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Many decision making problems involve multiple decision makers and conflicting objectives. This paper refers to this kind
of problems as group decision making for multiobjective problems (GDM-MOP). The task of GDM-MOP is to select final
solution(s) from a set of nondominated solutions according to the decision makers’ preferences. However, it is common that the
preference could be imprecise. We study the GDM-MOP where preferences are expressed by fuzzy reference points, called as fuzzy
GDMMOP (FGDM-MOP). This paper provides a decision support model to simultaneously consider two measures for FGDM-
MOP: consensus measure and robustness measure. The former is used to reflect the acceptable degree of a solution by the decision
making group, while the latter indicates a solution’s ability to cope with any change on preferences. A multiobjective evolutionary
approach is presented to solve the problem. Finally, a modified benchmark function is studied to illustrate the proposed approach.

1. Introduction

Many real-world decision problems involvemultiple decision
makers (DMs). For instance, decisions on a corporation’s
investment policy may need discussion and negotiation
amongst the members of directorate, or alternative selection
of a complex project needs the consultation of experts from
different fields. Such decision problems are referred to as
group decision making (GDM) problems. Many studies
suggest that GDM is appropriate to be applied for arriving
at a judgment based on the input and feedback of mul-
tiple individuals [1–3]. In the process of GDM, for each
alternative or comparison of a pair of alternations, DMs
need to provide their opinions or preferences on one or
more evaluating criteria. Then the individual opinions are
aggregated to form the collective one to select the final
solution. However, in practice, it is very common that
decisions need to be made with simultaneous consideration
of multiple conflicting objectives; that is, DMs need to
trade off between different objectives. Such problems are
called as multiobjective problems (MOPs), and the term
multiobjective optimization (MOO) refers to solving MOPs

[4]. The results of MOPs are a set of mathematically equally
good solutions, referred to as non-dominated set, among
which any decision on the solutions cannot be made until
the preference of decision maker(s) is provided. Usually, it
is worthwhile to assist decision makers in refining obtained
solutions. Thus, MOO methods are guided to move towards
the preference of a decisionmaker. For instance, Abbass [5, 6]
proposed an interactive evolutionary approach for MOPs
with reference points. In the context of MOP, the task of
GDM is to select the solutions most acceptable by the group
among the nondominated set.We use group decisionmaking
for multi-objective problem (GDM-MOP) to indicate such a
combination of group decision making and multi-objective
problems.

The process of GDM-MOP is usually in the presence
of uncertainty. On one hand, as the complexity of real-
world decision problems and the limitation of DMs’ back-
ground and expertise, it is difficult for a decision maker
to precisely express his/her preference on each objective.
On the other hand, the DMs’ preferences might change
over time according to various related factors, for example,
the decision maker’s attitude towards each objective or
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the changes on external environment. In such a case, the
group solution may change because of the perturbation on
decision maker’s preference. However, in MOP, it is expected
that the selected solution(s) can stay in the non-dominated
set in the presence of any potential change. In other words,
the solutions should be robust against the perturbations
on decision maker’s preference. Abbass and Bender [7]
addressed such kind of problems where tradeoff between the
objectives to be optimized varies over time and proposed the
concept of ParetoOperatingCurve. For similar problems, two
robustness measures were suggested in Bui et al. [8].

Although the imprecise preference of decision maker
can take many other forms, in this research, we focus on
the GDM-MOP where the preferences are given by fuzzy
numbers. The problem is referred to as fuzzy group decision
making for multi-objective problem (FGDM-MOP). To the
best of our knowledge, there is no other literature that
addressed such kind of problems. From the previous discus-
sion, we may claim that in FGDM-MOP, two issues need to
be addressed: the first is how acceptable is a solution by the
decision group?The second is how robust is a solution against
possible changes or perturbations? In the proposed approach,
we employ consensus and robustness to indicate the degrees of
the two abovementioned issues. Inmany cases, the consensus
and robustness degrees are in conflict with each other. Thus,
the FGDM-MOP itself can be considered as a multi-objective
problem. This paper presents the model and procedure of
FGDM-MOP and suggests consensus and robustness mea-
sures. A multiobjective evolutionary approach is proposed to
solve the problem.

