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A novel scheme to obtain the optimum tissue heating condition during hyperthermia treatment is proposed. To do this, the
effect of the controllable overall heat transfer coefficient of the cooling system is investigated. An inverse problem by a conjugated
gradient with adjoint equation is used in our model. We apply the finite difference time domain method to numerically solve the
tissue temperature distribution using Pennes bioheat transfer equation. In order to provide a quantitative measurement of errors,
convergence history of the method and root mean square of errors are also calculated. The effects of heat convection coefficient of
water and thermal conductivity of casing layer on the control parameter are also discussed separately.

1. Introduction

Hyperthermia treatment is recognized as an adjunct cancer
therapy technique following surgery, chemotherapy, and
radiation techniques. In hyperthermia, the tumor cells will be
overheated, typically 40–45∘C, to damage or kill the cancer
cells [1, 2]. The determination of temperature distribution
throughout the biological tissue by solving the simple Pennes
bioheat Equation (Eq) and increment of tumor temperature
to therapeutic value avoiding the overheating of the healthy
tissue are important issues of investigation in hyperthermia
[3]. Because of obvious reasons, which are not going to be
discussed here, the water (or any other dielectric liquid) bolus
is known as a necessary element of all contact applicators
used in clinics in order to provide local heating of malignant
tumors by means of electromagnetic (EM) energy [4]. There
are numerous papers discussing the effect of the water cou-
pling bolus on the temperature of surface and tissue specific
absorption rate (SAR) during hyperthermia treatment [5, 6].
Sherar et al. [7] presented a new way to design the water

bolus for external microwave applicators which increased the
available treatment field size by removing the central hotspot
caused by the increased power from the applicator in this
region. They also used beam shaping bolus with an array
of saline-filled patches inside the coupling water bolus for
superficial microwave hyperthermia [8]. Ebrahimi-Ganjeh
and Attari [9] numerically computed and compared both
the SAR distributions and effective field size in the presence
and absence of water bolus. Neuman et al. [10] examined the
effect of the various thickness of water bolus coupling layers
on the SAR patterns from dual concentric conductor based
on the conformal microwave array superficial hyperthermia
applicators.

One aspect of our investigation is optimal control theory,
which is defined as amathematical approach of manipulating
the parameters affecting the behaviour of a system to produce
the desired or optimal outcome. A recent development in this
field is the optimal control of systemswith distributed param-
eters which especially include the biological tissue in course
of the hyperthermia treatment planning [11]. Butkovasky [11]
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treated the fundamentals in the theory of optimal control
of systems with distributed parameters. Wagter [12] studied
an optimization procedure to calculate the transient temper-
ature profiles in a plane tissue by multiple EM applicators.
Kuznetsov [13] used the minimum principle of Pontryagin
to solve an optimum control problem for heating a layer
of tissue in order to destroy a cancerous tumor. Although
the Levenberg-Marquardt and simplexmethods are common
techniques for solving optimization problems, we tend to
develop a methodology to numerically optimize hyperther-
mia treatments based on an inverse heat conduction problem
by using the conjugate gradient method with an adjoint
equation (CGMAE). One of the advantages of the CGMAE
is its insensitivity to initial variables; however, it requires
a numerical method for each iteration to determine the
temperature fields, which involves computing the gradients
of objective function. In the last two decades, CGMAE has
been widely used in the solution of the general inverse
heat transfer problems (IHTPs) regarding the optimization
procedure [14] especially in therapeutic applications [15–17].
The most common approach for determining the optimal
estimation of the model parameters, functions, or boundary
conditions is to minimize an objective function.

In this study, the objective function to be minimized is
based on the criterion ofminimal square root of the difference
between the desired temperature and the computed one. We
demonstrate that optimum heating conditions inside the bio-
logical tissue, which is caused by an applied radiofrequency
(RF) heat source, can be numerically attained within the
total time of the process by means of controlling the overall
heat transfer coefficient associated with the cooling system.
To do this and to reach the appropriate configuration of
cooling system, thermal properties of water bolus and casing
layer are considered as variable parameters. Recently, few
studies have been conductedwith the aimof beam-forming in
hyperthermia which are based on utilizing the saline patches
inserted in the cooling system or the solid absorbing blocks
between the applicator and water bolus [7, 8, 18]. However,
best to our knowledge, none of them has used an inverse
model to control the thermal or electrical properties of these
additional patches or blocks. In the perspective of the model,
we believe that the desired temperature profile inside the
tumor according to its shape and size can be achieved by
inversely optimizing the shape, thickness, electrical, and ther-
mal properties of solid or liquid patches which are inserted
in the cooling system. Therefore, the proposed algorithm
developed in this study could be effectively used by physicians
to design an optimal treatment plan in a large variety of
therapeutic treatments.

