of (26), (27), and (31).
Here, the solid lines represents the numerical integration solution
of (18), while the red and purple dashed line represent, respectively,
the numerical integration solutions of (27) and (30). The parameter
values are ] = 0.1, 𝐴 = −1, 𝐵 = 0.1, and 𝜅 = 0.01 with 𝑥

10
= 1.

the usefulness of our proposed approach to solve nonlinear
oscillators with nonlinear damping terms.

6. Conclusions

In this paper, we have used a nonlinear transformation pro-
cedure to obtain equivalent equations of motion of nonlinear
oscillators with conservative and dissipative restoring forces.
Our solution procedure provides equivalent equations whose
numerical predictions follow well the numerical integration
solutions of the original equations of motion for small or
larger damping coefficient values. To show the feasibility
of our proposed approach, we have found the equivalent
representation forms of four damped nonlinear oscillators.
In fact, we have shown that (15) describes well the damped
cubic-quintic Duffing equation since the computed RMSE
values shown in Tables 1 and 2 are not bigger than 0.6699 on
𝑦

10
∈ [0.01, 10] even for larger nonlinear parameter values.

Furthermore, we found that the dynamical behavior of a
damped pendulum is accurately described by its equivalent
damped Duffing equation (20). In this case, the RMSE value
does not exceed 0.0466 for the system parameter values 𝑎 = 3,
𝑏 = 4, and ] = 0.1 with 𝑦

10
= 175

∘. A similar conclusion
can be drawn by using the equivalent equation ofmotion (24)
that models a damped nonlinear oscillator with an irrational
restoring force term.

Finally, we have shown that the effect of a nonlinear
damping dissipative force is equivalent to a linearly damped
nonlinear Duffing oscillator with a modified damping coef-
ficient. This is illustrated in the case of the Duffing equation
with linear and nonlinear damping terms in which numerical
predictions followwell the responses of the original equations
of motion. Here, our numerical predictions coincide with
those obtained from the Melnikov analysis even at larger
nonlinear damping values. It is clear that our proposed
approach could be extended not only to include driving
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forces or dissipative effects with even or fractional nonlinear
damping terms but also to obtain equivalent equations of
physical system with two or more degrees of freedom.
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