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This paper introduces a new holder with application on digital control systems.This holder is a combination of fractional order hold
(FROH) and zero-order hold (ZOH) that has the capability of both holders and a frequency response better than both of ZOH and
FROH. For the stability of zeros of the sampled system two theorems are stated and proved with the assumption that the sampling
period is very small. Also simulation results are studied to show the effectiveness of the proposed holder and better performance
results in comparison with ZOH and FROH.

1. Introduction

In digital control systems, the output of the system is sam-
pled by an analog-to-digital converter (ADC) and then com-
pared with digital reference inputs that are generated by the
computer. The difference is given to the controller, and the
output of the controller needs to be given to a holder block in
order to give to the continuous time system.The holder block
generates continuous time signal between sampling times,
and the more common and usual holders are ZOH and FOH.
The ZOH is the most common holder used as digital-to-
analog converter (DAC) in industry. FROH is similar to first
order hold (FOH) but has a variable slope [1], and due to an
adjustable parameter, it has a suitable capability for placement
of additional produced zeros [2]. Holders such as ZOH and
FOH which are used in digital control systems sometimes
generate additional non-minimum-phase zeros in z-domain
[2]. In the design of a feedback control system, zeros play an
important role, and most of the design methods based on
pole-zero cancellation require that zeros of the system be
stable. However, in discretizing continuous time systemswith
sample and hold, the stability of zeros of the sampled system
is not necessarily preserved. Thus it is necessary to know the
conditions under which we can obtain a minimum-phase

sampled system. Depending on the relative degree of the
system, FOH generates non-minimum-phase zeros and ZOH
maps additional generated zeros to unit circle in z-plane.The
number of the additional generated zeros depends on the
relative degree of the system. Both FOH and ZOH cannot
control the location of additional generated zeros. Based on
disadvantages of ZOH and FOH, FROH was introduced to
have non-minimum-phase system. Using adjustable slope of
holder in FROH, very small sampling time guarantees that
additional generated zeros of the sampled systems are mini-
mum-phase in the system with relative degrees of 0, 1, and 2.

Replacing ZOH with FROH in a digital control system,
the ability to improve the stability of zeros of system is shown
in [2]. Compared with ZOH, the stability of zeros of the
sampled system can be improved by using FROH, and the
conditions under which the FROH has better performance
than ZOH have been clarified theoretically in [3]. Most of
the researches on the properties of zeros of the sampled sys-
tem are made under the assumption that ZOH, FOH, or the
FROH is employed [4–6].

In order to have minimum-phase additional generated
zeros, when using FROH in the systems with relative degree
one, the slope of the holder (𝛽) should be 𝛽 > −1 and in
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systems with relative degree two, the slope of the holder
should be −1 < 𝛽 < 0 [5].

In this paper, a new holder to be applied to digital control
systems is introduced; we named it mixed fractional order
hold (MFROH). MFROH is a combination of FROH and
ZOH that has the capabilities of both holders and has a fre-
quency response better than ZOH and FROH. MFROH
places additional generated zeros better than FROH and
ZOH. The number of these additional zeros depends on the
relative degree of the system, and hence it is difficult to design
a digital controller for systems with large relative degrees
[3]. MFROH has two adjustable parameters and has the same
capability as FROH with respect to placement of additional
generated zeros for different relative degrees and increases the
range of acceptable slope of the holder, therefore it improves
the capability of the holder in zero placements. At low fre-
quencies, FROH is a better approximation to an ideal low pass
filter than ZOH, but at high frequencies, ZOH is better than
FROH. Because of the fact that MFROH is a combination
of ZOH and FROH, it has the same behavior as FROH at low
frequencies and the same behavior as ZOH at high frequen-
cies, and hence by tuning its two parameters, we can have
a better frequency response than ZOH and FROH.Therefore,
with adjusting the parameters of MFROH, the amplitude
of frequency response of MFROH would be very similar to
ideal low-pass filter. MFROH has the capability that it can be
converted to ZOH or FROH by tuning one of its parameters.

In Section 2 the structure of MFROH is introduced, and
the frequency response of MFROH is given in Section 3.
Stability studies of zeros in sampled system and two theorems
for stability of zeros are stated and proved in Section 4. In
Section 5 simulation results are studied, and conclusion is
stated in Section 6.

