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We consider a complex autonomously driven single limit cycle oscillator with delayed feedback.The original model is translated to
a two-dimensional system.Through a nonstandard finite-difference (NSFD) schemewe study the dynamics of this resulting system.
The stability of the equilibriumof themodel is investigated by analyzing the characteristic equation. In the two-dimensional discrete
model, we find that there are stability switches on the time delay and Hopf bifurcation when the delay passes a sequence of critical
values. Finally, computer simulations are performed to illustrate the theoretical results. And the results show that NSFD scheme is
better than the Euler method.

1. Introduction

Reddy et al. [1] proposed the following model system of an
autonomously driven single limit cycle oscillator:

�̇� (𝑡) − (𝑎 + 𝑖𝑤 − |𝑧 (𝑡)|

2
) 𝑧 (𝑡) = −𝑘

1
𝑧 (𝑡 − 𝜏) − 𝑘

2
𝑧

2
(𝑡 − 𝜏) ,

(1)

where 𝑧 = 𝑥 + 𝑖𝑦 is a complex quantity, 𝑤 is the frequency
of oscillation, and 𝑎 is a real constant. 𝜏 ≥ 0 is the time
delay of the autonomous feedback term. 𝑘

1
and 𝑘

2
represent

the strengths of the linear and nonlinear contributions of the
feedback. Reddy et al. investigated the temporal dynamics
of system (1) in various regimes characterized by the nat-
ural parameters of the oscillator, strengths of the feedback
components (𝑘

1
, 𝑘

2
), and the time delay parameter 𝜏. Jiang

and Wei [2] have studied the stability of system (1) and have
drawn the bifurcation diagram in (𝑎, 𝑘

1
) plane in continuous-

time model. Furthermore, it is found that there are stability
switches on the time delay and Hopf bifurcation when the
time delay crosses through some critical values.

But due to scientific computation and simulation, our
interest focuses on the behavior of discrete dynamical system
corresponding to (1). It is desired that the discrete-timemodel
is “dynamically consistent” with the continuous-time model.

In [3–12], the dynamics of numerical discrete difference equa-
tions can inherit those of the original differential equations.
Wulf and Ford [13, 14] showed that the Euler forwardmethod
is “dynamically consistent” when applying it to solve the delay
differential equation. It means that, for sufficiently small step-
size, the discrete model undergoes a Hopf bifurcation of the
same type with the original model.

In this paper, we apply NSFD scheme [15–17] to discretize
(1). We consider the autonomous delay differential equation

�̇� = 𝑓 (𝑢 (𝑡) , 𝑢 (𝑡 − 1)) , 𝑡 ≥ 0,

𝑢 (𝑡) = 𝜓 (𝑡) , −1 ≤ 𝑡 ≤ 0.

(2)

The first-order derivative is approximated by modified for-
ward Euler expression

𝑑𝑢 (𝑡)

𝑑𝑡

→

𝑢

𝑘+1
− 𝑢

𝑘

𝜙

, (3)

with the denominator function 𝜙 such that

𝜙 (ℎ) = ℎ + 𝑂 (ℎ

2
) , (4)

where ℎ = 1/𝑚 stands for step-size and 𝑢
𝑘
denotes the

approximate value to 𝑢(𝑘ℎ), so we get the method as follows:

𝑢

𝑘+1
− 𝑢

𝑘
= 𝜙 (ℎ) 𝑓 (𝑢

𝑘
, 𝑢

𝑘−𝑚
) . (5)
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This method can seem as a modified forward Euler method
[4]. NSFD scheme [15–17] tries to preserve the significant
properties of their continuous analogues and consequently
gives reliable numerical results. For small step-size we
obtain the consistent dynamical results of the correspond-
ing continuous-time model using Hopf bifurcation theory
for discrete system [3, 6, 7, 13, 18]. Through the analysis,
our results show that NSFD scheme is better than Euler
method. To the best of our knowledge, to this day, by NSFD
scheme, there are few results dealingwith behavior of stability
switches in the discrete model.

The paper is organized as follows. In Section 2, we discuss
the distribution of the characteristic equation associated
with the discrete limit cycle oscillator with delayed feedback
and obtain the existence of the local Hopf bifurcation and
stability switches. In Section 3, some computer simulations
are performed to illustrate the theoretical results. In the final
section, we summarize our results and give our future plans.

2. Stability Analysis

Let 𝑧 = 𝑥 + 𝑖𝑦. Then (1) becomes

�̇� (𝑡) = (𝑎 − 𝑥

2
(𝑡) − 𝑦

2
(𝑡)) 𝑥 (𝑡) − 𝑤𝑦 (𝑡)

− 𝑘

1
𝑥 (𝑡 − 𝜏) − 𝑘

2
(𝑥

2
(𝑡 − 𝜏) − 𝑦

2
(𝑡 − 𝜏)) ,

̇𝑦 (𝑡) = 𝑤𝑥 (𝑡) + (𝑎 − 𝑥

2
(𝑡) − 𝑦

2
(𝑡)) 𝑦 (𝑡)

− 𝑘

1
𝑦 (𝑡 − 𝜏) − 2𝑘

2
𝑥 (𝑡 − 𝜏) 𝑦 (𝑡 − 𝜏) .

(6)

Set 𝑢
1
(𝑡) = 𝑥(𝜏𝑡), 𝑢

2
(𝑡) = 𝑦(𝜏𝑡). Then (6) can be rewritten as

�̇�

1
(𝑡) = 𝜏 [(𝑎 − 𝑢

2

1
(𝑡) − 𝑢

2

2
(𝑡)) 𝑢

1
(𝑡) − 𝑤𝑢

2
(𝑡)

−𝑘

1
𝑢

1
(𝑡 − 1) − 𝑘

2
(𝑢

2

1
(𝑡 − 1) − 𝑢

2

2
(𝑡 − 1))] ,

�̇�

2
(𝑡) = 𝜏 [𝑤𝑢

1
(𝑡) + (𝑎 − 𝑢

2

1
(𝑡) − 𝑢

2

2
(𝑡)) 𝑢

2
(𝑡)

−𝑘

1
𝑢

2
(𝑡 − 1) − 2𝑘

2
𝑢

1
(𝑡 − 1) 𝑢

2
(𝑡 − 1) ] .