The remaining sections of the paper are organized as
follows. Section 2 briefly reviews the related work on group
decision making and multi-objective problems. The math-
ematical model of FGDM-MOP is presented in Section 3.
The measures of consensus and robustness are suggested in
Section 4. Section 5 describes the evolutionary approach to
solve FGDM-MOP.The experimental results with a modified
benchmark function are reported in Section 6. Finally, con-
clusions and future works are discussed in Section 7.

2. Related Work

2.1. Multiobjective Optimization. Most real-world problems
are characterized by multiple, noncommensurate, and often
conflicting objectives [9].The termmulti-objective optimiza-
tion problem (MOP) is used to refer to such kind of problem.
In MOP, there are two or more conflicting objectives that
needed to be optimized simultaneously. Formally, aMOP can
be written as follows [4]:

min 𝑓 (𝑥) = (𝑓
1
(𝑥) , 𝑓

2
(𝑥) , . . . , 𝑓

𝑘
(𝑥))

s.t. 𝑥 ∈ 𝑋,
(1)

where 𝑋 ⊂ R𝑛 is a feasible set of decision variables and
𝑓 : R𝑛 → R𝑘. The 𝑛-dimensional space R𝑛 is called
a variable space, and the functions 𝑓

𝑖
(𝑖 = 1, . . . , 𝑘) are

objective functions.

The solutions of MOP posed by (1) are called noninferior,
non-dominated, efficient, or Pareto optimal solutions [4, 9–
11].This paper uses the naming convention of non-dominated
or Pareto optimal solutions. A solution is called a Pareto
optimal solution if there exists no other feasible solution
which would decrease some criterion without causing a
simultaneous increase in at least one other criterion [11].
To be more specific, we formally define the dominance and
nondominated concepts as follows [4].

Definition 1. In (1), a vector 𝑓(𝑥), 𝑥 ∈ 𝑋, is said to dominate
another vector, 𝑓(𝑦), 𝑦 ∈ 𝑋, if 𝑓

𝑖
(𝑥) ≤ 𝑓

𝑖
(𝑦) for all 𝑖 =

1, . . . , 𝑘, and the inequality is strict for at least one 𝑖.

Definition 2. In (1), a vector𝑓(𝑥∗), 𝑥∗ ∈ 𝑋, is non-dominated
if there exists no other𝑥 ∈ 𝑋 such that𝑓(𝑥) dominates𝑓(𝑥∗).

A set which consists of all non-dominated solutions is
called a non-dominated set. The topology of the set of non-
dominated solutions in the objective space forms a curve that
is known as the Pareto curve [7].

Evolutionary algorithms (EAs) have received consider-
able attention in dealing with MOPs during the last two
decades as they are advantageous comparing with mathe-
matical programming techniques. Currently, a wide variety
of multi-objective evolutionary algorithms (MOEAs) are
available in the literature.The representative MOEAs include
SPEA [12], SPEA2 [13], PAES [14], and NSGA-II [15]. For a
brief history of MOEAs, readers are referred to Coello [11].

From the definition of non-dominated solutions, one
may notice that any choice among the set of non-dominated
solutions could be difficult, unless we have additional infor-
mation about the decision maker’s preference structure [4].
Furthermore, in many cases, DMs might be interested in
only some parts of the Pareto curve. Then, there is no need
to visualize the whole Pareto curve, which is time intensive
when the solution space is huge.Thus, it is important to utilize
preference information during the optimization process. To
perform this task, several preference-based multi-objective
evolutionary algorithms are proposed and applied in recent
years [4, 16–21]. However, most (if not all) existing literatures
of preference-based multi-objective approaches neglect the
following issues: (1) the preference is from a group of DMs,
(2) the preference could be imprecise, and (3) the final
solutions’ ability to deal with any change on preference. This
paper is aiming at simultaneously addressing the previous
issues, which might be the first attempt in the field.

2.2. Group Decision Making. As its practical importance,
group decision making has received great attention in many
application areas, such as situation assessment [22], accident
evaluation [23], emergency management [3], product devel-
opment [24], and alternative selection [25]. The aim of group
decisionmaking is to find a group satisfactory solution which
is most acceptable by the group individuals as a whole [26].
The procedure of GDM usually consists of two processes
[27–31]: consensus process and selection process. The former is
used to obtain the maximum degree of agreement between
the set of DMs on the solution set of alternatives. Such
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a process is defined as a dynamic and iterative group dis-
cussion process, coordinated by a moderator helping DMs
bring their opinions closer [31]. The latter refers to obtain
the solution set of alternatives according to the collective
opinions of DMs.