2. The Structure of MFROH

MFROH is a line with slope 𝛽 over the interval [𝑘𝑇, 𝑘𝑇+Δ𝑇]
that coincides with the output at instant 𝑡 = 𝑘𝑇. Also it is
a line with zero slope over the interval [𝑘𝑇 + Δ𝑇, 𝑘𝑇 + 𝑇]

with the continuity preserving at 𝑡 = 𝑘𝑇 + Δ𝑇. A schematic
of MFROH is shown in Figure 1 and is described by the
following equations:

𝑢 (𝑡) =

{{{{{{{{

{{{{{{{{

{

𝑢 (𝑘𝑇) + 𝛽
𝑢 (𝑘𝑇) − 𝑢 ((𝑘 − 1) 𝑇)

𝑇
(𝑡 − 𝑘𝑇)

𝑘𝑇 ≤ 𝑡 ≤ (𝑘 + Δ) 𝑇

𝑢 (𝑘𝑇) + 𝛽
𝑢 (𝑘𝑇) − 𝑢 ((𝑘 − 1) 𝑇)

𝑇
(Δ𝑇)

(𝑘 + Δ) 𝑇 ≤ 𝑡 ≤ (𝑘 + 1) 𝑇 0 ≤ Δ ≤ 1,

(1)

where 𝑇 is the sampling time, 𝛽 is the adjustable parameter
of holder slope over the interval [𝑘𝑇, 𝑘𝑇 + Δ𝑇], and Δ is the
adjustable parameter describing the location of slope varia-
tion over interval [𝑘𝑇, 𝑘𝑇 + Δ𝑇]. The impulse response of
MFROH according to (1) is shown in Figure 2. According to
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Figure 1: Samples in MFROH.
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Figure 2: Impulse response of MFROH.

(1) and Figure 2, the transfer function of MFROH is given by
the following equation:

𝐺𝛽,Δ =
(1 − 𝑒−𝑠𝑇) (1 − Δ𝛽𝑒−𝑠𝑇)

𝑠
+
𝛽 (1 − 𝑒−𝑠𝑇) (1 − 𝑒−Δ𝑠𝑇)

𝑇𝑠2

=
(1 − 𝑒

−𝑠𝑇
)

𝑠
{(1 − Δ𝛽𝑒

−𝑠𝑇
) +

𝛽 (1 − 𝑒
−Δ𝑠𝑇

)

𝑇𝑠
} .

(2)

In [7], implementation of FROH is discussed using a lot of
ZOH.GivenMFROH is the combination of ZOH and FROH,
according to [7] MFROH can be implemented using ZOH
blocks in practical application. The new proposed holder de-
vice has limits in frequency synthesismethods based on delta,
bilinear, or tustins transformations.

3. Frequency Response of MFROH

In a discrete time system the high frequency terms of sampled
signal that are generated in the sampling process must be
attenuated before applying the signal to continuous time
systems. In order to attenuate the high frequency terms of a
sampled signal, it is usually fed to a hold circuit.Hold circuit is
a low-pass filter that converts the sampled signal to a contin-
uous-time signal. An ideal low-pass filter or an ideal holder
converts sampled signal to continuous-time signal with no
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Figure 3: Frequency response of an ideal filter or an ideal holder.
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Figure 4: Amplitude of frequency responses of ZOH and FROH for
different values of 𝛽.

high frequency terms, but in the real world there is no such
an ideal filter [8].

3.1. Frequency Response Specifications. Sampling process gen-
erates many additional terms in addition to the main term,
and the ideal filter attenuates all these additional terms to
zero and only passes the main term. Therefore, a practical
filter is such a filter that passes the main term without any
frequency distortion and attenuates all additional terms as
much as possible. This means that the frequency response
of practical filter must resemble to that of the ideal filter in
Figure 3 as much as possible.

