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A chemotaxis model with reproduction term in a bounded domain Ω ⊂ 𝑅𝑛 is discussed in this paper, where 𝑛 = 2, 3. First, the
existence of a global-in-time solution is given, and then a global attractor for this model is obtained.

1. Introduction

This paper deals with global attractor of a quasilinear
parabolic system introduced in [1] by Horstmann and Win-
kler to model chemotaxis. Chemotaxis phenomenon is quite
common in biosystem.The survival of many organisms, from
microscopic bacteria to the largest mammals, depends on
their ability to navigate in a complex environment through
the detection, integration, and processing of a variety of inter-
nal and external signals. This movement is crucial for many
aspects of behavior, including the location of food sources,
avoidance of predators, and attracting mates. The ability to
migrate in response to external signals is shared by many cell
populations. The directed movement of cells and organisms
in response to chemical gradients is called chemotaxis.

The classical chemotaxismodel has been extensively stud-
ied in the last few years (see [1–5]); Payne and Straughan [4]
tackle precise nonlinear decay for classical model. Decay for
a nonlinear chemotaxis system modeling glia cell movement
in the brain is treated by Quinlan and Straughan [5].

In this paper, we are concernedwith the following chemo-
taxis model:

𝜕𝑢

𝜕𝑡

= 𝑢 − ∇ ⋅ ((𝑢 + 1)
𝛼

∇𝑔 (𝑤)) + 𝑓 (𝑢, 𝑤) , 𝑥 ∈ Ω, 𝑡 > 0,

𝜕𝑤

𝜕𝑡
= 𝑤 + 𝑢 − 𝑤, 𝑥 ∈ Ω, 𝑡 > 0,

𝜕𝑢

𝜕𝑛
=
𝜕𝑤

𝜕𝑛
= 0, 𝑥 ∈ 𝜕Ω,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) , 𝑤 (𝑥, 0) = 𝑤

0
(𝑥) , 𝑥 ∈ Ω,

(1)

where 𝑢(𝑥, 𝑡) represents the density of a biological species,
which could be a cell, a germ, or an insect, while 𝑤(𝑥, 𝑡)
denotes the concentration of a chemical substance on posi-
tion 𝑥 ∈ Ω and at time 𝑡 ∈ [0,∞). 𝛼 is a positive constant. Ω
is an open bounded subset of 𝑅𝑛 with the boundary of class
𝐶
3. 𝑔(𝑠), 𝑓(𝑠) are two real smooth functions for 𝑠 ∈ [0, +∞)

satisfying the following conditions:

(i) 𝑓(0, 𝑤) = 0;
(ii) there exists𝑀 > 0 such that 𝑓(𝑢, 𝑤) ≤ 0 as 𝑢 > 𝑀;
(iii) there exists 𝜆 > 0 such that |𝑔(𝑠)| < 𝜆 for all 𝑠 ∈
[0, +∞).

𝑔


(𝑤)(𝑢 + 1)
𝛼 denotes a chemotactic sensitivity function.

(𝑢 + 1)
𝛼 can be replaced by (𝑢 + 𝜀)𝛼, where 𝜀 is an arbitrary

positive constant. For convenience, we choose 𝜀 = 1. 𝑓(𝑢, 𝑤)
describes the intrinsic rate of growth of cells population. For
𝛼 = 1, 𝜀 = 0, and 𝑔(𝑤) = 𝑤, system (1) equals the most
common formulation of the Keller-Segel model.

To our knowledge it has never been analyzed whether the
global attractor of system (1) exists if the positive power 𝛼 ̸= 1;
this system ismoremotivated from themathematical point of
view than from the biological one, but it will help to get more
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insights in the understanding of the behavior of the problem.
We will look at this aspect of the critical exponent 𝛼 which
decides whether global attractor can exist or not.

The existence of the global attractor for semilinear reac-
tion diffusion equations in bounded and unbounded
domains has been studied extensively [6, 7]. However, chem-
otaxis model is always a strongly coupled quasilinear para-
bolic system. There are a few articles to discuss the global
attractor of such a system. We construct a local solution to
(1) by the semigroup method and then discuss its regularity
by a priori estimate method we set up for a strongly coupled
quasilinear parabolic system.

For readers’ convenience, the following standard result on
attractor is first presented here (see [3, 6–9]).