2. Optimization Scheme

2.1. Governing Equations and Model Geometry. Schematic
diagram of the studied control zone is shown in Figure 1.
In order to simplify demonstrating the methodology, heat
transfer model is assumed to be one-dimensional. It should
be noted that although we could develop a model with an
irregular shape of a tumor embedded in the healthy tissue,
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Figure 1: Schematic diagram of control zone. Cooling system
consists of water bolus embedded in a casing layer which is placed
between the applicator and biomedia. Regions I and II represent the
healthy tissue and tumor region, respectively.

a homogeneous slab of tissue, including the tumor region, is
considered. Temperature distribution inside the tissue could
be obtained by solving the Pennes bioheat equation [19] as
follows:
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where𝑈 is the overall heat transfer coefficient, which defines
the effectiveness of the cooling system. Because the tempera-
ture distribution is very sensitive to the heat transfer between
the cooling liquid and the so-called tissue, its numerical value
must be properly estimated. It is shown that the expression of
𝑈 is [20] as follows:

𝑈 =
1

1/ℎ + l/𝑘cl
. (5)

Here, ℎ is the heat convection coefficient of water and 𝑙 and
𝑘cl are the thickness and thermal conductivity of the casing
layer, respectively.

For the inverse problem proposed here, the overall heat
transfer coefficient of cooling system is considered as an
unknown function, while the other quantities within the
formulation of the direct problem presented previously are



Journal of Applied Mathematics 3

assumed to be known precisely. Moreover, the temperature
distribution inside the tissue region is considered available.

The optimization procedure includes maximizing the
temperature inside the tumor while minimizing it in the
normal surrounding tissue via a proposed objective func-
tion. In other words, we tend to achieve the desired
temperature, 𝑌

𝑡
(𝑥
𝑗
, 𝑡), at 𝑁 points whether in the tumor

region or in the healthy one, by optimal control of 𝑈 within
the total time 𝑡

𝑓
of the treatment process. Therefore, the

following function must be minimized:
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, 𝑡, 𝑈) is the computed temperature. In order to

minimize 𝐺(𝑈) under the constraints mentioned in (1)–(4),
we introduce a new function called the “Lagrangian function”
(𝐿) which associates (6) and (1) with the following equation:
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where Ψ
𝑡
(𝑥, 𝑡) is the Lagrange multiplier obtained by solving

the adjoint problem which is defined by the following set of
equations:
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where 𝛿 is the Dirac function. Adjoint problem can also be
solved by the samemethod as the direct problemof (1), that is,
by using the finite difference time domain method (FDTD).
It can be shown that the gradient of residual functional, ∇𝐺,
could be expressed by the following analytical expression:
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The iterative procedure of CGMAE for the optimization
of 𝑈 is given by
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Here, 𝛽𝑙 is the step size and 𝑑
𝑙 is the descent direction of the

𝑙th iteration which is defined as follows:
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The coefficient of conjugate gradient, 𝛾𝑙, is given by
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Then, the step size could be derived from the following
equation:
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Here, Δ𝑇
𝑡
(𝑥
𝑗
, 𝑡) is the answer to the sensitivity problem. As

mentioned in the appendix, we present themethodology used
to analytically derive the sensitivity, the adjoint problems, and
the gradient equation. The iteration procedure is repeated
until it satisfies the following truncation criteria and then
leads to optimal control of the overall heat transfer coefficient
as follows:

𝑈
𝑙+1

− 𝑈
𝑙

𝑈𝑙
≤ 𝑒, (14)

where 𝑒 is a small number (10−4 ∼10−5). The computational
algorithm for the foregoing procedure is given by the follow-
ing.

(1) Give an initial guess for 𝑈.
(2) Solve the direct problem.
(3) Examine (14), and if convergence is satisfied, stop;

otherwise, continue.
(4) Solve the adjoint problem.
(5) Compute the gradient equation.