The amplitudes of frequency responses of ZOH and
FROH for different values of 𝛽 with sampling time 𝑇 =

0.01 sec are shown in Figure 4.
Regarding Figure 4, for negative values of 𝛽 and reducing

𝛽, the amplitude of frequency response at 𝜔 = 𝜔𝑠/2 is reduced
dramatically, and it is not smooth and has large peaks after
its first minimum, that is, for 𝛽 = −1. The amplitude of
frequency response increases after its first minimum in 𝜔 =

𝜔𝑠, and the filter passes undesirable signals generating from
sampling around 𝜔 = 𝜔𝑠 and leads to frequency aliasing.
Therefore, the optimal value of𝛽 should be chosen among the

Table 1: FROH’s amplitude of the frequency responses for different
values of 𝛽 at 𝜔 = 𝜔𝑠/2.

𝛽 −1 −0.4 0 0.4 1
𝐺ℎ((𝑗𝜔𝑠)/2)

 × 10
3 3.96 4.17 6.4 9.13 13.4
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Figure 5: Amplitude of the frequency responses of ZOH and FROH
for small 𝛽.

positive values of𝛽 in FROH. By comparing the amplitudes of
frequency responses of ZOH and FROH, it can be seen from
Table 1 that for positive values of 𝛽 at 𝜔 = 𝜔𝑠/2, the decrease
in the ZOH is much more than the decrease in the FROH.

In Figure 5, the amplitudes of the frequency responses
of ZOH and FROH for small values of 𝛽 are shown. In low
frequencies, the transfer function of FROH has a better
approximation of ideal low-pass filter than the transfer func-
tion of ZOH, because at low frequencies the amplitude of
the frequency response of ZOH is reduced much more than
FROH, but at high frequencies ZOH is better.

The amplitudes of the frequency response of MFROH for
different values of 𝛽 and Δ are shown in Figure 6. According
to Figure 6 and based on two adjustable parameters of
MFROH, it is possible to adjust 𝛽 andΔ so that the amplitude
of the frequency response of MFROH becomes very similar
to that of the ideal low-pass filter that is shown in Figure 3.

3.2. Adjusting Parameters of MFROH. In order to have the
optimal values of 𝛽 andΔ in the scense of frequency response
of MFROH, a proper cost function of ideal low-pass filter
must be defined. It is desirable that at low frequencies the
amplitude of the frequency response of MFROH is flat and
for frequencies higher than 𝜔 = 𝜔𝑠/2, it is falling sharply.
Also it is preferred that the phase of frequency response of
MFROH in passband is flat as much as possible. We assume
that the Nyquist sampling condition is satisfied, and therefore
passband defines in frequency interval [0, 0.1𝜔𝑠]. Optimal 𝛽
and Δ are those that minimize the following cost function:

(Δ opt, 𝛽opt) ≜ {(Δ, 𝛽) : 𝐽 (Δ, 𝛽) is minimum} , (3)
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Figure 6: Amplitude of the frequency response of MFROH for different values of 𝛽 and Δ.
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Figure 7: Amplitude and phase of the frequency response of ZOH and MFROH with optimal 𝛽 and Δ.

where 𝐽(Δ, 𝛽) = 𝜔1𝐽1(Δ, 𝛽) + 𝜔2𝐽2(Δ, 𝛽) + 𝜔3𝐽3(Δ, 𝛽). In
weighted cost function, 𝐽1(Δ, 𝛽), 𝐽2(Δ, 𝛽) and 𝐽3(Δ, 𝛽) are
defined as follows:

𝐽1 (Δ, 𝛽) = Max 
𝐺 (𝑗𝜔)

 −
𝐺 (𝑗0)


 , 𝜔 ∈ [0, 0.1𝜔𝑠] ,

𝐽2 (Δ, 𝛽) = Max ∠𝐺 (𝑗𝜔) − ∠𝐺 (𝑗0)
 , 𝜔 ∈ [0, 0.1𝜔𝑠] ,

𝐽3 (Δ, 𝛽) = Max 
𝐺 (𝑗𝜔)


 , 𝜔 ∈ [𝜔𝑠,∞) .

(4)

To obtain optimal 𝛽 and Δ, 𝜔2 is set as 1/𝜋 and 𝜔1 and 𝜔3
are set to one.