(7)

Let 𝑈 = (𝑢

1
, 𝑢

2
)

𝑇. Given ℎ = 1/𝑚, where 𝑚 ∈ 𝑍

+
, employ

theNSFD scheme [15–17] to (7) and choose the “denominator
function” 𝜙 as

𝜙 (ℎ) =

𝑒

𝑎𝜏ℎ
− 1

𝑎𝜏

.

(8)

It yields the difference equation

𝑈

𝑛+1
= 𝐴𝑈

𝑛
+ 𝐵𝑈

𝑛−𝑚
+ 𝑓 (𝑈

𝑛
, 𝑈

𝑛−𝑚
) , (9)

where

𝐴 = (

𝑒

𝑎𝜏ℎ
−

𝑤 (𝑒

𝑎𝜏ℎ
− 1)

𝑎

𝑤 (𝑒

𝑎𝜏ℎ
− 1)

𝑎

𝑒

𝑎𝜏ℎ

), 𝐵 = (

−

𝑘

1
(𝑒

𝑎𝜏ℎ
− 1)

𝑎

0

0 −

𝑘

1
(𝑒

𝑎𝜏ℎ
− 1)

𝑎

) ,

𝑓 = (

−

𝑒

𝑎𝜏ℎ
− 1

𝑎𝜏

𝜏 (𝑢

2

1,𝑛
+ 𝑢

2

2,𝑛
) 𝑢

1,𝑛
−

𝑒

𝑎𝜏ℎ
− 1

𝑎𝜏

𝜏𝑘

2
(𝑢

2

1,𝑛−𝑚
− 𝑢

2

2,𝑛−𝑚
)

−

𝑒

𝑎𝜏ℎ
− 1

𝑎𝜏

𝜏 (𝑢

2

1,𝑛
+ 𝑢

2

2,𝑛
) 𝑢

2,𝑛
− 2

𝑒

𝑎𝜏ℎ
− 1

𝑎𝜏

𝜏𝑘

2
(𝑢

1,𝑛−𝑚
𝑢

2,𝑛−𝑚
)

) .

(10)

Introducing a new variable 𝑌
𝑛
= (𝑈

𝑇

𝑛
, 𝑈

𝑇

𝑛−1
, . . . , 𝑈

𝑇

𝑛−𝑚
)

𝑇, we
can rewrite (9) as

𝑌

𝑛+1
= 𝐹 (𝑌

𝑛
, 𝜏) , (11)

where 𝐹 = (𝐹𝑇
0
, 𝐹

𝑇

1
, . . . , 𝐹

𝑇

𝑚
)

𝑇, and

𝐹

𝑘
= {

𝐴𝑈

𝑛−𝑘
+ 𝐵𝑈

𝑛−𝑘−𝑚
+ 𝑓 (𝑈

𝑛−𝑘
, 𝑈

𝑛−𝑘−𝑚
) , 𝑘 = 0,

𝑈

𝑛−𝑘+1
, 1 ≤ 𝑘 ≤ 𝑚.

(12)

It is clear that the zero solution (0, 0) is a fixed point of (11),
and the linearization of (11) around (0, 0) is

𝑌

𝑛+1
=

̂

𝐴𝑌

𝑛
, (13)

where

̂A =

[

[

[

[

[

[

[

[

[

𝐴 0 ⋅ ⋅ ⋅ 0 0 𝐵

𝐼 0 ⋅ ⋅ ⋅ 0 0 0

0 𝐼 ⋅ ⋅ ⋅ 0 0 0

...
...

...
...

...
...

0 0 ⋅ ⋅ ⋅ 𝐼 0 0

0 0 ⋅ ⋅ ⋅ 0 𝐼 0

]

]

]

]

]

]

]

]

]

, (14)



Journal of Applied Mathematics 3

where 𝐼 is a 2 × 2 unit matrix. The characteristic equation of
̂

𝐴 is given by

det [𝜆𝑚 (𝜆𝐼 − 𝐴) − 𝐵] = [(𝜆 − 𝑒𝑎𝜏ℎ) 𝜆𝑚 +
𝑘

1
(𝑒

𝑎𝜏ℎ
− 1)

𝑎

]

2

+ (

𝑤(𝑒

𝑎𝜏ℎ
− 1)

𝑎

𝜆

𝑚
)

2

= 0.

(15)

Rewrite (15) in the more compact form

Δ

±
= [(𝜆 − 𝑒

𝑎𝜏ℎ
) 𝜆

𝑚
+

𝑘

1
(𝑒

𝑎𝜏ℎ
− 1)

𝑎

]

± (

𝑤(𝑒

𝑎𝜏ℎ
− 1)

𝑎

𝜆

𝑚
) 𝑖 = 0.

(16)

Similar to [19], we only need to investigate

Δ

+
= (𝜆 − 𝑒

𝑎𝜏ℎ
) 𝜆

𝑚
+

𝑘

1
(𝑒

𝑎𝜏ℎ
− 1)

𝑎

+ (

𝑤(𝑒

𝑎𝜏ℎ
− 1)

𝑎

𝜆

𝑚
) 𝑖 = 0.

(17)

Lemma 1. If 𝑘
1
> 𝑎, then all roots of (17) have modulus less

than one for sufficiently small 𝜏 > 0; if 𝑘
1
< 𝑎, in all roots of

(17), there is at least one root with modulus more than one.