(6) Compute the conjugate coefficient 𝛾𝑙 and the direc-
tion of descent 𝑑𝑙.

(7) Solve the sensitivity problem.

(8) Compute the search step size 𝛽𝑙.
(9) Increment the controlling parameter using (10) and

return to Step 1.

2.2. Model Parameters

2.2.1. Electromagnetic Model. The spatial and temporal
behaviors of the EM field inside the tissues and are governed
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by Maxwell’s equations. In a homogeneous tissue, these
equations are expressed by [21] the following:

∇ × 𝐸 = 𝑖𝜔𝜇𝐻,

∇ ⋅ 𝐸 = 0,

∇ ⋅ 𝐻 = 0,

∇ × 𝐻 = −𝑖𝜔𝜀
∗

𝐸,

(15)

where 𝐸 and 𝐻 are, respectively, complex electric and
magnetic fields, 𝜔 is the angular frequency, and 𝜀, 𝜎 and 𝜇

are the electrical permittivity, the electrical conductivity, and
the magnetic permeability of tissue, respectively. 𝜀∗ is the
complex permittivity which is defined by

𝜀
∗

= 𝜀 +
𝑖𝜎

𝜔
. (16)

The volumetric EM power deposition, which averaged over
time, is calculated by

𝑄
𝑟
=
𝜎|𝐸|
2

2
, (17)

where |𝐸| is the root mean square magnitude [V/m] of the
incident electric field in a point which could be calculated
through (15).

2.2.2. Cooling System and Tissue Properties. Thermophysical
properties of tissue and blood, pertaining to the model for
numerical simulation, are provided in Table 1 [3, 22, 23].
The thickness of water is set at 10−2m and the electrical
permittivity and electrical conductivity of water, related to an
RF applicator operating at 432MHz, are 78 and 0.0300 S/m,
respectively [23]. Moreover, thicknesses of 0.03m and 1.5 ×
10−4mare used, respectively, for tissue and casing layer which
are typically made of thin flexible Silicon layers. Temperature
of the cooling system, 𝑇

∞
, is set at 15∘C.

3. Assumptions

In order to simplify demonstrating the methodology, heat
transfer is assumed to be one-dimensional with a constant
rate of tissue metabolism and blood perfusion. The target
temperatures, after the elapse of allowed heating period,
are set between 42 and 45∘C for tumoral region and 42∘C
or lower for normal tissues. In addition, we consider three
different nodes: one in the tumor region with 𝑌(0.007, 𝑡

𝑓
) =

43
∘C and two others in the normal tissue with 𝑌(0.002, 𝑡

𝑓
)

and 𝑌(0.021, 𝑡
𝑓
) = 39

∘C as the desired temperatures.
As the thickness of the casing layer is much smaller than
its wavelength, it could be neglected in the EM analysis.
Moreover, the thermal contact between the casing layer and
tissue is assumed to be perfect so that the thermal contact
resistance between these layers is negligible.

4. Results and Discussions

In the present work, FDTD method is used for numerical
solution of the direct, sensitivity, and adjoint problems. A

Table 1: Biophysical characteristics of model.

Component Parameter Value Units

Blood
𝑐bl 4200 j/kg ∘C
𝜌bl 1000 kg/m3

𝜔bl 0.0005 mL/s/mL

Tissue

𝑐
𝑡

3770 j/kg ∘C
𝑘
𝑡

0.5 W/m ∘C
𝑄
𝑚

33800 W/m3

𝑇
𝑎

37 ∘C
𝑇
𝑐

37 ∘C
𝑇
𝑖

34 ∘C
𝜀
𝑡

55 —
𝜌
𝑡

998 kg/m3

𝜎
𝑡

1.1 S/m

uniform grid of 31 × 31 mesh in space and time is utilized for
all the results presented hereafter.Theoptimization algorithm
presented previously is programmed in Fortran 90, compiled
through the software Compaq Visual Fortran Professional
Edition on a computer with an Intel Core i7 3.5 GHz and
16Gb of RAM. The final time, 𝑡

𝑓
, is chosen equal to 1800 s.

Moreover, the computational precision (𝑒) is set at 10−5. In the
following simulation, the desired temperature distribution is
determined by precisely prescribing a known 𝑈.