The result of optimization process is obtained as 𝛽opt =
0.4 and Δ opt = 0.2 in which the genetic algorithm as a com-
mon optimization method is used. The amplitude and phase
of the frequency response of MFROH with optimal 𝛽 and Δ
in comparison with frequency response of ZOH is shown in
Figure 7.

As shown in Figure 7, both amplitude and phase of fre-
quency response of optimal MFROH in passband are flatter
than those of ZOH.

4. Stability of Zeros in Sampled System

About the importance of zeros of sampled system, it is better
to consider that the stability properties of the discrete-time
zeros do not influence the closed-loop stability, but, as shown

in [9], unstable discretized zeros can lead to intersample
ripple in some cases. Several techniques for control systems
design are based on the cancellation of the system zeros by the
controller. Unfortunately, such methods cannot be applied
when the system has unstable zeros; see for example [10] and
references therein.Therefore the study of the zeros of sampled
system is important; it was studied for the ZOH devices in
[11]. Also the stability properties of the FROH zeros (when
𝑇 → 0) were analyzed by Ishitobi [5].

In this part of the paper, the stability properties of
additional generated zeros ofMFROHare analyzed. Applying
MFROH, it is necessary to adjust parameters of MFROH so
that the zeros of the sampled system lie inside the unit circle.
However, selecting suitable values for 𝛽 and Δ for any given
sampling period is quite a difficult task. In view of practical
control engineering, the sampling period is usually small.
Thus, in this paper, we concentrate on the case in which
the sampling period 𝑇 is small. For sufficient small sampling
time 𝑇, the following theorem gives the stability of additional
generated zeros of the sampled system in MFROH.

Theorem 1. Suppose that 𝐺𝑝(𝑠) is a strictly proper nth-order
transfer function and can be expressed as

𝐺𝑝 (𝑠) = 𝐾
(𝑠 + 𝑏1) ⋅ ⋅ ⋅ (𝑠 + 𝑏𝑚)

(𝑠 + 𝑎1) ⋅ ⋅ ⋅ (𝑠 + 𝑎𝑛)
, 𝐾 ̸= 0, (5)
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where 𝑎𝑖 and 𝑏𝑖 ∈ 𝐶, (𝑖 = 1, . . . , 𝑚) and 𝐾 ̸= 0. Then the z-
transform of the MFROH combined with the system (5) and
for very small 𝑇 is

𝐻𝛽,Δ (𝑧) = 𝑍 {𝐻𝛽,Δ (𝑠)} = 𝑍 {𝐺𝛽,Δ (𝑠) 𝐺𝑝 (𝑠)}

= 𝐾
𝑇
𝑛−𝑚

(𝑛 − 𝑚)!

(𝑧 − 1)
𝑚
𝐸𝑛−𝑚 (𝑧, Δ, 𝛽)

(𝑧 − 1)
𝑛
𝑧

,

(6)

where

𝐸𝑛−𝑚 (𝑧, Δ, 𝛽)

= (𝑧 − Δ𝛽) 𝐵𝑛−𝑚 (𝑧) +
𝛽

𝑛 − 𝑚 + 1

𝑧𝐵𝑛−𝑚+1 (𝑧)

𝑧 − 1

−
𝛽

𝑛 − 𝑚 + 1

𝐵𝑛−𝑚+1 (𝑧, Δ)

𝑧 − 1
,

(7)

𝐵𝑝 (𝑧) = 𝑏𝑝1𝑧
𝑝−1

+ 𝑏𝑝2𝑧
𝑝−2

+ ⋅ ⋅ ⋅ + 𝑏𝑝𝑝,

𝑏𝑝𝑘 =

𝑘

∑
𝑖=1

(−1)
𝑘−𝑖
𝑖
𝑝
(
𝑝 + 𝑙

𝑘 − 𝑖
) , (𝑘 = 1, . . . , 𝑝) ,

(8)

𝐵𝑝 (𝑧, Δ)=𝑏𝑝0 (Δ) 𝑧
𝑝
+ 𝑏𝑝1 (Δ) 𝑧

𝑝−1
+ ⋅ ⋅ ⋅ + 𝑏𝑝𝑝 (Δ) ,

𝑏𝑝𝑘 (Δ) =

𝑝−𝑘

∑
𝑙=0

(−1)
𝑝−𝑘−𝑙

(𝑙 + Δ)
𝑝
(

𝑝 + 𝑙

𝑝 − 𝑘 − 𝑙
) ,

(𝑘 = 0, 1, . . . , 𝑝) ,

(9)

and ( 𝑛𝑚 ) indicates 𝑛!/(𝑛 − 𝑚)𝑚!