Proposition 1. Suppose that 𝑋 is a metric space and 𝑆(𝑡)
𝑡≥0

is a semigroup of continuous operators in 𝑋. If 𝑆(𝑡)
𝑡≥0

has
a bounded absorbing set and is asymptotically compact, then
𝑆(𝑡)

𝑡≥0
possesses a global attractor which is a compact invariant

set and attracts every bounded set in𝑋.

Definition 2. The semigroup 𝑆(𝑡) is asymptotically compact;
that is, if 𝑢

𝑛
is bounded in 𝑋 and 𝑡

𝑛
→ ∞, then 𝑆(𝑡

𝑛
)𝑢
𝑛
is

precompact in𝑋.
We first show that there is a unique global solution to (1)

for any nonnegative initial functions 𝑢
0
(𝑥) ∈ 𝐿

2

(Ω), 𝑤
0
(𝑥) ∈

𝑊
1,2

(Ω). And then we define a continuous semigroup 𝑆(𝑡)
𝑡≥0

in 𝐿2(Ω) × 𝑊1,2

(Ω). Next, we find a bounded absorbing set
and prove that the semigroup 𝑆(𝑡) is asymptotically compact.
Thus, from the standard result, it is shown that there is a
global attractor to (1) in 𝐿2(Ω) × 𝑊1,2

(Ω).

2. Preliminary

Some well-known inequalities and embedding results that
will be used in the sequel are presented.

Lemma 3 (see [10]). If 𝑝, 𝑞 ≥ 1 and 𝑝(𝑛 − 𝑞) < 𝑛𝑞, then, for
𝑟 ∈ (0, 𝑝),

‖𝑢‖
𝐿
𝑝
(Ω)
≤ 𝑐‖𝑢‖

𝑎

𝑊
1,𝑞 ⋅ ‖𝑢‖

(1−𝑎)

𝐿
𝑟
(Ω)

∀𝑢 ∈ 𝑊
1,𝑞

(Ω) , (2)

where 𝑎 = (𝑛/𝑟 − 𝑛/𝑝)/(1 − 𝑛/𝑞 + 𝑛/𝑟) ∈ (0, 1).

Lemma 4 (see [10]). Let 1 ≤ 𝑞 ≤ 𝑝 ≤ ∞ and 𝑓 ∈ 𝐿𝑞(Ω).
Then


𝑒
𝑡

𝑓
𝑝
≤ (4𝜋𝑡)

(−𝑛/2)(1/𝑞−1/𝑝)𝑓
𝑞
,


∇𝑒

𝑡

𝑓
𝑝
≤ 𝑐𝑡

(−𝑛/2)(1/𝑞−1/𝑝)−1/2𝑓
𝑞
,


(− + 1)

𝛽

𝑒
𝑡

𝑓
𝑝
≤ 𝑐𝑡

−𝛽(−𝑛/2)(1/𝑞−1/𝑝)

𝑒
(1−𝜇)𝑡𝑓

𝑞
𝑝 ̸= 𝑞,

(3)

where 𝛽 > 0, 𝜇 > 0, and 𝑐 is a positive constant depending only
on 𝑝, 𝑞, Ω.
(𝑒
𝑡

𝑓)(𝑥) = ∫
Ω

𝐺(𝑥−𝑦, 𝑡)𝑓(𝑦)𝑑𝑦 and 𝐺(𝑥, 𝑡) is the Green
function of the heat equation 𝜕𝑢/𝜕𝑡−𝑢 = 0, 𝑥 ∈ Ω, 𝑡 > 0with
the homogeneous Neumann boundary condition 𝜕𝑢/𝜕𝑛 = 0.

Lemma 5 (see [11]). Let 𝐴
𝑝
= − and 𝐷(𝐴

𝑝
) = {𝜑 ∈

𝑊
2,𝑝

(Ω)
|𝜕𝜑/𝜕𝑁|

𝜕Ω
= 0}. Then

𝐷((𝐴
𝑝
+ 1)

𝛽

) → 𝑊
1,𝑝

(Ω) , 𝑖𝑓 𝛽 >
1

2
,

𝐷((𝐴
𝑝
+ 1)

𝛽

) → 𝐶
𝛿

(Ω) , 𝑖𝑓 2𝛽 −
𝑛

𝑝
> 𝛿 ≥ 0,


(𝐴 + 1)

𝛽

𝑒
−𝑡(𝐴+1)

𝑢
𝐿𝑝(Ω)

≤ 𝑐𝑡
−𝛽

‖𝑢‖
𝐿
𝑝
(Ω)
.