Since consensus degree is employed to identify the agree-
ment level amongst all DMs, it is preferable that the set of
DMs can achieve the maximum consensus before applying
the selection process [31]. Thus, how to obtain the maximum
consensus for the given problem is a hot issue in GDM, and
various approaches and methods have been developed in
recent years. Hsu and Chen [32] presented a procedure for
aggregating the individual opinions into a group consensus
opinion. Herrera et al. [28] presented a consensus model in
group decisionmaking under linguistic assessments. Herrera
et al. [33] proposed a model for the consensus reaching
problem in heterogeneous group decisionmaking.Themodel
contains two types of linguistic consensus measures: linguis-
tic consensus degrees and linguistic proximities to guide the
consensus reaching process. A similar work was reported
in Herrera-Viedma et al. [34], where a model of consensus
support system was presented to assist the DMs in all
phases of the consensus reaching process of group decision
making problems with multigranular linguistic preference
relations. Mata et al. [35] proposed an adaptive consen-
sus support system model for the group decision making
problems defined in multigranular linguistic contexts. Xu
[36] developed an automatic approach to reaching consensus
among group opinions for multiple attribute group decision
making problems. It is worthwhile to note that in group
decision making problems, besides consensus degree, some
other measures might be used to indicate the final solution(s)
from different aspects. Wu and Xu [37] studied individual
consistency and group consensus in the process of group
decision making with multiplicative preference relations
and provided a decision support model to aid the group
consensus process while keeping an acceptable individual
consistency for each decision maker. In the present paper, we
simultaneously consider consensus and robustness degrees of
a solution for FGDM-MOP, providing the tradeoff between
the solutions’ acceptable degree among DMs and the ability
to cope with any change on preferences.

3. Problem Formulation

The result of multi-objective optimization problem, shown
as in (1), is a set of non-dominated solutions, denoted 𝑁𝐷.
The task of multi-objective decisionmaking is to select a final
solution among the non-dominated set.

It is usual that the selection process involves multiple
DMs. Suppose the decision group consists of𝑚DMs, denoted
as 𝐷
𝑗
(𝑗 = 1, 2, . . . , 𝑚). The weight vector of DMs is

represented as 𝜔 = (𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑚
), satisfying ∑𝑚

𝑗=1
𝜔
𝑗
= 1.

DMs express their preference by reference points in objective
space, denoted as𝑅

𝑗
= (𝑟
𝑗1
, . . . , 𝑟

𝑗𝑘
), where 𝑟

𝑗𝑖
(𝑖 = 1, . . . , 𝑘) is

the reference value of 𝑖th objective function given by the 𝑗th
DM.The reference values given byDMs for each objective can
be represented as triangular fuzzy numbers [38]; each value

can be expressed as a triple 𝑟
𝑗𝑖
= (𝑟lower
𝑗𝑖

, 𝑟most
𝑗𝑖

, 𝑟
upper
𝑗𝑖

) with its
membership function defined as

𝜇
𝐴
(𝑟) =

{{{{{{{{{{{{
{{{{{{{{{{{{
{

(𝑟 − 𝑟lower
𝑗𝑖

)

(𝑟most
𝑗𝑖

− 𝑟lower
𝑗𝑖

)
, 𝑟lower
𝑗𝑖

≤ 𝑟 ≤ rmost
𝑗𝑖

,

(𝑟
upper
𝑗𝑖

− 𝑟)

(𝑟
upper
𝑗𝑖

− 𝑟most
𝑗𝑖

)
, 𝑟most
𝑗𝑖

≤ 𝑟 ≤ 𝑟
upper
𝑗𝑖

,

0, otherwise,

(2)

where 𝑟most
𝑗𝑖

is the most possible value of the fuzzy number
𝐴 and 𝑟lower

𝑗𝑖
and 𝑟upper
𝑗𝑖

are, respectively, the lower and upper
bounds, used to reflect the fuzziness of the DMs’ preference.

Given the preferences of DMs, the consensus degree of
each solution in non-dominated set is denoted as 𝐶

𝑝
(𝑝 =

1, . . . , 𝑁), where 𝑁 is the number of non-dominated solu-
tions. For each solution in non-dominated set, its ability
to deal with the changes on DMs’ preference is termed as
robustness and is denoted as Rob

𝑝
(𝑝 = 1, . . . , 𝑁).

