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On the basis of the fact that the neuron activation function is sector bounded, this paper transforms the researched original delayed
neural network into a linear uncertain system. Combined with delay partitioning technique, by using the convex combination
between decomposed time delay and positive matrix, this paper constructs a novel Lyapunov function to derive new less
conservative stability criteria. The benefit of the method used in this paper is that it can utilize more information on slope of
the activations and time delays. To illustrate the effectiveness of the new established stable criteria, one numerical example and an
application example are proposed to compare with some recent results.

1. Introduction

As a special class of nonlinear dynamical systems, neural
networks (NNs) have attracted considerable attention due
to their extensive applications in pattern recognition, signal
processing, associative memories, combinatorial optimiza-
tion, andmany other fields. However, time delay is frequently
encountered in NNs due to the finite switching speed of
amplifier and the inherent communication time of neurons,
especially in the artificial neural network. And it is often
an important source of instability and oscillations. It has
been shown that the existence of time delay can change the
topology of neural networks, and then change the dynamic
behavior of neural networks, such as oscillation and chaos.
Thus, it is significant to introduce time delay into the neural
network model. Additionally, stochastic disturbances and
parameter uncertainties can also destroy the convergence of
a neural network system. This makes the design or perfor-
mance for the corresponding closed-loop systems become
difficult. Therefore, the equilibrium and stability properties
of NNs with time delay have been widely considered bymany
researchers. Up to now, various stability conditions have been

obtained, and many excellent papers and monographs have
been available (see [1–8]). So far, these obtained stability
results are classified into two types: delay independent and
delay dependent. Since sufficiently considered the informa-
tion of time delays, delay-dependent criteria may be less
conservative than delay-independent ones when the size
of time delay is small, and much attention has been paid
to the delay-dependent category [9–12]. In order to utilize
more information of time delay, delay interval is always
divided into two or many subintervals with the same size
[13, 14]. It has been shown that delay partitioning technique is
effective, and themore delay subintervals are divided, the less
conservatism of stable criterion may be. However, too many
delay subintervals must increase the computational burden;
how to balance these two contradictions is a very important
issue. To solve this problem, weighting delay and convex
analysis methods are widely employed [8, 13].

Additionally, as pointed out by Li et al. [15], the choice
of an appropriate Lyapunov-Krasovskii functional (LKF) and
the utilization of neuron activation function’s information are
very important for deriving less conservative stability criteria.
Thus, recently, many authors were devoted to propose a new
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technique to establish less conservative stable results, such as
discredited LKF, augmented LKF, free-weighting matrix LKF,
weighting delay LKF, and delay-slope dependent LKF.

In view of the previous discussion, one can see that, to
reduce criterion’s conservatism, the crucial problem is how to
effectively utilize the information of time delays and neuron
activation function. Motivated by the preceding discussion,
this paper mainly considers the effective utilization of time
delay and neuron activation function’s sector bound. By
using the convex representation of the neuron activation
function’s sector bounds, we first transform the original
nonlinear delayed system into a linear uncertain system.
Then, a new LKF function is constructed to derive less
conservative stable criteria. Different from previous LKF,
this new LKF sufficiently employs the convex combination
between decomposed time delay and positive matrix. Finally,
one numerical example and an application example are
presented to illustrate the validity of the main results.

Notation. The notations are used in our paper unless other-
wise specified. ‖ ⋅ ‖ denotes a vector or a matrix norm;R and
R𝑛 are real and n-dimension real number sets, respectively;
diag(⋅ ⋅ ⋅ ) denotes the block diagonal matrix. Real matrix 𝑃 >

0 (< 0) denotes that 𝑃 is positive definite (negative definite).
𝑃 > 𝑄 denotes that 𝑃 − 𝑄 is positive-definite. Consider 𝑒

𝑖
≜

[

11

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
0, . . . , 0, 𝐼⏟⏟⏟⏟⏟⏟⏟

𝑖

, 0, . . . , 0]
𝑇

(𝑖 = 1, 2, . . . , 11), where 𝐼 denotes

identity matrix.

2. Preliminaries

Consider the following delayed neural networks:

𝑑𝑥 (𝑡)

𝑑𝑡
= −𝐶𝑥 (𝑡) + 𝐴𝑔 (𝑥 (𝑡)) + 𝐵𝑔 (𝑥 (𝑡 − 𝜏 (𝑡))) + 𝑢, (1)

where 𝑥(𝑡) = [𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡)]
𝑇 denotes the neural

state vector; 𝑔(𝑥(𝑡)) = [𝑔
1
(𝑥
1
(𝑡)), 𝑔

2
(𝑥
2
(𝑡)), . . . , 𝑔

𝑛
(𝑥
𝑛
(𝑡))]
𝑇

denotes the neuron activation function; 𝑢 = [𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑛
]
𝑇

is external input vector; 𝐶 = diag(𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑛
) with

𝐶
𝑖
> 0 describes the rate with which the 𝑖th neuron will

reset its potential to the resting state in isolation when
disconnected from the networks and external inputs; 𝐴 =

(𝑎
𝑖𝑗
)
𝑛×𝑛

and 𝐵 = (𝑏
𝑖𝑗
)
𝑛×𝑛

represent the weighting and delayed
weighting matrices, respectively; 𝑔(𝑥(𝑡 − 𝜏(𝑡))) = [𝑔

1
(𝑥
1
(𝑡 −

𝜏(𝑡))), 𝑔
2
(𝑥
2
(𝑡 − 𝜏(𝑡))), . . . , 𝑔

𝑛
(𝑥
𝑛
(𝑡 − 𝜏(𝑡)))]

𝑇, 𝜏(𝑡) is time-
varying continuous function which satisfies 0 ≤ 𝜏

𝑙
≤ 𝜏(𝑡) ≤

𝜏
𝑢
, 𝑏
1
≤ ̇𝜏(𝑡) ≤ 𝑏

2
, where 𝜏

𝑙
, 𝜏
𝑢
, 𝑏
1
, and 𝑏

2
are given constants.

Additionally, we always assume that each neuron activation
function𝑔

𝑖
(⋅) satisfies condition: 𝑙−

𝑖
≤ (𝑔
𝑖
(𝑥)−𝑔

𝑖
(𝑦))/(𝑥−𝑦) ≤

𝑙
+

𝑖
, for all 𝑥, 𝑦 ∈ R, 𝑥 ̸= 𝑦, 𝑖 = 1, 2, . . . , 𝑛, where 𝑙−

𝑖
and 𝑙
+

𝑖

are known constant scalars. As pointed out in [16], under this
assumption, system (1) has equilibrium point. Assume that
𝑥
∗

= [𝑥
∗

1
, 𝑥
∗

2
, . . . , 𝑥

∗

𝑛
]
𝑇 is an equilibrium point of system (1),

and set 𝑦
𝑖
(𝑡) = 𝑥

𝑖
(𝑡) − 𝑥

∗

𝑖
, 𝑓
𝑖
(𝑦
𝑖
(𝑡)) = 𝑔

𝑖
(𝑦
𝑖
(𝑡) + 𝑥

∗

𝑖
) − 𝑔
𝑖
(𝑥
∗

𝑖
).

Then, system (1) can be transformed into the following form:

𝑑𝑦 (𝑡)

𝑑𝑡
= −𝐶𝑦 (𝑡) + 𝐴𝑓 (𝑦 (𝑡)) + 𝐵𝑓 (𝑦 (𝑡 − 𝜏 (𝑡))) , (2)

where 𝑦(𝑡) = [𝑦
1
(𝑡), 𝑦
2
(𝑡), . . . , 𝑦

𝑛
(𝑡)]
𝑇, 𝑓(𝑦(𝑡)) = [𝑓

1
(𝑦
1
(𝑡)),

𝑓
2
(𝑦
2
(𝑡)), . . . , 𝑓

𝑛
(𝑦
𝑛
(𝑡))]
𝑇. From the previous assumption, for

any 𝑦
𝑖
(𝑡) ∈ R, 𝑦

𝑖
(𝑡) ̸= 0, function 𝑓

𝑖
(⋅) satisfies 𝑙

−

𝑖
≤

(𝑓
𝑖
(𝑦
𝑖
(𝑡)))/(𝑦

𝑖
(𝑡)) ≤ 𝑙

+

𝑖
, 𝑓
𝑖
(0) = 0, 𝑖 = 1, 2, . . . , 𝑛.

Notice that the nonlinear function 𝑓
𝑖
(⋅) (𝑖 = 1, 2, . . . , 𝑛)

can be rewritten as a convex combination formwith the sector
bounds as follows:

𝑓
𝑖
(𝑦
𝑖
(𝑡)) = (𝜆

𝑖
(𝑦
𝑖
(𝑡)) 𝑙
−

𝑖
+ (1 − 𝜆

𝑖
(𝑦
𝑖
(𝑡))) 𝑙
+

𝑖
) 𝑦
𝑖
(𝑡) ,

𝑓
𝑖
(𝑦
𝑖
(𝑡 − 𝜏 (𝑡))) = (𝜆

𝑖
(𝑦
𝑖
(𝑡 − 𝜏 (𝑡))) 𝑙

−

𝑖

+(1−𝜆
𝑖
(𝑦
𝑖
(𝑡−𝜏 (𝑡)))) 𝑙

+

𝑖
) 𝑦
𝑖
(𝑡−𝜏 (𝑡)) ,

(3)

where 𝜆
𝑖
(𝑦
𝑖
) = (𝑓

𝑖
(𝑦
𝑖
(𝑡)) − 𝑙

−

𝑖
𝑦
𝑖
(𝑡))/(𝑙

+

𝑖
− 𝑙
−

𝑖
)𝑦
𝑖
(𝑡), 𝜆
𝑖
(𝑦
𝑖
(𝑡 −

𝜏(𝑡))) = (𝑓
𝑖
(𝑦
𝑖
(𝑡−𝜏(𝑡)))−𝑙

−

𝑖
𝑦
𝑖
(𝑡−𝜏(𝑡)))/(𝑙

+

𝑖
−𝑙
−

𝑖
)𝑦
𝑖
(𝑡−𝜏(𝑡)) sat-

isfying 0 ≤ 𝜆
𝑖
(𝑦
𝑖
(𝑡)), 𝜆

𝑖
(𝑦
𝑖
(𝑡 − 𝜏(𝑡))) ≤ 1. Namely, 𝑓

𝑖
(𝑦(𝑡)) =

Λ
𝑖
(𝑦
𝑖
(𝑡))𝑦
𝑖
(𝑡), 𝑓
𝑖
(𝑦(𝑡 − 𝜏(𝑡))) = Λ

𝑖
(𝑦
𝑖
(𝑡 − 𝜏(𝑡)))𝑦

𝑖
(𝑡 − 𝜏(𝑡)),

whereΛ
𝑖
(𝑦
𝑖
(𝑡)),Λ

𝑖
(𝑦
𝑖
(𝑡−𝜏(𝑡))), are elements of a convex hull

Co{𝑙−
𝑖
, 𝑙
+

𝑖
}.