Proof. For 𝜏 = 0, (17) becomes

𝜆

𝑚+1
− 𝜆

𝑚
= 0. (18)

The equation has an𝑚-fold root and a simple root 𝜆 = 1.
Consider the root 𝜆(𝜏) such that 𝜆(0) = 1. This root is a

𝐶

1 function of 𝜏. For (17), we have

𝑑|𝜆|

2

𝑑𝜏

= 𝜆

𝑑𝜆

𝑑𝜏

+ 𝜆

𝑑𝜆

𝑑𝜏

,

𝑑|𝜆|

2

𝑑𝜏

















𝜆=1,𝜏=0

= 2R(𝜆

𝑑𝜆

𝑑𝜏

)















𝜆=1,𝜏=0

= 2 (ℎ𝑎 − ℎ𝑘

1
) ,

𝑑|𝜆|

2

𝑑𝜏

















𝜆=1,𝜏=0

< 0, 𝑘

1
> 𝑎,

𝑑|𝜆|

2

𝑑𝜏

















𝜆=1,𝜏=0

> 0, 𝑘

1
< 𝑎.

(19)

Consequently, when 𝑘
1
> 𝑎, all roots of (17) lie in |𝜆| < 1 for

sufficiently small 𝜏 > 0; when 𝑘
1
< 𝑎, in all roots of (17), there

is at least one root with modulus more than one.

A Hopf bifurcation occurs when two roots of the char-
acteristic equation (17) cross the unit circle. We have to find
values of 𝜏 such that there exist roots on the unit circle. The

roots on the unit circle are given by 𝑒𝑖𝜔∗ , 𝜔
∗
∈ (−𝜋, 𝜋]. Since

we are dealing with a real polynomial complex roots, we only
need to look for 𝜔

∗
∈ (0, 𝜋]. 𝑒𝑖𝜔∗ is a root of (17) if and only if

𝑒

𝑖(𝑚+1)𝜔
∗

− 𝑒

𝑎𝜏ℎ
𝑒

𝑖𝑚𝜔
∗

+

𝑘

1
(𝑒

𝑎𝜏ℎ
− 1)

𝑎

+

𝑤 (𝑒

𝑎𝜏ℎ
− 1)

𝑎

𝑒

𝑖𝑚𝜔
∗

𝑖 = 0.

(20)

Hence

𝑒

𝑖𝜔
∗

−𝑒

𝑎𝜏ℎ
+

𝑘

1
(𝑒

𝑎𝜏ℎ
− 1)

𝑎

𝑒

−𝑖𝑚𝜔
∗

+

𝑤 (𝑒

𝑎𝜏ℎ
− 1)

𝑎

𝑖 = 0.

(21)

Then

cos (𝑚 + 1) 𝜔
∗
− 𝑒

𝑎𝜏ℎ cos𝑚𝜔
∗

+

𝑘

1
(𝑒

𝑎𝜏ℎ
− 1)

𝑎

−

𝑤 (𝑒

𝑎𝜏ℎ
− 1)

𝑎

sin𝑚𝜔
∗
= 0,

sin (𝑚 + 1) 𝜔
∗
− 𝑒

𝑎𝜏ℎ sin𝑚𝜔
∗

+

𝑤 (𝑒

𝑎𝜏ℎ
− 1)

𝑎

cos𝑚𝜔
∗
= 0.

(22)

Or

cos𝜔
∗
− 𝑒

𝑎𝜏ℎ
+

𝑘

1
(𝑒

𝑎𝜏ℎ
− 1)

𝑎

cos𝑚𝜔
∗
= 0,

sin𝜔
∗
+

𝑤 (𝑒

𝑎𝜏ℎ
− 1)

𝑎

−

𝑘

1
(𝑒

𝑎𝜏ℎ
− 1)

𝑎

sin𝑚𝜔
∗
= 0.

(23)

So

cos (𝑚 + 1) 𝜔
∗
=

𝑎

𝑘

1

+

(1 − 𝑒

𝑎𝜏ℎ
) (𝑘

2

1
− 𝑎

2
− 𝑤

2
)

2𝑎𝑘

1

.

(24)

If the step-size ℎ is sufficiently small, we obtain the following
results.

Case I (k
1
> a). Consider the following:

(I1) if 𝑘
1
> 𝑎 > 0, then 0 < 𝑎/𝑘

1
< 1, that is, 0 < cos(𝑚 +

1)𝜔

∗
< 1;

(I2) if 0 > 𝑘
1
> 𝑎, then 𝑎/𝑘

1
> 1, that is, cos(𝑚+1)𝜔

∗
> 1,

which yields a contradiction;
(I3) 𝑘

1
> 0 > 𝑎, if 𝑎 + 𝑘

1
< 0, then 𝑎/𝑘

1
< −1, that is,

cos(𝑚 + 1)𝜔
∗
< −1, which yields a contradiction;

(I4) 𝑘
1
> 0 > 𝑎, if 𝑎 + 𝑘

1
> 0, then −1 < 𝑎/𝑘

1
< 0, that is,

−1 < cos(𝑚 + 1)𝜔
∗
< 0.

Case II (k
1
< a). Consider the following:

(II1) if 0 < 𝑘
1
< 𝑎, then 𝑎/𝑘

1
> 1, that is, cos(𝑚+1)𝜔

∗
> 1,

which yields a contradiction;
(II2) if 𝑘

1
< 𝑎 < 0, then 0 < 𝑎/𝑘

1
< 1, that is, 0 < cos(𝑚 +

1)𝜔

∗
< 1;
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(II3) 𝑘
1
< 0 < 𝑎, if 𝑎 + 𝑘

1
> 0, then 𝑎/𝑘

1
< −1, that is,

cos(𝑚 + 1)𝜔
∗
< −1, which yields a contradiction;

(II4) 𝑘
1
< 0 < 𝑎, if 𝑎 + 𝑘

1
< 0, then −1 < 𝑎/𝑘

1
< 0, that is,

−1 < cos(𝑚 + 1)𝜔
∗
< 0.