Thus, in FGDM-MOP, we need to find solutions which
are both acceptable by the group and robust against fuzzy
preferences of DMs. The decision making problem can be
formally modeled as follows:

obj. : max𝐶 (𝑥)

max Rob (𝑥) .
(3)

The calculation of consensus and robustness will be pre-
sented in the following section.

4. Consensus and Robustness Measures

Usually, in group decision making, consensus is employed
to measure the closeness among DMs’ opinions [31]. For
each final selected solution, it is expected to be as close to
the collective opinion as possible. The term of consensus
employed in this paper is slightly different from other
literatures. In Herrera et al. [28], Herrera-Viedma et al. [29]
consensus degree is used to reflect the closeness of the DMs’
preferences on a set of alternatives. While in our problem,
the DMs’ preferences are expressed as reference points in the
objective space.Thus, we use consensus to reflect not only the
closeness among DMs’ preferences, but also the distance of
each solution in the Pareto curve to the collective preference.
Since the preferences of DMs are fuzzy, the robustness is
employed to measure each solution’s ability of dealing with
any change on the preferences.

4.1. Consensus Measure. Once the reference points are given,
the consensus degree for each solution is calculated as follows.

(1) Distance between the solution and each reference
point.

For each solution 𝑥, the objective values are (𝑓
1
(𝑥),

. . . , 𝑓
𝑘
(𝑥)), where 𝑘 is the number of objectives. Since
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the reference value on each objective is expressed by fuzzy
number, the relative distance between the solution and refer-
ence point on each objective is given by a fuzzy distance. For

the reference value on the 𝑖th objective given by decision
maker 𝐷

𝑗
, that is, 𝑟

𝑗𝑖
= (𝑟lower
𝑗𝑖

, 𝑟most
𝑗𝑖

, 𝑟
upper
𝑗𝑖

), we employ the
concept of vertex method [39] to calculate the distance, given
as follows:

𝑑
𝑗𝑖
(𝑥) =

√(1/3) (𝑓
𝑖
(𝑥) − 𝑟lower

𝑗𝑖
)
2

+ (1/3) (𝑓
𝑖
(𝑥) − 𝑟most

𝑗𝑖
)
2

+ (1/3) (𝑓
𝑖
(𝑥) − 𝑟

upper
𝑗𝑖

)
2

𝑓
𝑖
(𝑥)max − 𝑓

𝑖
(𝑥)min ,

(4)

where 𝑗 = 1, . . . , 𝑚, 𝑖 = 1, . . . , 𝑘, 𝑓
𝑖
(𝑥)max, and 𝑓

𝑖
(𝑥)min,

respectively, represent maximum andminimum values of the
𝑖th objective function in a given set.

By aggregating the distancemeasures on all objectives, the
distance between the solution and the reference point given
by decision maker𝐷

𝑗
can be obtained and given as follows:

𝑑
𝑗
(𝑥) = 𝜙 (𝑑

𝑗𝑖
(𝑥) , 𝑖 = 1, . . . , 𝑘) , (5)

where 𝜙 is aggregation function, which is arithmetic mean in
this research. However, different aggregation operators could
be used. For example, if a weight vector is used in objective
functions, the aggregation operator could be replaced with
weighted aggregation.

(2) Aggregation of distances to obtain the consensus
degree.

The distance 𝑑
𝑗
(𝑥) indicates how far the solution is from

the individual decision maker’s preference. In order to obtain
the consensus measure among the group, the distances from
all DMs’ reference points need to be considered. In our case,
we use additive weight aggregation operator to calculate the
consensus degree, given as follows:

cd (𝑥) =
𝑚

∑
𝑗=1

𝜔
𝑗
𝑑
𝑗
(𝑥) , (6)

where𝑚 is the number of decision makers.

4.2. Robustness Measure. In order to evaluate the effect of
perturbations in the objective space of MOP, Bui et al.
[8] defined the preference robustness as follows: preference
robustness of a non-dominated solution is defined as the
minimum transition costs in decision space when the solution
is perturbed in objective space. Preference robustness is
specifically tailored for MOP and indicates the closeness of
other non-dominated solutions in the decision space.