Set 𝐿 = diag(𝑙
1
, 𝑙
2
, . . . , 𝑙
𝑛
), where 𝑙

𝑖
= max{|𝑙−

𝑖
|, |𝑙
+

𝑖
|}.

Obviously, −1 ≤ (𝜆
𝑖
(𝑦
𝑖
(𝑡))𝑙
−

𝑖
+ (1 − 𝜆

𝑖
(𝑦
𝑖
(𝑡)))𝑙
+

𝑖
)/𝑙
𝑖
, (𝜆
𝑖
(𝑦
𝑖
(𝑡 −

𝜏(𝑡)))𝑙
−

𝑖
+ (1 − 𝜆

𝑖
(𝑦
𝑖
(𝑡 − 𝜏(𝑡))))𝑙

+

𝑖
)/𝑙
𝑖
≤ 1.

DefineΔ
𝑖
= (𝜆
𝑖
(𝑦
𝑖
(𝑡))𝑙
−

𝑖
+(1−𝜆

𝑖
(𝑦
𝑖
(𝑡)))𝑙
+

𝑖
)/𝑙
𝑖
,Δ
𝑖
= (𝜆
𝑖
(𝑦
𝑖

(𝑡 − 𝜏(𝑡)))𝑙
−

𝑖
+ (1 − 𝜆

𝑖
(𝑦
𝑖
(𝑡 − 𝜏(𝑡))))𝑙

+

𝑖
)/𝑙
𝑖
, Δ = diag(Δ

1
, Δ
2
,

. . . , Δ
𝑛
), Δ = diag(Δ

1
, Δ
2
, . . . , Δ

𝑛
); then nonlinearities

𝑓(𝑦(𝑡)) and 𝑓(𝑦(𝑡 − 𝜏(𝑡))) can be expressed as 𝑓(𝑦(𝑡)) =

𝐿Δ𝑦(𝑡), 𝑓(𝑦(t − 𝜏(𝑡))) = 𝐿Δ𝑦(𝑡 − 𝜏(𝑡)), where Δ and Δ satisfy
Δ
𝑇

Δ ≤ 𝐼,Δ𝑇Δ ≤ 𝐼. And the system (2) can be rewritten as the
following delayed uncertain system:

̇𝑦 (𝑡) = (−𝐶 + 𝐴𝐿Δ) 𝑦 (𝑡) + 𝐵𝐿Δ𝑦 (𝑡 − 𝜏 (𝑡)) . (4)

Remark 1. Different from previous work, in this paper, by
using the convex expression𝑓

𝑖
(𝑦(𝑡)) = Λ

𝑖
(𝑦
𝑖
(𝑡))𝑦
𝑖
(𝑡),𝑓
𝑖
(𝑦(𝑡−

𝜏(𝑡))) = Λ
𝑖
(𝑦
𝑖
(𝑡 − 𝜏(𝑡)))𝑦

𝑖
(𝑡 − 𝜏(𝑡)), we transform the original

nonlinear system (2) into a linear system with parameter
uncertain system (4). As a result, the stability problem of
delayed neural network system (1) can be transformed into
the robust stability problem of uncertain linear system (4).

Let 𝐿− = diag(𝑙−
1
, 𝑙
−

2
, . . . , 𝑙

−

𝑛
), 𝐿+ = diag(𝑙+

1
, 𝑙
+

2
, . . . , 𝑙

+

𝑛
). For

further discussion, the following lemmas are needed.

Lemma 2 (see [16]). Let 𝑓
1
, 𝑓
2
, . . . , 𝑓

𝑁
: R𝑚 → R have pos-

itive values in an open subset 𝐷 of R𝑚. Then, the reciprocally
convex combination of 𝑓

𝑖
over𝐷 satisfies

lim
{𝛼𝑖|𝛼𝑖>0,∑𝑖

𝛼𝑖=1}

∑
𝑖

1

𝛼
𝑖

𝑓
𝑖
(𝑡) = ∑

𝑖

𝑓
𝑖
(𝑡) +max
𝑔𝑖,𝑗(𝑡)

∑
𝑖 ̸= 𝑗

𝑔
𝑖,𝑗
(𝑡) (5)

subject to

{𝑔
𝑖,𝑗
: R𝑚 → R, 𝑔

𝑗,𝑖
(𝑡) ≜ 𝑔

𝑖,𝑗
(𝑡) , [

𝑓
𝑖
(𝑡) 𝑔

𝑖,𝑗
(𝑡)

𝑔
𝑗,𝑖
(𝑡) 𝑓

𝑗
(𝑡)

] ≥ 0} .

(6)
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Lemma 3 (see [17]). Given the symmetric matrix 𝑃
1
and any

real matrices 𝑃
2
, 𝑃
3
of appropriate dimensions, then

𝑃
1
+ 𝑃
2
Δ𝑃
3
+ 𝑃
𝑇

3
Δ
𝑇

𝑃
𝑇

2
< 0 (7)

for all Δ ∈ Θ satisfying Δ𝑇Δ ≤ 𝐼 if and only if there exists
𝑆 ∈ 𝑆
Δ
such that

[

[

𝑃
1
+ 𝑃
𝑇

3
𝑆𝑃
3
𝑃
2

𝑃
𝑇

2
−𝑆

]

]

< 0, (8)

where 𝑆
Δ
=: {diag(𝑠

1
𝐼, . . . , 𝑠

𝑘
𝐼, 𝑆
1
, . . . , 𝑆

𝑙
) : 𝑆
𝑖
> 0, 𝑘, 𝑙 ∈ 𝑁}.

Lemma 4 ([18], Jensen inequality). Consider two scalars 𝑎 <
𝑏 and a positive definite matrix 𝑅 ∈ R𝑛×𝑛. For any conditions
function 𝜔 : [𝑎, 𝑏] → R𝑛 and any strictly positive condition
𝑓 : [𝑎, 𝑏] → R, the following inequality holds:

∫
𝑏

𝑎

𝑤
𝑇

(𝑠) 𝑓 (𝑠) 𝑅𝑤 (𝑠) 𝑑𝑠

≥ (∫
𝑏

𝑎

𝑤 (𝑠) 𝑑𝑠)

𝑇

(∫
𝑏

𝑎

(𝑓 (𝑠))
−1

𝑑s)
−1

𝑅(∫
𝑏

𝑎

𝑤 (𝑠) 𝑑𝑠) .

(9)

Lemma 5 (see [19]). For any constant matrix 𝑍 ∈ R𝑛×𝑛, 𝑍 =

𝑍
𝑇

> 0, scalars ℎ
2
> ℎ
1
> 0, such that the following integra-

tions are well defined; then

−
1

2
(ℎ
2

2
− ℎ
2

1
)∫
−ℎ1

−ℎ2

∫
𝑡

𝑡+𝜃

𝑥
𝑇

(𝑠) 𝑍𝑥 (𝑠) 𝑑𝑠 𝑑𝜃

≤ −∫
−ℎ1

−ℎ2

∫
𝑡

𝑡+𝜃

𝑥
𝑇

(𝑠) 𝑑𝑠 𝑑𝜃𝑍∫
−ℎ1

−ℎ2

∫
𝑡

𝑡+𝜃

𝑥 (𝑠) 𝑑𝑠 𝑑𝜃.

(10)

3. Stability Analysis

Set 𝜏 = (𝜏
𝑢
+ 𝜏
𝑙
)/2, 𝜏 = (𝜏

𝑢
− 𝜏
𝑙
)/2, and 𝑄

1
, 𝑄
2
, 𝑄
3
, 𝑃
1
> 𝑃
2
,

𝑃
3
> 𝑃
4
, 𝑃
5
> 𝑃
6
are positive matrices. Let

𝑄 (𝜏 (𝑡)) =

{{{

{{{

{

𝜏 (𝑡) − 𝜏
𝑙

𝜏
𝑄
1
+
𝜏 − 𝜏 (𝑡)

𝜏
𝑄
2
: 𝜏
𝑙
≤ 𝜏 (𝑡) ≤ 𝜏,

𝜏 (𝑡) − 𝜏

𝜏
𝑄
3
+
𝜏
𝑢
− 𝜏 (𝑡)

𝜏
𝑄
1
: 𝜏 < 𝜏 (𝑡) ≤ 𝜏

𝑢
,

𝑃 (𝑠) =

{{{{{{{

{{{{{{{

{

𝑠 − 𝑡 + 𝜏
𝑢

𝜏
𝑃
1
+
𝑡 − 𝜏 − 𝑠

𝜏
𝑃
2
: 𝑡 − 𝜏

𝑢
≤ 𝑠 < 𝑡 − 𝜏,

𝑠 − 𝑡 + 𝜏

𝜏
𝑃
3
+
𝑡 − 𝜏
𝑙
− 𝑠

𝜏
𝑃
4
: 𝑡 − 𝜏 ≤ 𝑠 < 𝑡 − 𝜏

𝑙
,

𝑠 − 𝑡 + 𝜏
𝑙

𝜏
𝑙

𝑃
5
+
𝑡 − 𝑠

𝜏
𝑙

𝑃
6
: 𝑡 − 𝜏

𝑙
≤ 𝑠 < 𝑡.