Lemma 2. If the step-size ℎ is sufficiently small, and any one
of (I2)(I3) and (II1)(II3) is satisfied, then (17) has no root with
modulus one.

If the step-size ℎ is sufficiently small, any one of (I1)(I4)
and (II2)(II4) (i.e., 𝑘2

1
> 𝑎

2) is satisfied, then | cos(𝑚+1)𝜔
∗
| <

1. From (23) we know that

cos𝜔±
∗

= ( − 𝑒

𝑎𝜏ℎ
𝑀±𝑤

×(

(𝑒

𝑎𝜏ℎ
− 1)

2

𝑎

2

⋅

[

[

4

[

[

(𝑒

𝑎𝜏ℎ
)

2

+(

𝑤(𝑒

𝑎𝜏ℎ
− 1)

𝑎

)

2

]

]

−𝑀

2
]

]

)

1/2

)

×(2

[

[

(𝑒

𝑎𝜏ℎ
)

2

+ (

𝑤(𝑒

𝑎𝜏ℎ
− 1)

𝑎

)

2

]

]

)

−1

,

(25)

where𝑀 = ((𝑘

2

1
− 𝑎

2
− 𝑤

2
)/𝑎

2
) (𝑒

𝑎𝜏ℎ
− 1)

2
− 2𝑒

𝑎𝜏ℎ.
It is clear that there exist values of the time delay param-

eters 𝜏±
𝑗
satisfying (23) according to 𝜔±

∗,𝑗
∈ (2𝑗𝜋/𝑚, (2𝑗 +

1)𝜋/𝑚), 𝑗 = 0, 1, 2, . . . , [(𝑚 − 1)/2].

Lemma 3. Let 𝜆(𝜏) be a root of (17). If the step-size ℎ is
sufficiently small and 𝑘2

1
> 𝑎

2((I1)(I4) and (II2)(II4)), then

𝑑|𝜆 (𝜏) |

2

𝑑𝜏

















𝜏=𝜏
−
,𝜔
∗
=𝜔
−

∗

> 0,

𝑑|𝜆 (𝜏)|

2

𝑑𝜏

















𝜏=𝜏
+
,𝜔
∗
=𝜔
+

∗

> 0, when 𝑤 < √𝑘2
1
− 𝑎

2
,

𝑑|𝜆 (𝜏)|

2

𝑑𝜏

















𝜏=𝜏
+
,𝜔
∗
=𝜔
+

∗

< 0, when 𝑤 > √𝑘2
1
− 𝑎

2
.

(26)

Proof. From (17), we have

𝜆

𝑚
=

𝑘

1
(1 − 𝑒

𝑎𝜏ℎ
)

𝑎𝜆 − 𝑎𝑒

𝑎𝜏ℎ
+ 𝑤 (𝑒

𝑎𝜏ℎ
− 1) 𝑖

,

(27)

𝑑|𝜆 (𝜏)|

2

𝑑𝜏

















𝜏=𝜏
±
,𝜔
∗
=𝜔
±

∗

= 2R(𝜆

𝑑𝜆

𝑑𝜏

)















𝜏=𝜏
±
,𝜔
∗
=𝜔
±

∗

=

2𝑎

3
ℎ𝑒

𝑎𝜏ℎ

1 − 𝑒

𝑎𝜏ℎ
⋅

[

[

(1 + 𝑚) (cos𝜔±
∗
− 1)

−

𝑚(𝑒

𝑎𝜏ℎ
− 1)

2

(𝑘

2

1
− 𝑎

2
− 𝑤

2
)

2𝑎

2

]

]

⋅ ((1) × ([(1 + 𝑚) 𝑎 cos𝜔±
∗
− 𝑚𝑎𝑒

𝑎𝜏ℎ
]

2

+[(1 + 𝑚) 𝑎 sin𝜔±
∗
+ 𝑚𝑤(𝑒

𝑎𝜏ℎ
− 1)]

2

)

−1

) .

(28)

Substituting (25) into (28), we get

𝑑|𝜆 (𝜏)|

2

𝑑𝜏

















𝜏=𝜏
±
,𝜔
∗
=𝜔
±

∗

= (−𝑎

2
ℎ

2
𝜏

±
[2 (1 + 𝑚)𝑤(±

√
𝑘

2

1
− 𝑎

2
− 𝑤)

− (1 + 2𝑚) (𝑘

2

1
− 𝑎

2
− 𝑤

2
) ] + 𝑂 (ℎ

3
) )

× ([(1 + 𝑚) 𝑎 cos𝜔±
∗
− 𝑚𝑎𝑒

𝑎𝜏ℎ
]

2

+[(1 + 𝑚) 𝑎 sin𝜔±
∗
+ 𝑚𝑤(𝑒

𝑎𝜏ℎ
− 1)]

2

)

−1

.

(29)

Therefore

𝑑|𝜆 (𝜏)|

2

𝑑𝜏

















𝜏=𝜏
−
,𝑤
∗
=𝑤
−

∗

= (−𝑎

2
ℎ

2
𝜏

−
[−2 (1 + 𝑚)𝑤(𝑤 +

√
𝑘

2

1
− 𝑎

2
)

− (1 + 2𝑚) (𝑘

2

1
− 𝑎

2
− 𝑤

2
) ] + 𝑂 (ℎ

3
))

× ([(1 + 𝑚) 𝑎 cos𝜔−
∗
− 𝑚𝑎𝑒

𝑎𝜏ℎ
]

2

+ [(1 + 𝑚) 𝑎 sin𝜔−
∗
+ 𝑚𝑤(𝑒

𝑎𝜏ℎ
− 1)]

2

)

−1
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= ((𝑤 +
√
𝑘

2

1
− 𝑎

2
)

× (2𝑎

2
ℎ𝜏

−
√
𝑘

2

1
− 𝑎

2
) + 𝑂 (ℎ

2
) )

× ([(1 + 𝑚) 𝑎 cos𝜔−
∗
− 𝑚𝑎𝑒

𝑎𝜏ℎ
]

2

+[(1 + 𝑚) 𝑎 sin𝜔−
∗
+ 𝑚𝑤(𝑒

𝑎𝜏ℎ
− 1)]

2

)

−1

.