Figure 2 indicates the sensitivity of the temperature-
time curve for variations in 𝑈 for three different values
of 𝑈. Because of the large values of the sensitivity with
respect to 𝑈, obviously the proposed optimization model is
“well-conditioned.” To illustrate the accuracy of the present
inverse analysis, the initial approximations of 𝑈 were either
increased or decreased from its known value. Figure 3 shows
the number of convergent iterations with different initial
guesses for 𝑈. Changing the initial value, for example, by
15% and 30% of its known value does not affect the solution
and the optimization object is still satisfied. Moreover, it is
clear that the number of convergent iterations is reduced
when the initial guess value varies within a 15% deviation
from the known one. In addition, this figure shows that
the minimization of the objective function is valid when 𝑈

varies between 125 and 200W/m2∘C. In order to provide a
quantitative measurement of errors, the convergence history
of the presented model is also calculated. Figure 4 compares
the convergence history is of three different initial guesses.
Convergence history is measured by the relative error at each
iteration, that is, |𝑈retrieved − 𝑈prescribed|/𝑈prescribed.

The computed temperature distribution is obtained when
the minimization of the objective function is satisfied, that
is, when the optimal value of 𝑈 is achieved. Figure 5 shows
the computed temperature distribution with initial guess of
𝑈 = 200W/m2∘C as well as the desired one, which is
obtained from the application of a known 𝑈 at 𝑡 = 1000 s.
It is observed that the recovered temperature distribution is
in good agreement with the desired one. In addition, the
computed RMS error is equal to 0.24. Figure 6 presents the
desired temperature distributions result from the solution of
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the nonstationary thermal problem during the total heating
process. It is found to be sufficient to elevate the temperature
inside the tumor to 42∘C within approximately 20 minutes,
while the temperature on the surface remains approximately
constant in this period of time.

According to the foregoing discussion, as (5), and in
order to enhance the performance of the cooling system, the
thermal conductivity of casing layer and the heat convection
coefficient of water have been considered as variable param-
eters. Although the casing layer is very thin, as shown in
Figure 7, the influence of thermal conductivity of casing layer
is remarkable. It could be observed that a slight increase in
thermal conductivity reduces significantly the temperature at
the skin surface. In addition, the position of the maximum
temperature is shifted slightly toward the skin. The second
possibility to control the effectiveness of the cooling system
is through the variation of the heat convection coefficient of
water. Figure 8 indicates the influence of two different values
of ℎ on the temperature of tissue. It could be observed that
a 75% increase in ℎ results in a decrease of about 2.5∘C in
the skin and only 2∘C in the maximum. The same results
could be obtained by only 20% of the variation in the thermal
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Figure 4: Comparison of convergence histories of CGM for differ-
ent initial guesses— ◊: 125, ◻: 150, and I: 200W/m2∘C for 𝑈.
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Figure 5: A comparison between recovered and desired tempera-
ture distribution at 𝑡 = 1000 s.
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Figure 6: Transient spatial temperature distribution inside the
tissue.
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Figure 7: Temperature distribution at 𝑡 = 1000 s for two different
thermal conductivities of casing layer. Solid line: 𝑘cl = 0.14W/m∘C,
𝑈 = 175W/m2∘C; dashed line: 𝑘cl = 0.11W/m∘C,𝑈 = 150W/m2∘C.

0 0.01 0.02 0.03
Depth of tissue (m)

34

40

43

31

37

Te
m

pe
ra

tu
re

 (∘
C)

Figure 8: Temperature distribution at 𝑡 = 1000 s for two
different heat convection coefficients of water. Solid line: ℎ =

200W/m2∘C,𝑈 = 175W/m2∘C; dashed line: ℎ = 350W/m2∘C,
𝑈 = 200W/m2∘C.

conductivity of casing layer. However, depending on the
technical facilities, one can make an optimal decision in this
case.