(11)

Consider a new class of Lyapunov functional candidate as
follows:

𝑉 (𝑦 (𝑡)) = 𝑉
1
(𝑦 (𝑡)) + 𝑉

2
(𝑦 (𝑡)) , (12)

where

𝑉
1
(𝑦 (𝑡)) = 𝑦

𝑇

(𝑡) 𝑄 (𝜏 (𝑡)) 𝑦 (𝑡) , 𝑉
2
(𝑦 (𝑡))

= ∫
𝜏𝑢

𝜏𝑙

∫
𝑡

𝑡−𝜃

̇𝑦
𝑇

(𝑠) 𝑃 (𝑠) ̇𝑦 (𝑠) 𝑑𝑠 𝑑𝜃.
(13)

Define 𝑉(𝑡, 𝑥
𝑡
, �̇�
𝑡
) = lim sup

𝑠→0
+(1/𝑠)[𝑉(𝑡 + 𝑠, 𝑥

𝑡+𝑠
, �̇�
𝑡+𝑠
) −

𝑉(𝑡, 𝑥
𝑡
, �̇�
𝑡
)]; we can obtain �̇�

1
(𝑦(𝑡)) = 𝑦

𝑇

(𝑡)�̇�(𝜏(𝑡)𝑦(𝑡))+
2 ̇𝑦
𝑇

(𝑡)[𝜒(𝜏(𝑡))[((𝜏(𝑡) − 𝜏
𝑙
)/𝜏)𝑄

1
+ ((𝜏 − 𝜏(𝑡))/𝜏)𝑄

2
]+ (1 −

𝜒(𝜏(𝑡)))[((𝜏(𝑡) − 𝜏)/𝜏)𝑄
3
+ ((𝜏
𝑢
− 𝜏(𝑡))/𝜏)𝑄

1
]]𝑦(𝑡), where

�̇�(𝜏(𝑡))
|𝜏 ̸= 𝜏

= ̇𝜏(𝑡)[𝜒(𝜏(𝑡))((𝑄
1
−𝑄
2
)/𝜏)+(1−𝜒(𝜏(𝑡)))((𝑄

3
−

𝑄
1
)/𝜏)],

𝜒 (𝜏 (𝑡)) = {
1 : if 𝜏 (𝑡) ∈ [𝜏

𝑙
, 𝜏]

0 : otherwise.
(14)

Notice that

𝑉
2
(𝑦 (𝑡)) = ∫

𝑡

𝑡−𝜏𝑙

∫
𝜏𝑢

𝜏𝑙

̇𝑦
𝑇

(𝑠) 𝑃 (𝑠) ̇𝑦 (𝑠) 𝑑𝜃 𝑑𝑠

+ ∫
𝑡−𝜏𝑙

𝑡−𝜏𝑢

∫
𝜏𝑢

𝑡−𝑠

̇𝑦
𝑇

(𝑠) 𝑃 (𝑠) ̇𝑦 (𝑠) 𝑑𝜃 𝑑𝑠

= 2𝜏∫
𝑡

𝑡−𝜏𝑙

̇𝑦
𝑇

(𝑠) [
𝑠 − 𝑡 + 𝜏

𝑙

𝜏
𝑙

𝑃
5
+
𝑡 − 𝑠

𝜏
𝑙

𝑃
6
] ̇𝑦 (𝑠) 𝑑𝑠

+ ∫
𝑡−𝜏

𝑡−𝜏𝑢

(𝜏
𝑢
+ 𝑠 − 𝑡) ̇𝑦

𝑇

(𝑠)

×[
𝑠 − 𝑡 + 𝜏

𝑢

𝜏
𝑃
1
+
𝑡 − 𝜏 − 𝑠

𝜏
𝑃
2
] ̇𝑦 (𝑠) 𝑑𝑠

+ ∫
𝑡−𝜏𝑙

𝑡−𝜏

(𝜏
𝑢
+ 𝑠 − 𝑡) ̇𝑦

𝑇

(𝑠)

×[
𝑠 − 𝑡 + 𝜏

𝜏
𝑃
3
+
𝑡 − 𝜏
𝑙
− 𝑠

𝜏
𝑃
4
] ̇𝑦 (𝑠) 𝑑𝑠.

(15)

Set 𝜉𝑇(𝑡) = [𝑦
𝑇

(𝑡),𝑦𝑇(𝑡−𝜏(𝑡)),𝑦𝑇(𝑡−𝜏
𝑙
),𝑦𝑇(𝑡−𝜏

𝑢
),𝑦𝑇(𝑡−

𝜏), ̇𝑦
𝑇

(𝑡), ̇𝑦
𝑇

(𝑡 − 𝜏
𝑙
), ̇𝑦
𝑇

(𝑡 − 𝜏), ∫𝑡−𝜏(𝑡)
𝑡−𝜏

𝑦
𝑇

(𝑠)𝑑𝑠, ∫𝑡−𝜏𝑙
𝑡−𝜏(𝑡)

𝑦
𝑇

(𝑠)𝑑𝑠,

∫
𝑡−𝜏

𝑡−𝜏𝑢

𝑦
𝑇

(𝑠)𝑑𝑠, ∫𝑡−𝜏𝑙
𝑡−𝜏

𝑦
𝑇

(𝑠)𝑑𝑠]. It yields that

�̇�
2
(𝑦 (𝑡)) = 𝜉

𝑇

(𝑡) [2𝜏𝑒
𝑇

6
𝑃
5
𝑒
6
− 𝑒
𝑇

7
(2𝜏𝑃
6
− 2𝜏𝑃

3
) 𝑒
7

−𝑒
𝑇

8
(𝜏𝑃
4
− 𝜏𝑃
1
) 𝑒
8
] 𝜉 (𝑡)

−∫
𝑡−𝜏

𝑡−𝜏𝑢

̇𝑦
𝑇

(𝑠) [
𝑠 − 𝑡 + 𝜏

𝑢

𝜏
𝑃
1
+
𝑡 − 𝜏 − 𝑠

𝜏
𝑃
2
] ̇𝑦 (𝑠) 𝑑𝑠

−
1

𝜏
∫
𝑡−𝜏

𝑡−𝜏𝑢

(𝜏
𝑢
+ 𝑠 − 𝑡) ̇𝑦

𝑇

(𝑠) [𝑃
1
− 𝑃
2
] ̇𝑦 (𝑠) 𝑑𝑠
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− ∫
𝑡−𝜏𝑙

𝑡−𝜏

̇𝑦
𝑇

(𝑠) [
𝑠 − 𝑡 + 𝜏

𝜏
𝑃
3
+
𝑡 − 𝜏
𝑙
− 𝑠

𝜏
𝑃
4
] ̇𝑦 (𝑠) 𝑑𝑠

−
1

𝜏
∫
𝑡−𝜏𝑙

𝑡−𝜏

(𝜏
𝑢
+ 𝑠 − 𝑡) ̇𝑦

𝑇

(𝑠) [𝑃
3
− 𝑃
4
] ̇𝑦 (𝑠) 𝑑𝑠

−
2𝜏

𝜏
𝑙

∫
𝑡

𝑡−𝜏𝑙

̇𝑦
𝑇

(𝑠) [𝑃
5
− 𝑃
6
] ̇𝑦 (𝑠) 𝑑𝑠

≜ 𝜉
𝑇

(𝑡) [2𝜏𝑒
𝑇

6
𝑃
5
𝑒
6
− 𝑒
𝑇

7
(2𝜏𝑃
6
− 2𝜏𝑃

3
) 𝑒
6

−𝑒
𝑇

8
(𝜏𝑃
4
− 𝜏𝑃
1
) 𝑒
8
] 𝜉 (𝑡)

+ 𝐼
1
+ 𝐼
2
+ 𝐼
3
+ 𝐼
4
+ 𝐼
5
.

(16)

We start with the case 𝜏(𝑡) ∈ [𝜏
𝑙
, 𝜏], where 𝜒(𝜏(𝑡)) = 1.

Therefore

�̇�
1
(𝑦 (𝑡)) = 𝜉

𝑇

(𝑡) [
̇𝜏 (𝑡)

𝜏
𝑒
𝑇

1
(𝑄
1
− 𝑄
2
) 𝑒
𝑇

1

+2𝑒
𝑇

6
(
𝜏 (𝑡) − 𝜏

𝑙

𝜏
𝑄
1
+
𝜏 − 𝜏 (𝑡)

𝜏
𝑄
2
) 𝑒
1
]

× 𝜉 (𝑡) .