(30)

If the step-size ℎ is sufficiently small and 𝑘2
1
> 𝑎

2, we have

𝑑|𝜆 (𝜏)|

2

𝑑𝜏

















𝜏=𝜏
−
,𝜔
∗
=𝜔
−

∗

> 0,

𝑑|𝜆 (𝜏)|

2

𝑑𝜏

















𝜏=𝜏
+
,𝜔
∗
=𝜔
+

∗

= (−𝑎

2
ℎ

2
𝜏

+
[2 (1 + 𝑚)𝑤(

√
𝑘

2

1
− 𝑎

2
− 𝑤)

− (1 + 2𝑚) (𝑘

2

1
− 𝑎

2
− 𝑤

2
) ] + 𝑂 (ℎ

3
))

× ([(1 + 𝑚) 𝑎 cos𝜔+
∗
− 𝑚𝑎𝑒

𝑎𝜏ℎ
]

2

+[(1 + 𝑚) 𝑎 sin𝜔+
∗
+ 𝑚𝑤(𝑒

𝑎𝜏ℎ
− 1)]

2

)

−1

= ((
√
𝑘

2

1
− 𝑎

2
− 𝑤)

×(2𝑎

2
ℎ𝜏

+
√
𝑘

2

1
− 𝑎

2
) + 𝑂 (ℎ

2
))

× ([(1 + 𝑚) 𝑎 cos𝜔+
∗
− 𝑚𝑎𝑒

𝑎𝜏ℎ
]

2

+ [(1 + 𝑚) 𝑎 sin𝜔+
∗
+ 𝑚𝑤(𝑒

𝑎𝜏ℎ
− 1)]

2

)

−1

,

(31)

If the step-size ℎ is sufficiently small and 𝑘2
1
> 𝑎

2, we have the
following conclusions:

𝑑|𝜆 (𝜏)|

2

𝑑𝜏

















𝜏=𝜏
+
,𝜔
∗
=𝜔
+

∗

> 0, when 𝑤 < √𝑘2
1
− 𝑎

2
,

𝑑|𝜆 (𝜏)|

2

𝑑𝜏

















𝜏=𝜏
+
,𝜔
∗
=𝜔
+

∗

< 0, when 𝑤 > √𝑘2
1
− 𝑎

2
.

(32)

The proof is complete.

For the convenience, we denote (see the bifurcation
diagram in [2])

𝐷

1
:

√

𝑎

2
+ 𝜔

2
≤ 𝑘

1
, 𝐷

2
: |𝑎| < 𝑘1

<

√

𝑎

2
+ 𝜔

2
,

𝐷

3
: −

√

𝑎

2
+ 𝜔

2
< 𝑘

1
< − |𝑎| , 𝐷

4
: 𝑘

1
≤ −

√

𝑎

2
+ 𝜔

2
,

𝐷

5
: 𝑎 < 𝑘

1
< −𝑎, 𝐷

6
: −𝑎 < 𝑘

1
< 𝑎.

(33)

Theorem 4. For (11), the following statements are true.

(1) If (𝑎, 𝑘
1
) ∈ 𝐷

1
, then (11) undergoes a Hopf bifurcation

at the origin (0, 0) when 𝜏 = 𝜏

±

𝑗
; the zero solution is

asymptotically stable when 𝜏 ∈ (0, 𝜏
0
) and is unstable

when 𝜏 > 𝜏
0
.

(2) If (𝑎, 𝑘
1
) ∈ 𝐷

2
, then (11) undergoes a Hopf bifurcation

at the origin (0, 0) when 𝜏 = 𝜏

±

𝑗
. One controls (25)

to make 𝜔±
∗
∈ (0, 𝜃

1
) (𝜃
1
is determined in the proof)

then the zero solution is asymptotically stable when 𝜏 ∈
(0, 𝜏

−

[(𝑚−1)/2]
)⋃(∪

1

𝑗=[(𝑚−1)/2]
(𝜏

+

𝑗
, 𝜏

−

𝑗−1
)) and is unstable

when 𝜏 ∈ ∪0
𝑗=[(𝑚−1)/2]

(𝜏

−

𝑗
, 𝜏

+

𝑗
).

(3) If (𝑎, 𝑘
1
) ∈ 𝐷

3
, then (11) undergoes a Hopf bifurcation

at the origin (0, 0) when 𝜏 = 𝜏

±

𝑗
. We control (25) to

guarantee the following statements.

(3i) If 𝜔±
∗
∈ (0, 𝜃

1
), then the zero solution is unstable.

(3ii) If 𝜔±
∗

∈ (𝜃

1
, 𝜋), then the zero solution

is asymptotically stable when 𝜏 ∈

∪

[(𝑚−1)/2]

𝑗=0
(𝜏

+

𝑗
, 𝜏

−

𝑗
) and is unstable when

𝜏 ∈ (0, 𝜏

+

0
)⋃(∪

[(𝑚−1)/2]−1

𝑗=0
(𝜏

−

𝑗
, 𝜏

+

𝑗+1
)).