Although the thickness and the electrical conductivity
of water can also be optimized in the treatment process, we
did not consider them in this study and we mainly focused
on the influence of the overall heat transfer coefficient on
the temperature field inside the tissue. In the perspective of
the present model, we believe that the desired temperature
profile inside the tumor, according to its shape and size, can
be achieved by inversely optimizing the shape, thickness,
electrical, and thermal properties of solid or liquid patches
which are inserted in the cooling system. Such an optimiza-
tion problem should also incorporate the best configuration
of the additional patches which reasonably must resemble
the tumor shape, for example, L-form patches for L-form
tumors. However, the clinician will first scan the geometry
of the tumor and measure the tumor size and depth using
an MRI or CT or other noninvasive imaging techniques.
Although the present model is based on the 1D heat transfer,
but with some modifications in the governing formulations,

such as 𝑈 = 𝑓(𝑦, 𝑧), it has the potential to provide a
more comprehensive understanding of the cooling system
ability for the purposes of beam-forming in two or three
dimensions. This modified optimization algorithm is then
implemented to the tumor and its surrounding tissue to
determine the optimal properties of cooling system.

5. Conclusions

In this paper, we demonstrated the validity of the CGMAE in
the optimization of the temperature distribution inside the
tissue by optimal control of the overall heat transfer coef-
ficient associated with the cooling system. The temperature
distribution inside the tissue, based on the bioheat transfer
equation, has also been numerically computed. In order to
evaluate the effectiveness of the cooling system, the thermal
conductivity of casing layer and the heat convection coef-
ficient of water have been considered separately. According
to results, the presented model allows obtaining the best
properties of water and casing layer in the light of opti-
mization and therefore significantly improves the treatment
outcome. However, this method shows great promise for
further extensions in both model and clinical performances
for any shaped targeted tumor in hyperthermia treatments.

Appendix

In order to find the minimum of the residual function by
gradienttype method, it is required to derive its gradient by
the following processes first, computation of the variation
problem when the unknown has a small variation, and
second, inspection of the conditions under which we obtain a
stationary point for the Lagrange functional. To compute the
variation problem, the unknown function 𝑈 is perturbed by
Δ𝑈; that is,

𝑈
𝜀
= 𝑈 + Δ𝑈. (A.1)

Then, the temperature undergoes the variation Δ𝑇
𝑡
(𝑥, 𝑡) as

follows:

𝑇
𝑡𝜀
(𝑥, 𝑡; 𝑈) = 𝑇

𝑡
(𝑥, 𝑡; 𝑈) + Δ𝑇

𝑡
(𝑥, 𝑡; 𝑈) , (A.2)

where 𝜀 refers to the perturbed variables. By inserting
the a aforementioned equations in the direct problem and
subtracting the original (1)–(4) from the resulting expressions
and ignoring the second order terms, the following direct
problem in variation is obtained:

𝜌
𝑡
𝑐
𝑡

𝜕Δ𝑇
𝑡
(𝑥, 𝑡)

𝜕𝑡
= 𝑘
𝑡

𝜕
2

Δ𝑇
𝑡
(𝑥, 𝑡)

𝜕𝑥2

− 𝜔bl𝜌bl𝑐blΔ𝑇𝑡 (𝑥, 𝑡) 0 < 𝑥 < 𝑎,

(A.3)

Δ𝑇
𝑡
(𝑥, 𝑡) = 0 𝑥 = 0, (A.4)

−𝑘
𝑡

𝜕Δ𝑇
𝑡
(𝑥, 𝑡)

𝜕𝑥
= Δ𝑈 (𝑇

∞
− 𝑇
𝑡
(𝑥, 𝑡))

− 𝑈Δ𝑇
𝑡
(𝑥, 𝑡) 𝑥 = 𝑎,

(A.5)

Δ𝑇
𝑡
(𝑥, 𝑡) = 0 0 < 𝑥 < 𝑎, 𝑡 = 0. (A.6)
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The second step is to calculate the variation of the objective
function, Δ𝐺(𝑈), which is given by

Δ𝐺 (𝑈) = ∫

𝑡𝑓

0

∫

𝑎

0

2 Δ𝑇
𝑡
(𝑥
𝑗
, 𝑡) [𝑇

𝑡
(𝑥
𝑗
, 𝑡) −𝑌

𝑡
(𝑥
𝑗
, 𝑡)]

× 𝛿 (𝑥 − 𝑥
𝑗
) 𝑑𝑥 𝑑𝑡.