Note. B𝑛−𝑚+1(z,Δ) and B𝑛−𝑚+1(z) have term (𝑧 − 1), and
E𝑛−𝑚+1(z,Δ) is written as (7) for simplicity.

Before proving Theorem 1, we need some preliminary
lemmas.

Lemma 2 (see [4]). The z-transform of [(1 − 𝑒−𝑠𝑇)/𝑠]𝐺𝑝(𝑠) for
very small T is as follows:

lim
𝑇→0

𝑍{
1 − 𝑒−𝑠𝑇

𝑠
𝐺𝑝 (𝑠)} = 𝐾

𝑇
𝑛−𝑚

(𝑛 − 𝑚)!

(𝑧 − 1)
𝑚
𝐵𝑛−𝑚 (𝑧)

(𝑧 − 1)
𝑛 .

(10)

Lemma 3 (see [4]). The z-transform of [(1−𝑒−𝑠𝑇)/𝑠2]𝐺𝑝(𝑠) for
very small T is as follows:

lim
𝑇→0

𝑍{
1 − 𝑒−𝑠𝑇

𝑠2
𝐺𝑝 (𝑠)}

= 𝐾
𝑇
𝑛−𝑚+1

(𝑛 − 𝑚 + 1)!

(𝑧 − 1)
𝑚
𝐵𝑛−𝑚+1 (𝑧)

(𝑧 − 1)
𝑛+1

,

(11)

where B𝑛−𝑚+1(z) is defined in (8).

Lemma 4 (see [7]). The z-transform of [(1 − 𝑒
−𝑠𝑇)/

𝑠2]𝐺𝑝(𝑠)𝑒
−𝑠Δ𝑇 for very small T is as follows:

lim
𝑇→0

𝑍{
1 − 𝑒−𝑠𝑇

𝑠2
𝑒
−𝑠Δ𝑇

𝐺𝑝 (𝑠)}

= 𝐾
𝑇𝑛−𝑚+1

(𝑛 − 𝑚 + 1)!

(𝑧 − 1)
𝑚
𝐵𝑛−𝑚+1 (𝑧, Δ)

(𝑧 − 1)
𝑛+1

𝑧
,

(12)

where 𝐵𝑛−𝑚+1(𝑧, Δ) is defined in (9).

Proof of Theorem 1. Using the transfer function ofMFROH in
(2), the transfer function of the discrete systemH𝛽,Δ(s) can be
expressed as follows:

𝐻𝛽,Δ (𝑠) = {
(1 − 𝑒−𝑠𝑇) (1 − Δ𝛽𝑒−𝑠𝑇)

𝑠

+
𝛽 (1 − 𝑒−𝑠𝑇) (1 − 𝑒−Δ𝑠𝑇)

𝑇𝑠2
}𝐺𝑝 (𝑠)

= (1 − Δ𝛽𝑒
−𝑠𝑇

)
(1 − 𝑒−𝑠𝑇)

𝑠
𝐺𝑝 (𝑠)

+
𝛽

𝑇

(1 − 𝑒−𝑠𝑇)

𝑠

𝐺𝑝 (𝑠)

𝑠

−
𝛽

𝑇

(1 − 𝑒−𝑠𝑇)

𝑠

𝐺𝑝 (𝑠)

𝑠
𝑒
−𝑠Δ𝑇

.

(13)

The z-transform of H𝛽,Δ(s) can be written as follows:

𝐻𝛽,Δ (𝑧) = 𝑍 {𝐻𝛽,Δ (𝑠)} = 𝑍 {𝐺𝛽,Δ (𝑠) 𝐺𝑝 (𝑠)} = (1 − Δ𝛽𝑧
−1
)

𝑍{
(1 − 𝑒

−𝑠𝑇
)

𝑠
𝐺𝑝 (𝑠)} +

𝛽

𝑇
𝑍{

(1 − 𝑒
−𝑠𝑇

)

𝑠2
𝐺𝑝 (𝑠)}

−
𝛽

𝑇
𝑍{

(1 − 𝑒−𝑠𝑇)

𝑠2
𝐺𝑝 (𝑠) 𝑒

−𝑠Δ𝑇
} .