Following the principle of Bui et al. [8], the termof robust-
ness used in this paper refers to the preference robustness.
Clearly, for each solution, given a neighborhood radius 𝛿 in
the n-dimensional decision space, if there aremore neighbors
and smaller distances, the solution is expected to be more
capable of moving to another non-dominated solution with a
less transition cost. It is worthwhile to note that the transition
cost varies depending on problem domain [8]. Thus, we

modify the preference robustness measure and approximate
it as follows:

rd (𝑥) = 1
󵄨󵄨󵄨󵄨𝑁𝐷𝛿

󵄨󵄨󵄨󵄨 + 𝜖
+
∑
𝑦∈𝑁𝐷𝛿

𝑑 (𝑥, 𝑦)
󵄨󵄨󵄨󵄨𝑁𝐷𝛿

󵄨󵄨󵄨󵄨 + 𝜖
, (7)

where𝑁𝐷
𝛿
represents the set of all non-dominated solutions

in the area of neighborhood with radius 𝛿 of the non-
dominated solution 𝑥, |𝑁𝐷

𝛿
| indicates the number of non-

dominated solutions in the neighborhood, and 𝜖 is a small
number used to avoid potential singularities in the denom-
inator, which is set to 1𝐸-06. 𝑑(𝑥, 𝑦) is the relative distance
between the solution 𝑥 and its neighbor 𝑦, given as follows:

𝑑 (𝑥, 𝑦) =
∑
𝑛

𝑞=1
(
󵄨󵄨󵄨󵄨󵄨𝑥𝑞 − 𝑦𝑞

󵄨󵄨󵄨󵄨󵄨 / (𝑥
max
𝑞

− 𝑥min
𝑞

))

𝑛
, (8)

where 𝑥max
𝑞

and 𝑥min
𝑞

, respectively, indicate themaximum and
minimum values of the 𝑞th decision variable in the non-
dominated set. It can be seen from (7) that the calculation
of robustness rd(𝑥) consists of two parts: the first part
reflects the number of neighbors in the neighborhood, while
the second part indicates the average distance of the non-
dominated solution from its neighbors.

5. Evolutionary Approach for GDM-MOO

It is clear that for both consensus and robustness measures,
the smaller cd(𝑥) and rd(𝑥), the better the consensus and
robustness a solution has.Thus, the decisionmaking problem
presented in (3) can be replaced as follows:

obj. : min cd (𝑥)

min rd (𝑥) .
(9)

We employ one of classical multi-objective evolution-
ary algorithms, NSGA-II [15], as the optimizer for multi-
objective optimization problem. NSGA-II is an elitism-based
multiobjective evolutionary algorithm, whose main feature
is an elitism-preserving operation. In NSGA-II, the parent
population and offspring are combined and sorted in order
to generate a population for the next generation. A non-
dominated sorting mechanism is performed to classify the
combined population into different ranks of nondomination.
A crowding-distance assignment is employed to ensure that
diversity is maintained among non-dominated solutions.
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Table 1: The fuzzy reference points given by DMs for M-BINH.

Decision maker (𝐷
𝑗
) 𝑟

𝑗1
𝑟
𝑗2

𝐷
1

(36.0, 40.0, 44.6) (8.2, 10.0, 13.3)
𝐷
2

(26.9, 30.0, 32.1) (13.0, 15.0, 19.5)
𝐷
3

(16.6, 20.0, 25.6) (3.9, 5.0, 8.5)
𝐷
4

(38.1, 45.0, 48.8) (12.4, 15.0, 17.3)
𝐷
5

(18.3, 20.0, 21.1) (17.8, 20.0, 22.4)

In the original NSGA-II, the mechanism of dominance
ranking is used to classify the population into a number
of layers, such that the first layer is the non-dominated set
in the population and with the rank value of 1. Similarly,
in the second layer, the solutions are non-dominated in
the population with the first layer removed and with the
rank value of 2. The sorting procedure is continued until
all solutions in the population are classified into a layer and
assigned a rank value. In order to perform the decision mak-
ing task and incorporate the DMs’ preference information
into the optimization process, we slightlymodify this ranking
procedure of NSGA-II.

The final solutions of problem in (9) is a subset of the
solutions of original multi-objective optimization problem in
(3). In other words, some of the solutions with the first non-
dominated rank will be excluded because they are dominated
for (9). Thus, after each generation, we modify the non-
dominated rank of the obtained solutions as follows:

Indrank
𝑝

=
{{
{{
{

Indrank
𝑝

, if Indrank
𝑝

= 1 ∧ Ind
𝑝

is nondominated for (9)

Indrank
𝑝

+ 1, else,
(10)

where Ind
𝑝
is the 𝑝th individual solution in the population

and Indrank
𝑝

indicates the non-dominated rank of the solution
Ind
𝑝
.