(A.7)

We obtain the variation of the augmented functional,
Δ𝐿(𝑇,Ψ

𝑡
, 𝑈), by considering the variation problem given by

(A.3) and the variation of the objective function, (A.7), as
follows:

Δ𝐿 = ∫

𝑡𝑓

0

∫

𝑎

0

2 Δ𝑇
𝑡
(𝑥
𝑗
, 𝑡) [𝑇

𝑡
(𝑥
𝑗
, 𝑡) − 𝑌

𝑡
(𝑥
𝑗
, 𝑡)]

× 𝛿 (𝑥 − 𝑥
𝑗
) 𝑑𝑥 𝑑𝑡

+ ∫

𝑡𝑓

0

∫

𝑎

0

Ψ
𝑡
(𝑥, 𝑡) [𝑘

𝑡

𝜕
2

Δ𝑇
𝑡
(𝑥, 𝑡)

𝜕𝑥2

− 𝜌
𝑡
𝑐
𝑡

𝜕Δ𝑇
𝑡
(𝑥, 𝑡)

𝜕𝑡

−𝜔bl𝜌bl𝑐blΔ𝑇𝑡 (𝑥, 𝑡) ] 𝑑𝑥 𝑑𝑡.

(A.8)

Using integration by parts in (A.8),

∫

𝑡𝑓

0

∫

𝑎

0

𝜕
2

Δ𝑇
𝑡
(𝑥, 𝑡)

𝜕𝑥2
Ψ
𝑡
(𝑥, 𝑡) 𝑑𝑥 𝑑𝑡

= ∫

𝑡𝑓

0

[
𝜕Δ𝑇
𝑡
(𝑎, 𝑡)

𝜕𝑥
Ψ
𝑡
(𝑎, 𝑡) −

𝜕Ψ
𝑡
(𝑎, 𝑡)

𝜕𝑥
Δ𝑇
𝑡
(𝑎, 𝑡)

−
𝜕Δ𝑇
𝑡
(0, 𝑡)

𝜕𝑥
Ψ
𝑡
(0, 𝑡)

+
𝜕Ψ
𝑡
(0, 𝑡)

𝜕𝑥
Δ𝑇
𝑡
(0, 𝑡)] 𝑑𝑡

+ ∫

𝑡𝑓

0

∫

𝑎

0

𝜕
2

Ψ
𝑡
(𝑥, 𝑡)

𝜕𝑥2
Δ𝑇
𝑡
(𝑥, 𝑡) 𝑑𝑥 𝑑𝑡,

(A.9)

∫

𝑎

0

∫

𝑡𝑓

0

𝜕Δ𝑇
𝑡
(𝑥, 𝑡)

𝜕𝑡
Ψ
𝑡
(𝑥, 𝑡) 𝑑𝑡 𝑑𝑥

= ∫

𝑎

0

[Δ𝑇
𝑡
(𝑥, 𝑡
𝑓
)Ψ
𝑡
(𝑥, 𝑡) − Δ𝑇

𝑡
(𝑥, 0) Ψ

𝑡
(𝑥, 0)] 𝑑𝑥

− ∫

𝑎

0

∫

𝑡𝑓

0

Δ𝑇
𝑡
(𝑥, 𝑡)

𝜕Ψ
𝑡
(𝑥, 𝑡)

𝜕𝑥
𝑑𝑡 𝑑𝑥,

(A.10)

and by using the boundary conditions of the direct problem
in variations (Equations (A.3)–(A.6) and the rearrangement

of the mathematical terms) the final form of (A.8) can be
written as follows:

Δ𝐿 = ∫

𝑡𝑓

0

∫

𝑎

0

[𝑘
𝑡

𝜕
2

Ψ
𝑡
(𝑥, 𝑡)

𝜕𝑥2
+ 𝜌
𝑡
𝑐
𝑡

𝜕Ψ
𝑡
(𝑥, 𝑡)

𝜕𝑡

− 𝜔bl𝜌bl𝑐blΨ𝑡 (𝑥, 𝑡)

+ 2 [𝑇
𝑡
(𝑥
𝑗
, 𝑡) − 𝑌

𝑡
(𝑥
𝑗
, 𝑡)]

× 𝛿 (𝑥 − 𝑥
𝑗
) ]Δ𝑇

𝑡
(𝑥, 𝑡) 𝑑𝑥 𝑑𝑡

− ∫

𝑡𝑓

0

𝑘
𝑡
Ψ
𝑡
(0, 𝑡)

𝜕Δ𝑇
𝑡
(0, 𝑡)