(4) If (𝑎, 𝑘
1
) ∈ 𝐷

4
, then (11) undergoes a Hopf bifurcation

at the origin (0, 0) when 𝜏 = 𝜏±
𝑗
, and the zero solution

is unstable.
(5) If (𝑎, 𝑘

1
) ∈ 𝐷

5
, then the zero solution of (11) is

asymptotically stable.
(6) If (𝑎, 𝑘

1
) ∈ 𝐷

6
, then the zero solution of (11) is unstable.

Proof. (1) If √𝑎2 + 𝜔2 ≤ 𝑘

1
, applying Lemmas 1 and 3, we

know that all roots of (17) have modulus less than one when
𝜏 ∈ (0, 𝜏

0
), and (17) has at least a couple of roots withmodulus

greater than one when 𝜏 > 𝜏
0
. Due to Corollary 2.4 in Ruan

and Wei [20], we get the conclusion.
(2) If |𝑎| < 𝑘

1
<

√

𝑎

2
+ 𝜔

2, the time delay satisfies

𝑒

𝑎𝜏ℎ
− 1

𝑎

=

sin𝜔±
∗

𝑘

1
sin𝑚𝜔±

∗
− 𝑤

, (34)

so

𝑘

1
sin𝑚𝜔±

∗
− 𝑤 > 0. (35)

From (25) for 𝜔±
∗
∈ (0, 𝜋), we know that cos𝜔+

∗
> cos𝜔−

∗
.

Since cos𝜔±
∗
is a decreasing function for 𝜔±

∗
∈ (0, 𝜋), we have

𝜔

+

∗,𝑗
< 𝜔

−

∗,𝑗
.

Meanwhile, in view of (34), we have

ℎ𝑒

𝑎𝜏ℎ 𝑑𝜏

𝑑𝑤

±

∗

=

(𝑘

1
sin𝑚𝜔±

∗
− 𝑤) cos𝜔±

∗
− 𝑚𝑘

1
sin𝜔±
∗
cos𝑚𝜔±

∗

(𝑘

1
sin𝑚𝜔±

∗
− 𝑤)

2
.

(36)

Set 𝑔(𝜔±
∗
) = (𝑘

1
sin𝑚𝜔±

∗
−𝑤) cos𝜔±

∗
−𝑚𝑘

1
sin𝜔±
∗
cos𝑚𝜔±

∗
. If

𝑚 > 1, then

𝑔


(𝜔

±

∗
) = (𝑤 + (𝑚

2
− 1) 𝑘

1
sin𝑚𝜔±

∗
) sin𝜔±

∗
> 0. (37)
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Figure 1: Waveform plot and phase (the Euler method) for system
(39) with 𝑎 = −2, 𝑘

1
= 2.5 ((𝑎, 𝑘

1
) ∈ 𝐷

1
), ℎ = 1/2, and 𝜏 =

0.5 (> 0.4391 = 𝜏

0
). A periodic solution bifurcates from (0, 0) and

is asymptotically stable.
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Figure 2: Waveform plot and phase for system (39) with 𝑎 =

−2, 𝑘

1
= 2.5 ((𝑎, 𝑘

1
) ∈ 𝐷

1
), ℎ = 1/2, and 𝜏 = 0.5 (< 0.5781 = 𝜏

0
).

The equilibrium (0, 0) is asymptotically stable.

There exists 𝜃
1
such that when 𝜔±

∗
∈ (0, 𝜃

1
), 𝑑𝜏/𝑑𝜔±

∗
< 0 and

when 𝜔±
∗
∈ (𝜃

1
, 𝜋), 𝑑𝜏/𝑑𝜔±

∗
> 0. So we have 𝜏−

𝑗
< 𝜏

+

𝑗
when

𝜔

±

∗
∈ (0, 𝜃

1
); that is, 0 < 𝜏−

[(𝑚−1)/2]
< 𝜏

+

[(𝑚−1)/2]
< ⋅ ⋅ ⋅ < 𝜏

−

1
<

𝜏

+

1
< 𝜏

−

0
< 𝜏

+

0
. And 𝜏−

𝑗
> 𝜏

+

𝑗
when 𝜔±

∗
∈ (𝜃

1
, 𝜋); that is, 0 <

𝜏

+

0
< 𝜏

−

0
< ⋅ ⋅ ⋅ < 𝜏

+

[(𝑚−1)/2]
< 𝜏

−

[(𝑚−1)/2]
; this case is impossible.

Applying Lemmas 1 and 3, we can arrive at the conclusion.
(3) If −√𝑎2 + 𝜔2 < 𝑘

1
< −|𝑎|, applying Lemmas 1 and 3,

in the same way as (2), we can get the conclusion.

(4) If 𝑘
1
≤ −

√

𝑎

2
+ 𝜔

2, applying Lemmas 1 and 3,
((𝑑|𝜆(𝜏)|

2
)/𝑑𝜏)|

𝜏=𝜏
𝑗
,𝜔=𝜔
∗,𝑗

> 0, we know that the zero solution
is unstable.

(5) (6) Applying Lemmas 1 and 2, we can get the
conclusion.

According to the conclusions of Theorem 4, we have the
results that are consistent with those for the corresponding
continuous-time model, for sufficiently small step-size.

3. Numerical Simulations

One of the purposes of this section is to test the results in
Section 2; the second one is to show that NSFD scheme is
better than the Euler method.