(17)

Notice that 𝐼
1
= −(1/𝜏)[∫

𝑡−𝜏

𝑡−𝜏𝑢

∫
𝜏𝑢

𝑡−𝑠

̇𝑦
𝑇

(𝑠)𝑃
1
̇𝑦(𝑠)𝑑𝜃 𝑑𝑠 + ∫

𝑡−𝜏

𝑡−𝜏𝑢

∫
−𝜏

𝑠−𝑡

̇𝑦
𝑇

(𝑠)𝑃
2
̇𝑦(𝑠)𝑑𝜃 𝑑𝑠] = −(1/𝜏)[∫

𝜏𝑢

𝜏

∫
𝑡−𝜏

𝑡−𝜃

̇𝑦
𝑇

(𝑠)𝑃
1
̇𝑦(𝑠)𝑑𝑠 𝑑𝜃 +

∫
−𝜏

−𝜏𝑢

∫
𝑡+𝜃

𝑡−𝜏𝑢

̇𝑦
𝑇

(𝑠)𝑃
2
̇𝑦(𝑠)𝑑𝜃 𝑑𝑠]. 𝐼

2
= −(1/𝜏) ∫

𝑡−𝜏

𝑡−𝜏𝑢

∫
𝜏𝑢

𝑡−𝑠

̇𝑦
𝑇

(𝑠) [𝑃
1
−

𝑃
2
] ̇𝑦(𝑠)𝑑𝜃 𝑑𝑠 = −(1/𝜏) ∫

𝜏𝑢

𝜏

∫
𝑡−𝜏

𝑡−𝜃

̇𝑦
𝑇

(𝑠) [𝑃
1
− 𝑃
2
] ̇𝑦(𝑠)𝑑𝑠 𝑑𝜃,

∫
𝑡−𝜏

𝑡−𝜏𝑢

(𝑠 − 𝑡 + 𝜏
𝑢
) ̇𝑦(𝑠)𝑑𝑠 = (𝜏

𝑢
− 𝜏)𝑦(𝑡 − 𝜏) − ∫

𝑡−𝜏

𝑡−𝜏𝑢

𝑦(𝑠)𝑑𝑠,

∫
𝑡−𝜏

𝑡−𝜏𝑢

(𝑡 −𝜏− 𝑠) ̇𝑦(𝑠)𝑑𝑠 = −(𝜏
𝑢
−𝜏)𝑦(𝑡−𝜏

𝑢
)+∫𝑡−𝜏
𝑡−𝜏𝑢

𝑦(𝑠)𝑑𝑠; from
Lemma 5, it yields that

𝐼
1
+ 𝐼
2
≤ −

4

𝜏 (𝜏2
𝑢
− 𝜏
2

)
𝜉
𝑇

(𝑡) [(𝜏
𝑢
− 𝜏) 𝑒

𝑇

5
− 𝑒
𝑇

11
]

× 𝑃
1
[(𝜏
𝑢
− 𝜏) 𝑒

5
− 𝑒
11
] 𝜉 (𝑡)

−
2

𝜏 (𝜏2
𝑢
− 𝜏
2

)
𝜉
𝑇

(𝑡) [𝑒
𝑇

11
− (𝜏
𝑢
− 𝜏) 𝑒

𝑇

4
]

× 𝑃
2
[𝑒
11
− (𝜏
𝑢
− 𝜏) 𝑒

4
] 𝜉 (𝑡)

+
2

𝜏 (𝜏2
𝑢
− 𝜏
2

)
𝜉
𝑇

(𝑡) [(𝜏
𝑢
− 𝜏) 𝑒

𝑇

5
− 𝑒
𝑇

11
]

× 𝑃
2
[(𝜏
𝑢
− 𝜏) 𝑒

5
− 𝑒
11
] 𝜉 (𝑡) .

(18)

Notice that

𝐼
3
= −

1

𝜏
[∫
𝑡−𝜏(𝑡)

𝑡−𝜏

∫
𝜏

𝑡−𝑠

̇𝑦
𝑇

(𝑠) 𝑃
3
̇𝑦 (𝑠) 𝑑𝜃 𝑑𝑠

+∫
𝑡−𝜏(𝑡)

𝑡−𝜏

∫
−𝜏𝑙

𝑠−𝑡

̇𝑦
𝑇

(𝑠) 𝑃
4
̇𝑦 (𝑠) 𝑑𝜃 𝑑𝑠]

−
1

𝜏
[∫
𝑡−𝜏𝑙

𝑡−𝜏(𝑡)

∫
𝜏

𝑡−𝑠

̇𝑦
𝑇

(𝑠) 𝑃
3
̇𝑦 (𝑠) 𝑑𝜃 𝑑𝑠

+∫
𝑡−𝜏𝑙

𝑡−𝜏(𝑡)

∫
−𝜏𝑙

𝑠−𝑡

̇𝑦
𝑇

(𝑠) 𝑃
4
̇𝑦 (𝑠) 𝑑𝜃 𝑑𝑠]

= −
1

𝜏
[∫
𝜏

𝜏(𝑡)

∫
𝑡−𝜏(𝑡)

𝑡−𝜃

̇𝑦
𝑇

(𝑠) 𝑃
3
̇𝑦 (𝑠) 𝑑𝑠 𝑑𝜃

+∫
−𝜏(𝑡)

−𝜏

∫
𝑡+𝜃

𝑡−𝜏

̇𝑦
𝑇

(𝑠) 𝑃
4
̇𝑦 (𝑠) 𝑑𝑠 𝑑𝜃]

−
1

𝜏
[∫
𝜏(𝑡)

𝜏𝑙

∫
𝑡−𝜏𝑙

𝑡−𝜃

̇𝑦
𝑇

(𝑠) 𝑃
3
̇𝑦 (𝑠) 𝑑𝑠 𝑑𝜃

+∫
−𝜏𝑙

−𝜏(𝑡)

∫
𝑡+𝜃

𝑡−𝜏(𝑡)

̇𝑦
𝑇

(𝑠) 𝑃
4
̇𝑦 (𝑠) 𝑑𝑠 𝑑𝜃] .

(19)

Thus, from Lemma 5, it yields that

𝐼
3
≤ −

2

𝜏 (𝜏
2

− 𝜏(𝑡)
2

)
𝜉
𝑇

(𝑡) [(𝜏 − 𝜏 (𝑡)) 𝑒
𝑇

2
− 𝑒
𝑇

9
]

× 𝑃
3
[(𝜏 − 𝜏 (𝑡)) 𝑒

2
− 𝑒
9
] 𝜉 (𝑡)

−
2

𝜏 (−𝜏(𝑡)
2

)
𝜉
𝑇

(𝑡) [− (𝜏 − 𝜏
𝑙
) 𝑒
𝑇

5
+ 𝑒
𝑇

9
]

× 𝑃
4
[− (𝜏 − 𝜏

𝑙
) 𝑒
5
+ 𝑒
9
] 𝜉 (𝑡)

−
2

𝜏 (𝜏(𝑡)
2

− 𝜏2
𝑙
)
𝜉
𝑇

(𝑡) [(𝜏 − 𝜏
𝑙
) 𝑒
𝑇

3
− 𝑒
𝑇

10
]

× 𝑃
3
[(𝜏 − 𝜏

𝑙
) 𝑒
3
− 𝑒
10
] 𝜉 (𝑡)

−
2

𝜏 (𝜏(𝑡)
2

− 𝜏2
𝑙
)
𝜉
𝑇

(𝑡) [− (𝜏 (𝑡) − 𝜏
𝑙
) 𝑒
𝑇

2
+ 𝑒
𝑇

10
]

× 𝑃
4
[− (𝜏 (𝑡) − 𝜏

𝑙
) 𝑒
2
+ 𝑒
10
] 𝜉 (𝑡) .

(20)

Set 𝐸
1
=
[
[
[

[

(𝜏−𝜏(𝑡))𝑒
𝑇

2
−𝑒
𝑇

9

−(𝜏−𝜏𝑙)𝑒
𝑇

5
+𝑒
𝑇

9

(𝜏−𝜏𝑙)𝑒
𝑇

3
−𝑒
𝑇

10

−(𝜏(𝑡)−𝜏𝑙)𝑒
𝑇

2
+𝑒
𝑇

10

]
]
]

]

, �̃� = 1/(𝜏
2

(𝜏+𝜏
𝑙
)) [

[

𝑃3 𝑆1,2 𝑆1,3 𝑆1,4

∗ 𝑃4 𝑆2,2 𝑆2,3

∗ ∗ 𝑃3 𝑆3,3

∗ ∗ ∗ 𝑃4

]

]

,

where 𝑆
𝑖,𝑗
(1 ≤ 𝑖 ≤ 𝑗 ≤ 3) are arbitrary matrices. If �̃� > 0,

since (𝜏2−𝜏(𝑡)2)/(𝜏(𝜏+𝜏
𝑙
))+(𝜏(𝑡)

2

−𝜏
2

𝑙
)/(𝜏(𝜏+𝜏

𝑙
)) = 1, from

Lemma 2, one can obtain

𝐼
3
≤ −𝜉
𝑇

(𝑡) 𝐸
𝑇

1
�̃�𝐸
1
𝜉 (𝑡) . (21)
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Note that inequality (21) holds for all 𝜏(𝑡) ∈ [𝜏
𝑙
, 𝜏]. When

𝜏(𝑡) = 𝜏
𝑙
and 𝜏, inequality (21) still holds; it yields that

𝐼
3
≤ −𝜉
𝑇

(𝑡) (𝐸
(1)

1
)
𝑇

�̃�𝐸
(1)

1
𝜉 (𝑡) , (22a)

𝐼
3
≤ −𝜉
𝑇

(𝑡) (𝐸
(2)

1
)
𝑇

�̃�𝐸
(2)

1
𝜉 (𝑡) , (22b)

where

𝐸
(1)

1
=
[
[
[

[

(𝜏 − 𝜏
𝑙
) 𝑒
𝑇

3
− 𝑒
𝑇

9

− (𝜏 − 𝜏
𝑙
) 𝑒
𝑇

5
+ 𝑒
𝑇

9

(𝜏 − 𝜏
𝑙
) 𝑒
𝑇

3
− 𝑒
𝑇

10

𝑒
𝑇

10

]
]
]

]

,

𝐸
(2)

1
=
[
[
[

[

−𝑒
𝑇

9

− (𝜏 − 𝜏
𝑙
) 𝑒
𝑇

5
+ 𝑒
𝑇

9

(𝜏 − 𝜏
𝑙
) 𝑒
𝑇

3
− 𝑒
𝑇

10

− (𝜏 − 𝜏
𝑙
) 𝑒
𝑇

5
+ 𝑒
𝑇

10

]
]
]

]

.

(23)

Using the fact that 𝐼
4
= −(1/𝜏)[∫

𝑡−𝜏(𝑡)

𝑡−𝜏

(𝜏
𝑢
+ 𝑠 − 𝑡) ̇𝑦

𝑇

(𝑠) [𝑃
3
−

𝑃
4
] ̇𝑦(𝑠)𝑑𝑠+∫

𝑡−𝜏𝑙

𝑡−𝜏(𝑡)

(𝜏
𝑢
+𝑠−𝑡) ̇𝑦

𝑇

(𝑠)[𝑃
3
−𝑃
4
] ̇𝑦(𝑠)𝑑𝑠] and 𝜏

𝑢
+𝑠−𝑡

is a strictly positive continuous function on [𝑡 − 𝜏, 𝑡 − 𝜏
𝑙
], by

Lemma 4, one can obtain

𝐼
4
≤ −

1

𝜏 ln 2
𝜉
𝑇

(𝑡)

× [[𝑒
𝑇

2
− 𝑒
𝑇

5
] [𝑃
3
− 𝑃
4
] [𝑒
2
− 𝑒
5
]

+ [𝑒
𝑇

3
− 𝑒
𝑇

2
] [𝑃
3
− 𝑃
4
] [𝑒
3
− 𝑒
2
]] 𝜉 (𝑡) .