(14)

Combining Lemmas 2, 3, and 4 with (14) and after some sim-
plification we would have

𝐻𝛽,Δ (𝑧) = 𝐾
𝑇𝑛−𝑚

(𝑛 − 𝑚)!

(𝑧 − 1)
𝑚
𝐸𝑛−𝑚 (𝑧, Δ, 𝛽)

(𝑧 − 1)
𝑛
𝑧

. (15)

Theorem 5. In this theorem one studies the additional gen-
erated zeros of the sampled system in MFROH in which, one
assumes that the zeros of the transfer function of the system are
minimum-phase in the s-plane.

Case 1 (𝑛 − 𝑚 = 1). The sufficient condition that all zeros
of H𝛽,Δ(z) in 0 < 𝑇 ≪ 1 is minimum phase is that all zeros
of 𝐺𝑝(s) is minimum phase and 𝛽 and Δ satisfy the following
condition:

𝛽 >
1

Δ (Δ − 2)
. (16)
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The boundary curve of (16) is as follows:

𝛽 =
1

Δ (Δ − 2)
. (17)

In FROH for 𝑛 − 𝑚 = 1, the sufficient condition for stable
zeros of H𝛽(z) with 0 < 𝑇 ≪ 1 is that all zeros of G𝑝(s) are
stable and −1 < 𝛽 [2]. In this method, the acceptable region
of 𝛽 to have stable zeros of sampled system is extended due
to the additional parameter Δ. Therefore, with decreasing Δ,
the lower bound of 𝛽 increases; that is, for Δ = 0.1, zeros
of sampled system are stable for −5.26 < 𝛽. For Δ = 1 as
we mentioned before, the behavior of MFROH switches to
FROH, and we can see from [5] and (16) that the region of 𝛽
is −1 < 𝛽.

Case 2 (𝑛 − 𝑚 = 2). The sufficient condition that all zeros
of H𝛽,Δ(z) for 0 < 𝑇 ≪ 1 is minimum phase is that all zeros
of G𝑝(s) is minimum phase and the following conditions are
satisfied:

𝛽 >
1

Δ (Δ − 2)
, 𝛽 < 0. (18)

The boundary curve of (18) is as follows:

𝛽 =
1

Δ (Δ − 2)
, 𝛽 = 0. (19)

In FROH for 𝑛−𝑚 = 2, the sufficient condition for stable zeros
of H𝛽(z) with 0 < 𝑇 ≪ 1 is that all zeros of G𝑝(s) are stable
and −1 < 𝛽 < 0 [2], whereas in this method, with additional
parameter Δ we can extend the acceptable region of 𝛽 for
stability of zeros of sampled system. Note that by decreasing
Δ, the range of acceptable 𝛽 increases.

Case 3 (𝑛 − 𝑚 ≥ 3). At least one of the zeros ofH𝛽,Δ(z) will
be unstable when 0 < 𝑇 ≪ 1, but compared to FROH we can
place the non-minimum-phase zeros by adjusting Δ.

Proof of Theorem 5. From Theorem 1, the additional gener-
ated zeros of sampled system in z-plane can be obtained as
follows:

𝐸𝑛−𝑚 (𝑧, Δ, 𝛽) = 0. (20)
For 𝑛 − 𝑚 = 1, we have

𝐸1 (𝑧, Δ, 𝛽) = (−
1

2
𝛽Δ
2
+ 𝛽Δ + 1) 𝑧 + (

1

2
𝛽Δ
2
− 𝛽Δ) . (21)

In order to have a stable zero for E1(z,Δ,𝛽), (22) must be
satisfied:



(1/2) 𝛽Δ
2 − 𝛽Δ

− (1/2) 𝛽Δ2 + 𝛽Δ + 1


< 1 → −𝛽Δ

2
+ 2𝛽Δ + 1

> 0 → 𝛽 >
1

Δ (Δ − 2)
.