We present some numerical results to system (7) with
different values of 𝑎, 𝜔, 𝑘

𝑖
(𝑖 = 1, 2), and 𝜏. We choose 𝑘

2
=

1, 𝜔 = 1; the system (7) is given by

�̇�

1
(𝑡)

= 𝜏 [𝑎𝑢

1
(𝑡) − 𝑢

2
(𝑡) − 𝑘

1
𝑢

1
(𝑡 − 1) − (𝑢

2

1
(𝑡) + 𝑢

2

2
(𝑡)) 𝑢

1
(𝑡)

− (𝑢

2

1
(𝑡 − 1) − 𝑢

2

2
(𝑡 − 1))] ,

�̇�

2
(𝑡)

= 𝜏 [𝑢

1
(𝑡) + 𝑎𝑢

2
(𝑡) − 𝑘

1
𝑢

2
(𝑡 − 1) − (𝑢

2

1
(𝑡) + 𝑢

2

2
(𝑡)) 𝑢

2
(𝑡)

−2𝑢

1
(𝑡 − 1) 𝑢

2
(𝑡 − 1)] .

(38)

Using NSFD scheme (ℎ = 1/𝑚) to (38), we obtain

𝑢

1,𝑛+1

= 𝑢

1,𝑛
+

𝑒

𝑎𝜏ℎ
− 1

𝑎

[𝑎𝑢

1,𝑛
− 𝑢

2,𝑛
− 𝑘

1
𝑢

1,𝑛−𝑚−(𝑢
2

1,𝑛
+𝑢
2

2,𝑛
)𝑢
1,𝑛

− (𝑢

2

1,𝑛−𝑚
− 𝑢

2

2,𝑛−𝑚
)] ,

𝑢

2,𝑛+1

= 𝑢

2,𝑛
+

𝑒

𝑎𝜏ℎ
− 1

𝑎

[𝑢

1,𝑛
+ 𝑎𝑢

2,𝑛
− 𝑘

1
𝑢

2,𝑛−𝑚

− (𝑢

2

1,𝑛
+ 𝑢

2

2,𝑛
) 𝑢

2,𝑛
− 2𝑢

1,𝑛−𝑚
𝑢

2,𝑛−𝑚
] .

(39)

Choosing 𝑎 = −2, 𝑘

1
= 2.5 ((𝑎, 𝑘

1
) ∈ 𝐷

1
)), we obtaining

Figures 2–5. We compute the bifurcation points of (39) for
some step-size. We see that 𝜏

0
is asymptotically convergent to

1.0033with the increasing of𝑚, which is the true value. Using
NSFD scheme we have ℎ = 1/2, 𝜏

0
= 0.5781; ℎ = 1/10, 𝜏

0
=

0.8687; ℎ = 1/20, 𝜏

0
= 0.9294. Applying Euler method we

obtain ℎ = 1/2, 𝜏

0
= 0.4391; ℎ = 1/10, 𝜏

0
= 0.7975; ℎ =

1/20, 𝜏

0
= 0.8875. From Figure 3 for ℎ = 1/2, 𝜏 = 0.6, we

can obtain that the fixed point is not asymptotically stable.
For 𝜏 = 0.6 and ℎ = 1/10 (Figure 4), the fixed point is
asymptotically stable. With the Euler method (Figure 1) we
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Figure 3: Waveform plot and phase for system (39) with 𝑎 =

−2, 𝑘

1
= 2.5 ((𝑎, 𝑘

1
) ∈ 𝐷

1
), ℎ = 1/2, and 𝜏 = 0.6 (> 0.5781 = 𝜏

0
). A

periodic solution bifurcates from (0, 0) and is asymptotically stable.
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Figure 4: Waveform plot and phase for system (39) with 𝑎 =

−2, 𝑘

1
= 2.5 ((𝑎, 𝑘

1
) ∈ 𝐷

1
), ℎ = 1/10, and 𝜏 = 0.6 (< 0.8687 = 𝜏

0
).

The equilibrium (0, 0) is asymptotically stable.

can obtain that for ℎ = 1/2, 𝜏 = 0.5, the fixed point is not
asymptotically stable. With NSFD scheme (Figure 2) for the
same step-size and 𝜏 we can obtain that the fixed point is
asymptotically stable.

Through the analysis, it demonstrates superiority of
NSFD scheme over Euler method under the means of
describing approximately the dynamics of the original sys-
tem.

Analogous to the region 𝐷
1
, now we give the results and

figures of ℎ = 1/10 in other five regions.
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Figure 5: Waveform plot and phase for system (39) with 𝑎 =

−2, 𝑘

1
= 2.5 ((𝑎, 𝑘

1
) ∈ 𝐷

1
), ℎ = 1/10, and 𝜏 = 1 (> 0.8687 = 𝜏

0
). A

periodic solution bifurcates from (0, 0) and is asymptotically stable.
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Figure 6: Waveform plot and phase for system (39) with 𝑎 =

−1, 𝑘

1
= 1.09 ((𝑎, 𝑘

1
) ∈ 𝐷

2
), ℎ = 1/10, and 𝜏 = 1 (< 1.4480 = 𝜏−

0
).

The equilibrium (0, 0) is asymptotically stable.

We choose 𝑎 = −1, 𝑘

1
= 1.09 ((𝑎, 𝑘

1
) ∈ 𝐷

2
). We have

ℎ = 1/10, 𝜏

−

0
= 1.4480, 𝜏

+

0
= 4.2051, and 𝜏−

1
= 7.0458. See

Figures 6, 7, and 8.
We choose 𝑎 = −1, 𝑘

1
= −1.09 ((𝑎, 𝑘

1
) ∈ 𝐷

3
). We have

ℎ = 1/10, 𝜏

+

0
= 0.8405, 𝜏

−

0
= 2.8689, and 𝜏+

1
= 5.5638. A

stability switch is found. See Figures 9, 10, and 11.
Choose 𝑎 = −0.5, 𝑘

1
= −1 ((𝑎, 𝑘

1
) ∈ 𝐷

3
). The zero

solution of (39) is unstable. See Figure 12.
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Figure 7: Waveform plot and phase for system (39) with 𝑎 =

−1, 𝑘

1
= 1.09 ((𝑎, 𝑘

1
) ∈ 𝐷

2
), ℎ = 1/10, and 𝜏 = 3 (𝜏−

0
= 1.4480 <

3 < 4.2051 = 𝜏

+

0
). A periodic solution bifurcates from (0, 0) and is

asymptotically stable.
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Figure 8: Waveform plot and phase for system (39) with 𝑎 =

−1, 𝑘

1
= 1.09 ((𝑎, 𝑘

1
) ∈ 𝐷

2
), ℎ = 1/10, and 𝜏 = 4.5 (𝜏+

0
= 4.2051 <

4.5<7.0458 = 𝜏

−

1
). The equilibrium (0, 0) is asymptotically stable.