𝐼
5
≤ −

2𝜏

𝜏2
𝑙

𝜉
𝑇

(𝑡) [𝑒
𝑇

1
− 𝑒
𝑇

3
] [𝑃
5
− 𝑃
6
] [𝑒
1
− 𝑒
3
] 𝜉 (𝑡) .

(24)

Furthermore, from (4), for arbitrary matrices𝑀
1
and𝑀

2

of appropriate dimensions, the following equalities hold:

2𝜉
𝑇

(𝑡) 𝑒
𝑇

1
𝑀
1
[−𝐶𝑒
1
− 𝑒
6
] 𝜉 (𝑡)

+ 𝜉
𝑇

(𝑡) 𝑒
𝑇

1
𝑀
1
[𝐴𝐿Δ𝑒

1
+ 𝐵𝐿Δ𝑒

2
] 𝜉 (𝑡) = 0,

(25a)

2𝜉
𝑇

(𝑡) 𝑒
𝑇

6
𝑀
2
[−𝐶𝑒
1
− 𝑒
6
] 𝜉 (𝑡)

+ 𝜉
𝑇

(𝑡) 𝑒
𝑇

6
𝑀
2
[𝐴𝐿Δ𝑒

1
+ 𝐵𝐿Δ𝑒

2
] 𝜉 (𝑡) = 0.

(25b)

Define

𝐸
(1)

2
= 2𝑒
𝑇

6
𝑄
2
𝑒
1
, 𝐸

(2)

2
= 2𝑒
𝑇

6
𝑄
1
𝑒
1
,

𝐸
(3)

2
= 2𝑒
𝑇

6
(
𝜏 (𝑡) − 𝜏

𝑙

𝜏
𝑄
1
+
𝜏 − 𝜏 (𝑡)

𝜏
𝑄
2
) 𝑒
1
,

(26a)

𝐸
(1)

3
=
𝑏
1

𝜏
𝑒
𝑇

1
(𝑄
1
− 𝑄
2
) 𝑒
1
, 𝐸

(2)

3
=
𝑏
2

𝜏
𝑒
𝑇

1
(𝑄
1
− 𝑄
2
) 𝑒
1
,

𝐸
(3)

3
=

̇𝜏 (𝑡)

𝜏
𝑒
𝑇

1
(𝑄
1
− 𝑄
2
) 𝑒
1
.

(26b)

Therefore

𝐸
1

= 2𝜏𝑒
𝑇

6
𝑃
5
𝑒
6
− 𝑒
𝑇

7
(2𝜏𝑃
6
− 2𝜏𝑃

3
) 𝑒
6

− 𝑒
𝑇

8
(𝜏𝑃
4
− 𝜏𝑃
1
) 𝑒
8

−
4

𝜏 (𝜏2
𝑢
− 𝜏
2

)
[(𝜏
𝑢
− 𝜏) 𝑒

𝑇

5
− 𝑒
𝑇

11
]

× 𝑃
1
[(𝜏
𝑢
− 𝜏) 𝑒

5
− 𝑒
11
]

−
2

𝜏 (𝜏2
𝑢
− 𝜏
2

)
[𝑒
𝑇

11
− (𝜏
𝑢
− 𝜏) 𝑒

𝑇

4
]

× 𝑃
2
[𝑒
11
− (𝜏
𝑢
− 𝜏) 𝑒

4
]

+
2

𝜏 (𝜏2
𝑢
− 𝜏
2

)
[(𝜏
𝑢
− 𝜏) 𝑒

𝑇

5
− 𝑒
𝑇

11
]

× 𝑃
2
[(𝜏
𝑢
− 𝜏) 𝑒

5
− 𝑒
11
]

−
1

𝜏 ln 2
[[𝑒
𝑇

2
− 𝑒
𝑇

5
] [𝑃
3
− 𝑃
4
] [𝑒
2
− 𝑒
5
]

+ [𝑒
𝑇

3
− 𝑒
𝑇

2
] [𝑃
3
− 𝑃
4
] [𝑒
3
− 𝑒
2
]]

−
2𝜏

𝜏2
𝑙

[𝑒
𝑇

1
− 𝑒
𝑇

3
] [𝑃
6
− 𝑃
5
] [𝑒
1
− 𝑒
3
]

+ 𝑒
𝑇

1
𝑀
1
[−𝐶𝑒
1
− 𝑒
6
] + 𝑒
𝑇

6
𝑀
2
[−𝐶𝑒
1
− 𝑒
6
]

+ [−𝐶𝑒
1
− 𝑒
6
]
𝑇

𝑀
𝑇

1
𝑒
1
+ [−𝐶𝑒

1
− 𝑒
6
]
𝑇

𝑀
𝑇

2
𝑒
6
.

(27)

Moreover

Φ = [𝑒
𝑇

1
, 𝑒
𝑇

2
, 𝑒
𝑇

1
, 𝑒
𝑇

2
]
𝑇

, Δ̃ = diag {Δ, Δ, Δ, Δ} , (28a)

Ψ = [𝑒
𝑇

1
𝑀
1
𝐴𝐿, 𝑒
𝑇

1
𝑀
1
𝐵𝐿, 𝑒
𝑇

6
𝑀
2
𝐴𝐿, 𝑒
𝑇

6
𝑀
2
𝐵𝐿] . (28b)

From (16)–(28b), we get that, along (4),

�̇� (𝑦 (𝑡)) ≤ 𝛼
1
‖𝑥 (𝑡)‖

2

, (29)

for some scalar 𝛼
1
> 0 if

Π
1
= 𝐸
1

+ 𝐸
(3)

2
+ 𝐸
(3)

3
− (𝐸
1
)
𝑇

�̃�𝐸
1
+ ΨΔ̃Φ + Φ

𝑇

Δ̃Ψ
𝑇

< 0.

(30)

Inequality (30) leads, for 𝜏(𝑡) = 𝜏
𝑙
, 𝜏, to the following two

inequalities:

Π
(1)

1
=𝐸
1

+ 𝐸
(1)

2
+ 𝐸
(3)

3
− (𝐸
(1)

1
)
𝑇

�̃�𝐸
(1)

1
+ ΨΔ̃Φ + Φ

𝑇

Δ̃Ψ
𝑇

<0,

(31a)

Π
(1)

2
=𝐸
1

+ 𝐸
(2)

2
+ 𝐸
(3)

3
− (𝐸
(1)

1
)
𝑇

�̃�𝐸
(1)

1
+ ΨΔ̃Φ + Φ

𝑇

Δ̃Ψ
𝑇

<0.

(31b)

Inequalities (31a) and (31b) imply (30), because Π
1
=

((𝜏(𝑡)−𝜏
𝑙
)/𝜏)Π

(1)

2
+((𝜏−𝜏(𝑡))/𝜏)Π

(1)

1
is convex in 𝜏(𝑡) ∈ [𝜏

𝑙
, 𝜏].



6 Journal of Applied Mathematics

At the same time, inequalities (31a) and (31b) lead, for ̇𝜏(𝑡) =

𝑏
1
, 𝑏
2
, to the following inequalities:

Π
(1)
≜𝐸
1

+ 𝐸
(1)

2
+ 𝐸
(1)

3
− (𝐸
(1)

1
)
𝑇

�̃�𝐸
(1)

1
+ ΨΔ̃Φ + Φ

𝑇

Δ̃Ψ
𝑇

<0,

(32a)

Π
(2)
≜𝐸
1

+ 𝐸
(1)

2
+ 𝐸
(2)

3
− (𝐸
(1)

1
)
𝑇

�̃�𝐸
(1)

1
+ ΨΔ̃Φ + Φ

𝑇

Δ̃Ψ
𝑇

<0,

(32b)

Π
(3)
≜𝐸
1

+ 𝐸
(2)

2
+ 𝐸
(1)

3
− (𝐸
(1)

1
)
𝑇

�̃�𝐸
(1)

1
+ ΨΔ̃Φ + Φ

𝑇

Δ̃Ψ
𝑇

<0,

(32c)

Π
(4)
≜𝐸
1

+ 𝐸
(2)

2
+ 𝐸
(2)

3
− (𝐸
(1)

1
)
𝑇

�̃�𝐸
(1)

1
+ ΨΔ̃Φ + Φ

𝑇

Δ̃Ψ
𝑇

<0.

(32d)

Obviously, inequalities (32a)–(32d) imply (31a) and (31b)
sinceΠ(1)

1
= ((𝑏
2
− ̇𝜏)/(𝑏

2
− 𝑏
1
))Π
(2)

+ (( ̇𝜏 − 𝑏
1
)/(𝑏
2
− 𝑏
1
))Π
(1)
,

and Π(1)
2

= ((𝑏
2
− ̇𝜏)/(𝑏

2
− 𝑏
1
))Π
(4)

+ (( ̇𝜏 − 𝑏
1
)/(𝑏
2
− 𝑏
1
))Π
(3)

are convex in ̇𝜏(𝑡) ∈ [𝑏
1
, 𝑏
2
].