6. Experimental Results

We illustrate the proposed approach using and modifying a
well-known benchmark function. We investigated the prob-
lem introduced by Binh and Korn [40] with two objectives,
denoted as BINH and given as follows:

min𝑓
1
(𝑥
1
, 𝑥
2
) = 𝑥2
1
+ 𝑥2
2
,

min𝑓
2
(𝑥
1
, 𝑥
2
) = (𝑥

1
− 5)
2

+ (𝑥
2
− 5)
2

,
(11)

where −5 ≤ 𝑥
1
, 𝑥
2
≤ 10.

In BINH, the solutions evenly spread in both decision and
objective spaces. In order to illustrate the proposed approach
clearer, we modified the original BINH as a many-to-one
problem. Similar with in Bui et al. [8], the function’s domain
is divided into different parts. Each part uses a different
resolution for forming intervals that are mapped to a single

point in objective space. The modified BINH is denoted as
M-BINH and given as follows:

𝑥𝑐
𝑝
=
𝑥max
𝑝

+ 𝑥min
𝑝

2
,

𝑟
1 𝑝

= 0.2,

𝑟
2 𝑝

=
𝑥
𝑝

𝑥max
𝑝

,

𝑥
𝑝
=

{{{{{{{
{{{{{{{
{

𝑥
𝑝
, if 𝑥

𝑝
≤ 1

𝑥min
𝑝

+ floor(
𝑥
𝑝
− 𝑥min
𝑝

𝑟
1 𝑝

)𝑟
1 𝑝
, if 𝑥

𝑝
< 𝑥𝑐
𝑝

𝑥𝑐
𝑝
+ floor(

𝑥
𝑝
− 𝑥𝑐
𝑝

𝑟
2 𝑝

) 𝑟
2 𝑝
, else,

𝑝 = 1, 2,

min𝑓
1
(𝑥
1
, 𝑥
2
) = 𝑥2
1
+ 𝑥2
2
,

min𝑓
2
(𝑥
1
, 𝑥
2
) = (𝑥

1
− 5)2 + (𝑥

2
− 5)2,

(12)

where 0 ≤ 𝑥
1
, 𝑥
2
≤ 5, 𝑥min

𝑝
and 𝑥max

𝑝
(𝑝 = 1, 2), respectively,

indicate the lower and upper bounds of 𝑥-domain. 𝑟
1 𝑝

and
𝑟
2 𝑝

are resolutions for the different parts of the domain of
𝑥
𝑝
.
It is supposed that there are five DMs, whose weight coef-

ficients are (0.12, 0.20, 0.18, 0.22, 0.28). The fuzzy reference
points given by each decision maker are presented in Table 1.

6.1. Parameter Setting. Thepopulation size was set to 100, the
crossover rate was 0.95, and the mutation rate was 1/𝑛, where
𝑛 is the number of decision variables.The distribution indices
for crossover andmutation operators were, respectively, set to
𝜂
𝑐
= 20 and 𝜂

𝑚
= 10. The evolution process was terminated

after 400 generations. In the calculation of robustness, the
radius of neighborhood 𝛿 was set to 0.08. Furthermore, in
order to alleviate the effect of algorithm’s stochastic nature,
each experiment is run repeatedly for 10 times with different
random seeds.

6.2. Results Analysis. At first, we report the obtained non-
dominated solutions of M-BINH in both decision and objec-
tive spaces, respectively, presented in Figures 1 and 2. From
the figures, one can see that the non-dominated solutions
are discontinuous and each part with different resolution. In
particular, in the domain 𝑥

1
, 𝑥
2
∈ [0, 1], the non-dominated

solutions are dense, continuous, and evenly spread in both
decision and objective spaces. While for 𝑥

1
, 𝑥
2
∈ (1, 5], the

non-dominated solutions are divided into several parts with
different densities.