𝜕𝑥
𝑑𝑡

+ ∫

𝑡𝑓

0

(Ψ
𝑡
(𝑎, 𝑡) 𝑈 − 𝑘

𝑡

𝜕Ψ
𝑡
(𝑎, 𝑡)

𝜕𝑥
)Δ𝑇
𝑡
(𝑎, 𝑡) 𝑑𝑡

− ∫

𝑎

0

𝜌
𝑡
𝑐
𝑡
Ψ
𝑡
(𝑥, 𝑡
𝑓
) Δ𝑇
𝑡
(𝑥, 𝑡
𝑓
) 𝑑𝑥

+ ∫

𝑡𝑓

0

Δ𝑈 Ψ
𝑡
(𝑎, 𝑡) (𝑇

𝑡
(𝑎, 𝑡) − 𝑇

∞
) 𝑑𝑡.

(A.11)

To satisfy the optimality condition, that is,
Δ𝐿(Δ𝑇,Ψ

𝑡
, Δ𝑈) = 0, it is required that all coefficients

of Δ𝑇
𝑡
(𝑥, 𝑡) are to be vanished. Finally, the following term is

left:

Δ𝐿 (𝑇,Ψ
𝑡
, 𝑈) = ∫

𝑡𝑓

0

Δ𝑈 Ψ
𝑡
(𝑎, 𝑡) (𝑇

𝑡
(𝑎, 𝑡) − 𝑇

∞
) 𝑑𝑡.

(A.12)

Since we know that 𝑇
𝑡
(𝑥, 𝑡) and Ψ

𝑡
(𝑥, 𝑡) are, respectively, the

direct and the adjoint problem solutions, it follows that

𝐿 (𝑇,Ψ
𝑡
, 𝑈) = 𝐺 (𝑈) , (A.13)

and then

Δ𝐿 (𝑇,Ψ
𝑡
, 𝑈) = Δ𝐺 (𝑈) . (A.14)

Based on the definition, the variation of the functional 𝐺(𝑈)
can be written as follows:

Δ𝐺 (𝑈) = ⟨∇𝐺, Δ𝑈⟩ , (A.15)

where the associated inner scalar product ⟨, ⟩ of two functions
𝑓(𝑡) and 𝑔(𝑡) in the Hilbert space of 𝐿

2
(0, 𝑡
𝑓
) is defined by

⟨𝑓 (𝑡) , 𝑔 (𝑡)⟩
𝐿2

= ∫

𝑑

𝑐

𝑓 (𝑡) 𝑔 (𝑡) 𝑑𝑡. (A.16)

From the definition of the scalar product, the variation of the
functional 𝐺(𝑈) can be written as follows:

Δ𝐺 (𝑈) = ⟨∇𝐺 (𝑈) , Δ𝑈⟩
𝐿2

= ∇𝐺 (𝑈)Δ𝑈. (A.17)

A comparison between (A.12), (A.14), and (A.17) reveals that
the gradient of the residual functional is given by (9). More
details about the derivation of the equations are mentioned
in [24–26].
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Nomenclature

𝑐: Heat capacity
𝑑: Vector of descent direction
𝑒: Computational precision
𝐸: Complex electric field
𝐺(𝑈): Residual functional
Δ𝐺(𝑈): Residual functional variation
∇𝐺(𝑈): Gradient of residual functional
ℎ: Heat convection coefficient
𝐻: Complex magnetic field
𝑘: Thermal conductivity
𝑙: Thickness of casing layer
𝐿: Lagrangian functional
𝑁: Number of nodes
𝑄
𝑚
: Tissue metabolism

𝑄
𝑟
: Volumetric heat source

𝑇: Temperature
𝑡: Time
𝑈: Overall heat transfer coefficient
𝑥: Space
𝑌: Desired temperature.

Greek Symbols

𝛽: Descent parameter
𝛾: Descent direction parameter
𝛿: Dirac function
𝜀: Electrical permeability
𝜌: Density
𝜇: Magnetic permeability
𝜎: Electrical conductivity
Ψ: Lagrange multiplier
𝜔: Angular frequency
𝜔: Blood perfusion.

Subscripts

𝑎: Arterial
bl: Blood
𝑐: Core
cl: Casing layer
𝑓: Final
𝑖: Initial time
𝑡: Tissue
∞: Ambient.

Superscripts

𝑙: Iteration number.
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