(22)

For 𝑛 − 𝑚 = 2, we have

𝐸2 (𝑧, Δ, 𝛽) = (1 − 𝛽Δ
2
+ 𝛽Δ +

1

3
𝛽Δ
3
) 𝑧
2

+ (−
2

3
𝛽Δ
3
+ 𝛽Δ
2
+ 1) 𝑧 + (

1

3
𝛽Δ
3
− 𝛽Δ) .

(23)

By applying the Jury stability criteria to (23), E2(z,Δ,𝛽), the
following constraints must be satisfied:

(1) 𝐸2 (1, Δ, 𝛽) > 0,

(2) 𝐸2 (−1, Δ, 𝛽) > 0,

(3)

(
1

3
) 𝛽Δ
3
− 𝛽Δ


<

1 − 𝛽Δ

2
+ 𝛽Δ + (

1

3
) 𝛽Δ
3

.

(24)

Combination of the above three constraints and after some
simplification we have

−𝛽Δ
2
+ 2𝛽Δ + 1 > 0, (25)

𝛽Δ
2
(2Δ − 3) > 0. (26)

In (26), since 0 < Δ < 1, hence,Δ2(2Δ−3) < 0will be satisfied
for all Δ. Therefore, (25) and (26) will be simplified as (27)

𝛽 >
1

Δ (Δ − 2)
, 𝛽 < 0. (27)

For 𝑛 − 𝑚 = 3 we have

𝐸3 (𝑧, Δ, 𝛽) = (−
1

4
𝛽Δ
4
+ 𝛽Δ
3
−
3

2
𝛽Δ
2
+ 𝛽Δ + 1) 𝑧

3

+ (
3

4
𝛽Δ
4
− 2𝛽Δ

3
+ 3𝛽Δ + 4) 𝑧

2

+ (−
3

4
𝛽Δ
4
+ 𝛽Δ
3
+
3

2
𝛽Δ
2
− 3𝛽Δ + 1) 𝑧

+ (
1

4
𝛽Δ
4
− 𝛽Δ) .

(28)

By applying the Jury stability criteria to (28), E3(z,Δ,𝛽), the
following constraints must be satisfied:

(1) 𝐸3 (1, Δ, 𝛽) > 0,

(2) 𝐸3 (−1, Δ, 𝛽) < 0,

(3)

(
1

4
) 𝛽Δ
4
− 𝛽Δ



<

− (

1

4
) 𝛽Δ
4
+ 𝛽Δ
3
− (

3

2
) 𝛽Δ
2
+ 𝛽Δ + 1


.

(29)

Since all of the above conditions are not satisfied simultane-
ously, then E3(z,Δ,𝛽) has at least one unstable zero.

5. Simulation Results

In this part, simulation results of the comparison among the
proposed holders, ZOH and FROH, are given. In Figure 8,
a continuous system is shown with unity feedback that the
sampler and holder is in feedback path.

The simulation result of applying ZOH, FROH, and
MFROM in the holder box in Figure 8 is shown in Figure 9.
In Figure 9(a) step response of the closed-loop system is
shown, and in Figure 9(b) a special part of the response is
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Figure 8: A continuous system with a holder.
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Figure 9: (a) Step response of the closed-loop continuous system
and digital control system when using MFROH, FROH, and ZOH.
(b) Focusing on the step response to show the effect of different
holders.

shown to show the difference of the holders. As shown from
Figure 9, it is easy to see that the response of the system in
MFROM ismore similar to the continuous time response (no
holder), and it is because of the fact that inMFROH there are
two adjusting parameters that using them we can make the
response more similar to the continuous time response of the
system.

6. Conclusion

In this paper we introduced a new holder for digital control
systems that has a better performance in terms of the

frequency response than ZOH, FOH, and FROH and has
better frequency response.This new holder has the capability
of placing additional generated zeros similar to FROH. But
the ranges of adjusting parameters in MFROH increase, and
this is the advantage of MFROHwhen the holder parameters
need to be varied. Simulation results shown in Section 5 show
the efficiency of the proposed holder in comparison with
typical holders.
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