Similarly, there exists scalar 𝛼
2
> 0 such that

�̇� (𝑦 (𝑡)) ≤ 𝛼
2
‖𝑥(𝑡)‖

2

, (33)

if

Π
(1)
≜𝐸
1

+ 𝐸
(1)

2
+ 𝐸
(1)

3
− (𝐸
(2)

1
)
𝑇

�̃�𝐸
(2)

1
+ ΨΔ̃Φ + Φ

𝑇

Δ̃Ψ
𝑇

<0,

(34a)

Π
(2)
≜𝐸
1

+ 𝐸
(1)

2
+ 𝐸
(2)

3
− (𝐸
(2)

1
)
𝑇

�̃�𝐸
(2)

1
+ ΨΔ̃Φ + Φ

𝑇

Δ̃Ψ
𝑇

<0,

(34b)

Π
(3)
≜𝐸
1

+ 𝐸
(2)

2
+ 𝐸
(1)

3
− (𝐸
(2)

1
)
𝑇

�̃�𝐸
(2)

1
+ ΨΔ̃Φ + Φ

𝑇

Δ̃Ψ
𝑇

<0,

(34c)

Π
(4)
≜𝐸
1

+ 𝐸
(2)

2
+ 𝐸
(2)

3
− (𝐸
(2)

1
)
𝑇

�̃�𝐸
(2)

1
+ ΨΔ̃Φ + Φ

𝑇

Δ̃Ψ
𝑇

<0.

(34d)

Similarly, set 𝜉𝑇(𝑡) = [𝑦
𝑇

(𝑡), 𝑦𝑇(𝑡 − 𝜏(𝑡)), 𝑦𝑇(𝑡 − 𝜏
𝑙
),

𝑦
𝑇

(𝑡−𝜏
𝑢
), 𝑦𝑇(𝑡−𝜏), ̇𝑦

𝑇

(𝑡), ̇𝑦
𝑇

(𝑡−𝜏
𝑙
), ̇𝑦
𝑇

(𝑡−𝜏), ∫𝑡−𝜏(𝑡)
𝑡−𝜏𝑢

𝑦
𝑇

(𝑠)𝑑𝑠,

∫
𝑡−𝜏

𝑡−𝜏(𝑡)

𝑦
𝑇

(𝑠)𝑑𝑠, ∫𝑡−𝜏
𝑡−𝜏𝑢

𝑦
𝑇

(𝑠)𝑑𝑠, ∫𝑡−𝜏𝑙
𝑡−𝜏

𝑦
𝑇

(𝑠)𝑑𝑠].
If 𝜏(𝑡) ∈ (𝜏, 𝜏

𝑢
], then, 𝜒(𝜏(𝑡)) = 0.

Therefore

�̇�
1
(𝑦 (𝑡)) = 𝜉

𝑇

(𝑡) [
̇𝜏 (𝑡)

𝜏
𝑒
𝑇

1
(𝑄
3
− 𝑄
1
) 𝑒
1

+2𝑒
𝑇

6
(
𝜏 (𝑡) − 𝜏

𝜏
𝑄
3
+
𝜏
𝑢
− 𝜏 (𝑡)

𝜏
𝑄
1
) 𝑒
1
]

× 𝜉 (𝑡) .

(35)

Moreover

𝐼
1
= −

1

𝜏
∫
𝑡−𝜏(𝑡)

𝑡−𝜏𝑢

∫
𝜏𝑢

𝑡−𝑠

̇𝑦
𝑇

(𝑠) 𝑃
1
̇𝑦 (𝑠) 𝑑𝜃 𝑑𝑠

−
1

𝜏
∫
𝑡−𝜏

𝑡−𝜏(𝑡)

∫
𝜏𝑢

𝑡−𝑠

̇𝑦
𝑇

(𝑠) 𝑃
1
̇𝑦 (𝑠) 𝑑𝜃 𝑑𝑠

−
1

𝜏
∫
𝑡−𝜏(𝑡)

𝑡−𝜏𝑢

∫
−𝜏

𝑠−𝑡

̇𝑦
𝑇

(𝑠) 𝑃
2
̇𝑦 (𝑠) 𝑑𝜃 𝑑𝑠

−
1

𝜏
∫
𝑡−𝜏

𝑡−𝜏(𝑡)

∫
−𝜏

𝑠−𝑡

̇𝑦
𝑇

(𝑠) 𝑃
2
̇𝑦 (𝑠) 𝑑𝜃 𝑑𝑠.

𝐼
2
= −

1

𝜏
∫
𝑡−𝜏(𝑡)

𝑡−𝜏𝑢

∫
𝜏𝑢

𝑡−𝑠

̇𝑦
𝑇

(𝑠) (𝑃
1
− 𝑃
2
) ̇𝑦 (𝑠) 𝑑𝜃 𝑑𝑠

−
1

𝜏
∫
𝑡−𝜏

𝑡−𝜏(𝑡)

∫
𝜏𝑢

𝑡−𝑠

̇𝑦
𝑇

(𝑠) (𝑃
1
− 𝑃
2
) ̇𝑦 (𝑠) 𝑑𝜃 𝑑𝑠.

(36)

Set

𝐸
𝑇

1
=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

(𝜏
𝑢
− 𝜏 (𝑡)) 𝑒

𝑇

2
− 𝑒
𝑇

9

(𝜏 (𝑡) − 𝜏) 𝑒
𝑇

5
− 𝑒
𝑇

10

− (𝜏
𝑢
− 𝜏 (𝑡)) 𝑒

𝑇

4
+ 𝑒
𝑇

9

− (𝜏 (𝑡) − 𝜏) 𝑒
𝑇

2
+ 𝑒
𝑇

10

(𝜏
𝑢
− 𝜏 (𝑡)) 𝑒

𝑇

2
− 𝑒
𝑇

9

(𝜏 (𝑡) − 𝜏) 𝑒
𝑇

5
− 𝑒
𝑇

10

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

̃̃
𝑃 =

2

3𝜏
2

(𝜏
𝑢
+ 𝜏)

[
[
[
[
[
[
[

[

𝑃
1
𝑆
1,2

𝑆
1,3

𝑆
1,4

𝑆
1,5

𝑆
1,6

∗ 𝑃
1

𝑆
2,2

𝑆
2,3

𝑆
2,4

𝑆
2,5

∗ ∗ 𝑃
2

𝑆
3,3

𝑆
3,4

𝑆
3,5

∗ ∗ ∗ 𝑃
2

𝑆
4,4

𝑆
4,5

∗ ∗ ∗ ∗ 𝑃
1
− 𝑃
2

𝑆
5,5

∗ ∗ ∗ ∗ ∗ 𝑃
1
− 𝑃
2

]
]
]
]
]
]
]

]

,

(37)

where 𝑆
𝑖,𝑗
(1 ≤ 𝑖 ≤ 𝑗 ≤ 5) are arbitrary matrices. If ̃̃𝑃 > 0,

from Lemmas 5 and 2, similar to the proof of (19)–(21), one
can obtain

𝐼
1
+ 𝐼
2
≤ −𝜉
𝑇

(𝑡) 𝐸
𝑇

1

̃̃
𝑃𝐸
1
𝜉 (𝑡) . (38)

When 𝜏(𝑡) = 𝜏 and 𝜏
𝑢
, inequality (38) still holds; it yields that

𝐼
1
+ 𝐼
2
≤ −𝜉
𝑇

(𝑡) (𝐸
(1)

1
)
𝑇 ̃̃
𝑃𝐸
(1)

1
𝜉 (𝑡) , (39a)

𝐼
1
+ 𝐼
2
≤ −𝜉
𝑇

(𝑡) (𝐸
(2)

1
)
𝑇 ̃̃
𝑃𝐸
(2)

1
𝜉 (𝑡) , (39b)
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where

𝐸
(1)

1
=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

(𝜏
𝑢
− 𝜏) 𝑒

𝑇

5
− 𝑒
𝑇

9

−𝑒
𝑇

10

− (𝜏
𝑢
− 𝜏) 𝑒

𝑇

4
+ 𝑒
𝑇

9

𝑒
𝑇

10

(𝜏
𝑢
− 𝜏) 𝑒

𝑇

5
− 𝑒
𝑇

9

−𝑒
𝑇

10

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

𝐸
(2)

1
=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

−𝑒
𝑇

9

(𝜏
𝑢
− 𝜏) 𝑒

𝑇

5
− 𝑒
𝑇

10

𝑒
𝑇

9

− (𝜏
𝑢
− 𝜏) 𝑒

𝑇

4
+ 𝑒
𝑇

10

−𝑒
𝑇

9

(𝜏
𝑢
− 𝜏) 𝑒

𝑇

5
− 𝑒
𝑇

10

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

.

(40)

One has

𝐼
3
≤ −

2

𝜏 (𝜏
2

− 𝜏2
𝑙
)
𝜉
𝑇

(𝑡) [(𝜏 − 𝜏
𝑙
) 𝑒
𝑇

3
− 𝑒
𝑇

11
]

× 𝑃
3
[(𝜏 − 𝜏

𝑙
) 𝑒
3
− 𝑒
11
] 𝜉 (𝑡)

−
2

𝜏 (𝜏
2

− 𝜏2
𝑙
)
𝜉
𝑇

(𝑡) [− (𝜏 − 𝜏
𝑙
) 𝑒
𝑇

4
− 𝑒
𝑇

11
]

× 𝑃
4
[− (𝜏 − 𝜏

𝑙
) 𝑒
4
− 𝑒
11
] 𝜉 (𝑡) .

𝐼
4
≤ −

1

𝜏 ln 2
𝜉
𝑇

(𝑡) [𝑒
𝑇

3
− 𝑒
𝑇

5
] [𝑃
3
− 𝑃
4
] [𝑒
3
− 𝑒
5
] 𝜉 (𝑡) .

𝐼
5
≤ −

2𝜏

𝜏2
𝑙

𝜉
𝑇

(𝑡) [𝑒
𝑇

1
− 𝑒
𝑇

3
] [𝑃
5
− 𝑃
6
] [𝑒
1
− 𝑒
3
] 𝜉 (𝑡) .

(41)

Furthermore, from (4), for arbitrary matrices𝑁
1
and𝑁

2

of appropriate dimensions, the following equalities hold:

2𝜉
𝑇

(𝑡) 𝑒
𝑇

1
𝑁
1
[−𝐶𝑒
1
− 𝑒
6
] 𝜉 (𝑡)

+ 𝜉
𝑇

(𝑡) 𝑒
𝑇

1
𝑁
1
[𝐴𝐿Δ𝑒

1
+ 𝐵𝐿Δ𝑒

2
] 𝜉 (𝑡) = 0,

(42a)

2𝜉
𝑇

(𝑡) 𝑒
𝑇

6
𝑁
2
[−𝐶𝑒
1
− 𝑒
6
] 𝜉 (𝑡)

+ 𝜉
𝑇

(𝑡) 𝑒
𝑇

6
𝑁
2
[𝐴𝐿Δ𝑒

1
+ 𝐵𝐿Δ𝑒

2
] 𝜉 (𝑡) = 0.