With reference points, we can obtain the non-dominated
solutions of interest to DMs, shown as in Figure 3. In the
figure, themost preferable values of the fuzzy reference points
given by DMs are represented as black stars, while the non-
dominated solutions obtained with preferences are indicated
by blue triangles. It can be seen that withDMs’ preference, the
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Figure 1: The obtained nondominated solutions of M-BINH prob-
lem, projected in decision space.
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Figure 2: The obtained non-dominated solutions of M-BINH
problem, projected in objective space.

obtained solutions are a subset of the non-dominated solu-
tions obtained without any preference. One may notice that
some solutions far from the reference points are included, for
example, the solutions with lower values on objective 𝑓

1
and

higher values on 𝑓
2
. This is because these solutions provide

higher values on robustness measures. Since the robustness
of a solution is measured in decision space, we also depicted
the projection of the non-dominated solutions obtained with
reference points on decision space, shown as in Figure 4.
Similarly, the solutions obtained with reference points are
denoted as blue triangles. From Figure 4, one can see that the
final selected non-dominated solutions are the oneswhich are
surrounded by other non-dominated solutions. Thus, these
non-dominated solutions can easilymove to another position
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Figure 3: The obtained non-dominated solutions of M-BINH
problem with reference points, projected in objective space.
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Figure 4: The obtained non-dominated solutions of M-BINH
problem with reference points, projected in decision space.

in the non-dominated set in the presence of perturbation on
decision space or DMs’ preference.

As indicated earlier, for each solution, consensus and
robustness measures are in conflict with each other to
a certain degree. In other words, in the final selected
non-dominated set, the values of consensus and robust-
ness of all solutions form another non-dominated set in
consensus-robustness space. Figure 5 shows such a conflic-
tion between consensus and robustness. In order to clearly
present the mapping among decision space, objective space,
and consensus-robustness space, Table 2 lists the decision
variables, objective functions, and consensus and robustness
measures of the final selected non-dominated set.
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Table 2: The decision variables, objective functions, and consensus and robustness measures of the final selected nondominated solutions
for M-BINH.

Index 𝑥
1

𝑥
2

𝑓
1

𝑓
2

cd rd
1 3.2576 2.2000 15.4516 10.8761 0.2412 0.1538
2 3.2006 2.2000 15.0836 11.0780 0.2449 0.1511
3 3.1648 3.2792 20.7687 6.3294 0.2112 0.1577
4 0.3035 0.4851 0.3274 42.4414 0.6620 0.1122
5 0.2967 0.2782 0.1654 44.4161 0.6840 0.1069
6 2.2000 3.2415 15.3476 10.9322 0.2399 0.1539
7 2.2000 3.1431 14.7190 11.2881 0.2461 0.1498
8 4.2535 4.1775 35.5441 1.2337 0.2687 0.1329
9 4.1674 4.1938 34.9552 1.3432 0.2652 0.1484
10 4.2658 4.2414 36.1870 1.1144 0.2726 0.1146
11 4.2581 4.2069 35.8298 1.1794 0.2704 0.1225
12 0.9549 1.2000 2.35185 30.8028 0.5242 0.1133
13 0.4089 0.4281 0.3505 41.9797 0.6487 0.1125
14 3.3027 3.2169 21.2564 6.0602 0.2105 0.2155
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Figure 5: The consensus and robustness measures of the obtained
non-dominated solutions of M-BINH problem with reference
points.

7. Conclusion

In many real-world decision problems, a set of decision
makers need to trade off between multiple conflicting
objectives then provide their preferences to select the final
solution(s). This paper studies such an amalgamation of
group decisionmaking (GDM) andmulti-objective problems
(MOP), referred to as GDM-MOP. As the limitation of the
DMs’ background and/or knowledge structure, it is usually
hard for them to give precise preference information. Thus,
the GDM-MOP with fuzzy preference is addressed in this
research, called as fuzzy GDM-MOP (FGDM-MOP). In the
context of GDM, consensus is used to indicate the distance
of a solution from the group preference. In the presence
of uncertain preference, robustness is suggested to measure
the ability of coping with change on preference. Thus, in
the process of FGDM-MOP, it is preferable to pursue both

great consensus and robustness degrees. This paper firstly
describes the mathematical model of FGDM-MOP. Then, a
new multi-objective model is introduced for FGDM-MOP,
where the measures of consensus and robustness are simul-
taneously considered. To obtain the refined non-dominated
set of new established multi-objective model, one of the
classical multi-objective evolutionary algorithms—NSGA-
II—is employed andmodified to solve the problem.However,
how to identify the final solution with the consideration of
consensus and robustness highly depends on the decision
makers’ preferences on different measures. We leave this new
decisionmaking problem to our future research.We examine
a benchmark function to illustrate the concept and procedure
of the proposed approach. In our future study, some real cases
will be addressed through the proposed approach.
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