Choose 𝑎 = −2, 𝑘

1
= −2.5 ((𝑎, 𝑘

1
) ∈ 𝐷

4
). The zero

solution of (39) is unstable. See Figure 13, where the delay is
1.

Take 𝑎 = −2, 𝑘
1
= −1 ((𝑎, 𝑘

1
) ∈ 𝐷

5
). The zero solution is

asymptotically stable. See Figure 14.
Take 𝑎 = 2, 𝑘

1
= −1 ((𝑎, 𝑘

1
) ∈ 𝐷

6
). The zero solution is

unstable. See Figure 15.
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Figure 9: Waveform plot and phase for system (39) with 𝑎 =

−1, 𝑘

1
= −1.09 ((𝑎, 𝑘

1
) ∈ 𝐷

3
), ℎ = 1/10, and 𝜏 = 0.8 (< 0.8405 =

𝜏

+

0
). A periodic solution bifurcates from (0, 0) and is asymptotically

stable.
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Figure 10: Waveform plot and phase for system (39) with 𝑎 =

−1, 𝑘

1
= −1.09 ((𝑎, 𝑘

1
) ∈ 𝐷

3
), ℎ = 1/10, and 𝜏 = 2 (𝜏+

0
= 0.8405 <

2<2.8689 = 𝜏

−

0
). The equilibrium (0, 0) is asymptotically stable.

4. Conclusions and Future Plans

Reddy et al. [1] have studied the dynamics of a single
Hopf bifurcation oscillator (the Stuart-Landau equation) in
the presence of an autonomous time-delayed feedback. The
feedback term has both a linear component and a simple
quadratic nonlinear term. The model can also find more
direct applications in simulation studies for feedback control
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Figure 11: Waveform plot and phase for system (39) with 𝑎 =

−1, 𝑘

1
= −1.09 ((𝑎, 𝑘

1
) ∈ 𝐷

3
), ℎ = 1/10, and 𝜏 = 3 (𝜏−

0
= 2.8689 <

3 < 5.5638 = 𝜏

+

1
). A periodic solution bifurcates from (0, 0) and is

asymptotically stable.
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Figure 12: Waveform plot and phase for system (39) with 𝑎 =

−0.5, 𝑘

1
= −1 ((𝑎, 𝑘

1
) ∈ 𝐷

3
), ℎ = 1/10, and 𝜏 = 3. A periodic

solution bifurcates from (0, 0) and is asymptotically stable.

of individual physical, chemical, or biological entities that
have the basic nonlinear characteristics of Hopf oscillator.

In this article, we study a complex autonomously
driven single limit cycle oscillator with delayed feedback.
In Section 2, the original model is translated to a two-
dimensional system. Using NSFD scheme we have investi-
gated the dynamics of a discrete limit cycle oscillator with
delayed feedback. Choose the “denominator function” 𝜙 as

𝜙 (ℎ) =

𝑒

𝑎𝜏ℎ
− 1

𝑎𝜏

.

(40)
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Figure 13: Waveform plot and phase for system (39) with 𝑎 =

−2, 𝑘

1
= −2.5 ((𝑎, 𝑘

1
) ∈ 𝐷

4
), ℎ = 1/10, and 𝜏 = 1. A periodic

solution bifurcates from (0, 0) and is asymptotically stable.
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Figure 14: Waveform plot and phase for system (39) with 𝑎 =

−2, 𝑘

1
= −1 ((𝑎, 𝑘

1
) ∈ 𝐷

5
), ℎ = 1/10, and 𝜏 = 3. The equilibrium

(0, 0) is asymptotically stable.

Through analysis, we obtain Lemmas 1, 2, and 3 and
Theorem 4. Equations (24) and (25) are important. For small
step-size we obtain the consistent dynamical results of the
corresponding continuous-time model. And we find stability
switches in the two-dimensional discrete model. At the same
time, it demonstrates superiority of NSFD scheme over the
Euler method under the means of describing approximately
the dynamics of the original system.
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Figure 15:Waveformplot andphase for system (39)with 𝑎 = 2, 𝑘
1
=

−1 ((𝑎, 𝑘

1
) ∈ 𝐷

6
), ℎ = 1/10, and 𝜏 = 1. A periodic solution bifurcates

from (0, 0) and is asymptotically stable.

Consider a first-order complex differential equationswith
delay

�̇� (𝑡) = 𝑝𝑥 (𝑡) + 𝑞𝑥 (𝑡 − 𝜏) , (41)

where 𝜏 > 0 is a constant, and 𝑝 and 𝑞 are both complex.
Cahlon and Schmidt [21] pointed out that (41) plays an
important role as a test equation for studying the numerical
method applied to delay differential equation. By studying the
asymptotic stability of the solutions of (41) for different values
of 𝑝 and 𝑞, we learn more about the effect of the delay on
the solution. For instance, if |𝑞| > |𝑝|, the term with delay
carries more weight, while the opposite holds for |𝑞| < |𝑝|

[21]. Wei and Zhang [19] have studied Hopf bifurcation and
stability switches of (41) in the continuous-time model. In
our future work, bymany numerical methods, we will discuss
those behaviors of (41) in the discrete-time model.
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