(42b)

Define

𝐸
(1)

2
= 2𝑒
𝑇

6
𝑄
1
𝑒
1
, 𝐸

(2)

2
= 2𝑒
𝑇

6
𝑄
3
𝑒
1
,

𝐸
(3)

2
= 2𝑒
𝑇

6
(
𝜏 (𝑡) − 𝜏

𝜏
𝑄
3
+
𝜏
𝑢
− 𝜏 (𝑡)

𝜏
𝑄
1
) ,

(43a)

𝐸
(1)

3
=
𝑏
1

𝜏
𝑒
𝑇

1
(𝑄
3
− 𝑄
1
) 𝑒
1
, 𝐸

(2)

3
=
𝑏
2

𝜏
𝑒
𝑇

1
(𝑄
3
− 𝑄
1
) 𝑒
1
,

𝐸
(3)

3
=

̇𝜏 (𝑡)

𝜏
𝑒
𝑇

1
(𝑄
3
− 𝑄
1
) 𝑒
1
.

(43b)

Therefore

𝐸
1

= 2𝜏𝑒
𝑇

6
𝑃
5
𝑒
6
− 𝑒
𝑇

7
(2𝜏𝑃
6
− 2𝜏𝑃

3
) 𝑒
6
− 𝑒
𝑇

8
(𝜏𝑃
4
− 𝜏𝑃
1
) 𝑒
8

−
2

𝜏 (𝜏
2

− 𝜏2
𝑙
)
[(𝜏 − 𝜏

𝑙
) 𝑒
𝑇

3
− 𝑒
𝑇

11
] 𝑃
3
[(𝜏 − 𝜏

𝑙
) 𝑒
3
− 𝑒
11
]

−
2

𝜏 (𝜏
2

− 𝜏2
𝑙
)
[− (𝜏 − 𝜏

𝑙
) 𝑒
𝑇

4
−𝑒
𝑇

11
] 𝑃
4
[− (𝜏 − 𝜏

𝑙
) 𝑒
4
−𝑒
11
]

−
1

𝜏 ln 2
[𝑒
𝑇

3
− 𝑒
𝑇

5
] [𝑃
3
− 𝑃
4
] [𝑒
3
− 𝑒
5
]

−
2𝜏

𝜏2
𝑙

[𝑒
𝑇

1
− 𝑒
𝑇

3
] [𝑃
5
− 𝑃
6
] [𝑒
1
− 𝑒
3
]

+ 𝑒
𝑇

1
𝑁
1
[−𝐶𝑒
1
− 𝑒
6
] + 𝑒
𝑇

6
𝑁
2
[−𝐶𝑒
1
− 𝑒
6
]

+ [−𝐶𝑒
1
− 𝑒
6
]
𝑇

𝑁
𝑇

1
𝑒
1
+ [−𝐶𝑒

1
− 𝑒
6
]
𝑇

𝑁
𝑇

2
𝑒
6
.

(44)

Moreover

Φ̃ = [𝑒
𝑇

1
, 𝑒
𝑇

2
, 𝑒
𝑇

1
, 𝑒
𝑇

2
]
𝑇

, Δ̃ = diag {Δ, Δ, Δ, Δ} , (45a)

Ψ̃ = [𝑒
𝑇

1
𝑁
1
𝐴𝐿, 𝑒
𝑇

1
𝑁
1
𝐵𝐿, 𝑒
𝑇

6
𝑁
2
𝐴𝐿, 𝑒
𝑇

6
𝑁
2
𝐵𝐿] . (45b)

From (35)–(45b), similar to (30)–(32d), there exist 𝛼
3
and 𝛼

4

such that

�̇� (𝑦 (𝑡)) ≤ 𝛼
3
‖𝑥 (𝑡)‖

2

, or �̇� (𝑦 (𝑡)) ≤ 𝛼
4
‖𝑥(𝑡)‖

2

, (46)

if

Π̃
(1)
≜𝐸
1

+ 𝐸
(1)

2
+ 𝐸
(1)

3
− (𝐸
(1)

1
)
𝑇 ̃̃
𝑃𝐸
(1)

1
+ Ψ̃Δ̃Φ̃ + Φ̃

𝑇

Δ̃Ψ̃
𝑇

<0,

(47a)

Π̃
(2)
≜𝐸
1

+ 𝐸
(1)

2
+ 𝐸
(2)

3
− (𝐸
(1)

1
)
𝑇 ̃̃
𝑃𝐸
(1)

1
+ Ψ̃Δ̃Φ̃ + Φ̃

𝑇

Δ̃Ψ̃
𝑇

<0,

(47b)

Π̃
(3)
≜𝐸
1

+ 𝐸
(2)

2
+ 𝐸
(1)

3
− (𝐸
(1)

1
)
𝑇 ̃̃
𝑃𝐸
(1)

1
+ Ψ̃Δ̃Φ̃ + Φ̃

𝑇

Δ̃Ψ̃
𝑇

<0,

(47c)

Π̃
(4)
≜𝐸
1

+ 𝐸
(2)

2
+ 𝐸
(2)

3
− (𝐸
(1)

1
)
𝑇 ̃̃
𝑃𝐸
(1)

1
+ Ψ̃Δ̃Φ̃ + Φ̃

𝑇

Δ̃Ψ̃
𝑇

<0,

(47d)
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or

̃̃
Π
(1)
≜𝐸
1

+ 𝐸
(1)

2
+ 𝐸
(1)

3
− (𝐸
(2)

1
)
𝑇 ̃̃
𝑃𝐸
(2)

1
+ Ψ̃Δ̃Φ̃ + Φ̃

𝑇

Δ̃Ψ̃
𝑇

<0,

(48a)

̃̃
Π
(2)
≜𝐸
1

+ 𝐸
(1)

2
+ 𝐸
(2)

3
− (𝐸
(2)

1
)
𝑇 ̃̃
𝑃𝐸
(2)

1
+ Ψ̃Δ̃Φ̃ + Φ̃

𝑇

Δ̃Ψ̃
𝑇

<0,

(48b)

̃̃
Π
(3)
≜𝐸
1

+ 𝐸
(2)

2
+ 𝐸
(1)

3
− (𝐸
(2)

1
)
𝑇 ̃̃
𝑃𝐸
(2)

1
+ Ψ̃Δ̃Φ̃ + Φ̃

𝑇

Δ̃Ψ̃
𝑇

<0,

(48c)

̃̃
Π
(4)
≜𝐸
1

+ 𝐸
(2)

2
+ 𝐸
(2)

3
− (𝐸
(2)

1
)
𝑇 ̃̃
𝑃𝐸
(2)

1
+ Ψ̃Δ̃Φ̃ + Φ̃

𝑇

Δ̃Ψ̃
𝑇

<0.

(48d)

Theorem 6. For given scalars 𝜏
𝑙
≥ 0, 𝜏

𝑢
> 0, 𝑏

1
, 𝑏
2
,

𝐿
−

= diag(𝑙−
1
, 𝑙
−

2
, . . . , 𝑙

−

𝑛
), 𝐿+ = diag(𝑙+

1
, 𝑙
+

2
, . . . , 𝑙

+

𝑛
), system (1) is

globally asymptotically stable if there exist 𝑆𝑖, 𝑆𝑗 ∈ 𝑆
Δ
(𝑖, 𝑗 =

1, 2, 3, 4) of appropriate dimensions such that the following
conditions hold:

[
Π
(𝑖)
+ Ψ
𝑇

𝑆
𝑖

Ψ Φ

Φ
𝑇

−𝑆
𝑖
] < 0, [

Π̃
(𝑗)
+ Ψ̃
𝑇

𝑆
𝑗

Ψ̃ Φ̃

Φ̃
𝑇

−𝑆
𝑗
] < 0,

(49)

where 𝑆
Δ
=: {diag(𝑠

1
𝐼, . . . , 𝑠

𝑘
𝐼, 𝑆
1
, . . . , 𝑆

𝑙
) : 𝑆
𝑖
> 0, 𝑘, 𝑙 ∈ 𝑁}.

Proof. By Lemma 3, the conditions in Theorem 6 are equiv-
alent to (32a)–(32d) or (47a)–(47d). In view of the previous
analysis from (30) to (32d) and (46) to (47d), one can
obtain that there exist 𝛼

1
> 0 and 𝛼

3
> 0 such that

�̇�(𝑦(𝑡)) ≤ −min(𝛼
1
, 𝛼
3
)‖𝑥(𝑡)‖

2. By Lyapunov stable theory,
system (1) is globally asymptotically stable, which completes
the proof.

Remark 7. Different from previous work, the LKF function
in this paper is constructed by using the convex combination
between decomposed time delay and positive matrix, which
may reduce the conservatism of criterion.

Remark 8. From the proof ofTheorem 6, one can see that, by
using the different combinations among Π

(𝑖)
, Π
(𝑖)
, and Π̃

(𝑖)
,

̃̃
Π
(𝑖)
, we can establish different stable criteria as follows.

Corollary 9. For given scalars 𝜏
𝑙
≥ 0, 𝜏

𝑢
> 0, 𝑏

1
, 𝑏
2
,

𝐿
−

= diag(𝑙−
1
, 𝑙
−

2
, . . . , 𝑙

−

𝑛
), 𝐿+ = diag(𝑙+

1
, 𝑙
+

2
, . . . , 𝑙

+

𝑛
), system (1) is

globally asymptotically stable if there exist 𝑆𝑖, 𝑆𝑗 ∈ 𝑆
Δ
(𝑖, 𝑗 =

1, 2, 3, 4) of appropriate dimensions such that the following
conditions hold:

[
Π
(𝑖)
+ Ψ
𝑇

𝑆
𝑖

Ψ Φ

Φ
𝑇

−𝑆
𝑖
] < 0, [

Π̃
(𝑗)
+ Ψ̃
𝑇

𝑆
𝑗

Ψ̃ Φ̃

Φ̃
𝑇

−𝑆
𝑗
] < 0.

(50)

Corollary 10. For given scalars 𝜏
𝑙
≥ 0, 𝜏

𝑢
> 0, 𝑏

1
, 𝑏
2
,

𝐿
−

= diag(𝑙−
1
, 𝑙
−

2
, . . . , 𝑙

−

𝑛
), 𝐿+ = diag(𝑙+

1
, 𝑙
+

2
, . . . , 𝑙

+

𝑛
), system

(1) is globally asymptotically stable if there exist 𝑆𝑖, 𝑆𝑗 ∈ 𝑆
Δ

(𝑖, 𝑗 = 1, 2, 3, 4) of appropriate dimensions such that the
following conditions hold:

[
Π
(𝑖)
+ Ψ
𝑇

𝑆
𝑖

Ψ Φ

Φ
𝑇

−𝑆
𝑖
] < 0, [

̃̃
Π
(𝑗)
+ Ψ̃
𝑇

𝑆
𝑗

Ψ̃ Φ̃

Φ̃
𝑇

−𝑆
𝑗
] < 0.

(51)

Corollary 11. For given scalars 𝜏
𝑙
≥ 0, 𝜏

𝑢
> 0, 𝑏

1
, 𝑏
2
,

𝐿
−

= diag(𝑙−
1
, 𝑙
−

2
, . . . , 𝑙

−

𝑛
), 𝐿+ = diag(𝑙+

1
, 𝑙
+

2
, . . . , 𝑙

+

𝑛
), system (1) is

globally asymptotically stable if there exist 𝑆𝑖, 𝑆𝑗 ∈ 𝑆
Δ
(𝑖, 𝑗 =

1, 2, 3, 4) of appropriate dimensions such that the following
conditions hold:

[
Π
(𝑖)
+ Ψ
𝑇

𝑆
𝑖

Ψ Φ

Φ
𝑇

−𝑆
𝑖
] < 0, [

̃̃
Π
(𝑗)
+ Ψ̃
𝑇

𝑆
𝑗

Ψ̃ Φ̃

Φ̃
𝑇

−𝑆
𝑗
] < 0.

(52)

Remark 12. Since the existence of items Ψ𝑇𝑆𝑖Ψ and Ψ𝑇𝑆𝑖Ψ,
the results established in Theorem 6 and Corollaries 9–11 are
not LMI criteria. In order to use LMI toolbox in computing
software, by using the lemma derived in [20], we further
establish the following more practicable stable rules.

Theorem 13. For given scalars 𝜏
𝑙
≥ 0, 𝜏

𝑢
> 0, 𝑏

1
, 𝑏
2
,

𝐿
−

= diag(𝑙−
1
, 𝑙
−

2
, . . . , 𝑙

−

𝑛
), 𝐿+ = diag(𝑙+

1
, 𝑙
+

2
, . . . , 𝑙

+

𝑛
), system (1)

is globally asymptotically stable if there exist positive constants
𝛿
𝑖
, 𝛿
𝑗
> 0 (𝑖, 𝑗 = 1, 2, 3, 4) such that the following conditions

hold:

[

[

𝛿
𝑖
Π
(𝑖)

Ψ 𝛿
𝑖
Φ
𝑇

∗ −𝐼 0

∗ ∗ −𝐼

]

]

< 0, [

[

𝛿
𝑗
Π̃
(𝑗)

Ψ̃ 𝛿
𝑗
Φ̃
𝑇

∗ −𝐼 0

∗ ∗ −𝐼

]

]

< 0.

(53)

Remark 14. Similar to the analysis of Remark 12, the related
practicable stable can also be established by using Corollaries
9–11, since the expressions are similar to Theorem 13, which
are omitted here.

4. Illustrative Examples

In this section, two numerical examples are given to illustrate
the effectiveness of the proposed method.

4.1. Numerical Examples

Example 1. Consider the delayed neural networks (1) with
parameters given as

𝐶 = diag (1.2769, 0.6231, 0.9230, 0.4480) ,

𝐴 =
[
[
[

[

−0.0373 0.4852 −0.3351 0.2336

−1.6033 0.5988 −0.3224 1.2352

0.3394 −0.0860 −0.3824 −0.5785

−0.1311 0.3253 −0.9534 −0.5015

]
]
]

]

,

𝐵 =
[
[
[

[

0.8674 −1.2405 −0.5325 0.0220

0.0474 −0.9164 0.0360 0.9816

1.8495 2.6117 −0.3788 0.8428

−2.0413 0.5179 1.1734 −0.2775

]
]
]

]

,

(54)
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𝑔
1
(𝑠) = tanh(−0.1137𝑠), 𝑔

2
(𝑠) = tanh(−0.1279𝑠), 𝑔

3
(𝑠) =

tanh(−0.7994𝑠), 𝑔
4
(𝑠) = tanh(−0.2368𝑠). Obviously, 𝑙−

1
= 𝑙
−

2
=

𝑙
−

3
= 𝑙
−

4
= 0, 𝑙+
1
= 0.1137, 𝑙+

2
= 0.1279, 𝑙+

3
= 0.7994, 𝑙+

4
= 0.2368,

𝐿 = diag(0, 0, 0, 0).

Similar to [15], our purpose is to estimate the allowable
upper bounds delay 𝜏

𝑢
under 𝜏

𝑙
= 0 such that the system

(1) is globally asymptotically stable. For this example, when
̇𝜏(𝑡) = 0, the maximum allowable delay bound 𝜏

𝑢
is 1.4224

in [9], 1.9321 in [10], 3.5841 in [11], 3.6156 in [13], and 3.7327
in [12]. Recently, by using delay-scope-dependent method,
Li et al. improved the previous results further in [15] and
gave out the maximum allowable delay bound 𝜏

𝑢
as 3.8363.

Applying Theorem 13 in this paper, the maximum allowable
delay bound is 3.9221 with 𝛿

𝑖
= 𝛿
𝑗
= 0.1, which means

that, for this example, the result obtained in this paper is less
conservative that those established in [9–13, 15]. Additionally,
for this example, the computed variables in [12, 15, 21] are
130, 198, and 86, respectively. In Theorem 13, the computed
variables are 150, which is less computationally demanding
than in [21], but heavier than in [12, 15]. If 𝑄

1
, 𝑄
2
, 𝑄
3
, 𝑃
1
,

𝑃
2
, 𝑃
3
, 𝑃
4
, 𝑃
5
, and 𝑃

6
are all diagonal matrices, Theorem 13

established in this paper still holds. In this case, the computed
variables inTheorem 13 are 96, which is less computationally
demanding than in [12, 21], but heavier than in [15]. For
the given initial value [6, 7, −5 − 8], when 𝜏

𝑢
= 3.9221, the

simulation result can be seen in Figure 1. Simulation result
shows that, for the given parameters in Example 1, system (1)
is asymptotically stable.

4.2. An Application Example

Example 2. Consider the continuous pH neutralization of an
acid stream by a highly concentrated basic stream, which can
be expressed in the following form [13]:

V ̇𝑦 (𝑡) = −𝑎𝑦 (𝑡) − 𝑢 (𝑡) , pH = 𝑤
2
tanh (𝑤

1
𝑦 (𝑡)) , (55)

where V is the volume of the mixing tank, 𝑦(𝑡) is the strong
acid, 𝑎 is the acid flow rate, 𝑢(𝑡) is the manipulated variable
representing the base flow rate, pH is the measured output
signal, and 𝑤

2
and 𝑤

1
are some constants.

The purpose of this application is to find the maximum
allowable upper bound of delay 𝜏 for a feedback gain 𝐾 with
output feedback controller 𝑢 = −𝐾×pH such that the closed-
loop system is asymptotically stable. In order to do this, we
can rewrite system (55) in the following form:

̇̃𝑦 (𝑡) = −𝐶𝑦 (𝑡) + 𝐴𝑓 (𝑦 (𝑡)) + 𝐵𝑓 (𝑦 (𝑡 − 𝜏)) , (56)

where 𝑦(𝑡) = 𝑤
1
𝑦(𝑡), 𝑓(𝑦(𝑡)) = tanh(𝑦(𝑡)), 𝐶 = 𝑎/V,

𝐴 = 𝐾𝑤
1
w
2
/V, 𝐵 = 𝐾𝑤

1
𝑤
2
𝑤
3
/V. For this application

problem, [16, 17] gave out the maximum allowable upper
bound of delay 𝜏 as 17.4956 when the parameters are given
as 𝑎 = 5.8154, V = 1500.3732, 𝑤

1
= 28.9860, 𝑤

2
=

−3.8500, and 𝑤
3
= 2.56, and the feedback gain 𝐾 is selected

as 𝐾 = 0.5022. Recently, by employing weighting-delay
method, the maximum allowable upper bound of delay 𝜏 is
improved to 18.2871 in [13]. Meanwhile, by usingTheorem 13,
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Figure 1: The state variables of system (1) in Example 1.
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Figure 2: The state variables of system (55) in Example 2.

the maximum allowable upper bound of delay 𝜏 is 18.7436.
Namely, a little better result can be obtained by using our
criteria. For a given initial value 𝑦

0
= 0.5, when 𝜏

𝑢
= 18.7436,

the simulation result can be seen in Figure 2. Simulation
result shows that, for the given parameters in Example 2,
system (55) is asymptotically stable.

5. Conclusions

Combined with delay partitioning technique, by using the
convex combination between decomposed time delay and
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positive matrix, this paper researches the stability problem of
a class of delayed neural networks with interval time-varying
delays. The benefit of the method used in this paper is that it
can utilize more information on the slope of activations and
time delays. Illustrative examples show that the new criteria
derived in this paper are less conservative than some previous
results obtained in the references cited therein.
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