(4)

Lemma 6. Let 𝑟 and 𝑠 be nonnegative real numbers satisfying
𝑟 + 𝑠 < 2. Then for any 𝜀 > 0 there exists a constant 𝑐

𝜀
> 0 such

that

𝑎
𝑟

𝑏
𝑠

≤ 𝜀 (𝑎
2

+ 𝑏
2

) + 𝑐
𝜀
∀𝑎, 𝑏 > 0. (5)

Lemma 7 (see [2]). Suppose that𝐻𝑠 is an interpolation space
of 𝐻𝑠0 and 𝐻𝑠1 , where 0 ≤ 𝑠

0
< 𝑠

1
< ∞, 0 < 𝜃 < 1, 𝑠 =

(1 − 𝜃)𝑠
0
+ 𝜃𝑠

1
, and then

‖⋅‖
𝐻
𝑠 ≤ 𝑐‖⋅‖

1−𝜃

𝐻
𝑠0 ‖⋅‖

𝜃

𝐻
𝑠1 . (6)

Here𝐻𝑠

(Ω), 𝑠 > 0, denotes the fractional Sobolev space in Ω.

Lemma 8 (see [1]). Let 𝛽 > 0, 𝑝 ∈ (1, +∞), for all 𝜀 > 0; there
exists 𝑐(𝜀) > 0 for any 𝑤 ∈ 𝐿𝑝(Ω), such that


(𝐴 + 1)

𝛽

𝑒
−𝑡𝐴

∇ ⋅ 𝑤
𝐿
𝑝

(Ω)

≤ 𝑐 (𝜀) 𝑡
−𝛽−(1/2)−𝜀

‖𝑤‖
𝐿
𝑝

(Ω)

. (7)

3. Local Existence and Uniqueness

The local existence of a solution to system (1) is discussed in
this section. First, an estimate to 𝑤 in (1) is shown.

Lemma 9. Assume that there exist 1 ≤ 𝑞 ≤ 𝑝 ≤ ∞, (1/𝑞) −
(1/𝑝) < 1/𝑛, and 𝑢 ∈ 𝐿∞([0,∞); 𝐿𝑞(Ω)). Then for any 𝜏 > 0

‖𝑤 (𝑡)‖
𝑊
1,𝑝 ≤ 𝜏

−𝛼𝑤0
𝐿1
+ 𝑐Γ (𝛾) sup

𝜏<𝑠<𝑡

‖𝑢 (𝑠)‖
𝑞
∀𝑡 ≥ 𝜏, (8)

where 𝛼 > 0, 𝛾 = 1 − 𝛽 − (𝑛/2)((1/𝑞) − (1/𝑝)), Γ(⋅) is the
Gamma function, and

𝑤 (𝑥, 𝑡) = 𝑒
𝑡(−1)

𝑤
0
+ ∫

𝑡

0

𝑒
(𝑡−𝑠)(−1)

𝑢 (𝑠) 𝑑𝑠. (9)

The proof of the lemma can be found in another paper [3].

Theorem 10. Suppose 0 ≤ 𝑢
0
(𝑥) ∈ 𝐿

2

(Ω), 0 ≤ 𝑤
0
(𝑥) ∈

𝑊
1,2

(Ω), and 𝛼 < 1/𝑛. Then there is a 𝑇 ≤ ∞ (depending
on ‖𝑢

0
‖
𝐿
2
(Ω)
, ‖𝑤

0
‖
𝑊
1,2
(Ω)

) such that there exists a unique
nonnegative solution (𝑢(𝑥, 𝑡), 𝑤(𝑥, 𝑡)) to (1) in [0, 𝑇] and

𝑢 ∈ 𝐶
0

([0, 𝑇] ; 𝐿
2

(Ω))⋂𝐶
2,1

(Ω; (0, 𝑇]) ,

𝑤 ∈ 𝐶
0

([0, 𝑇] ;𝑊
1,2

(Ω))⋂𝐶
2,1

(Ω; (0, 𝑇])

⋂𝐶
0

((0, 𝑇] ; 𝐶
3

(Ω)) .

(10)
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Proof. Choose 𝑇 ∈ (0, 1) and 𝑅 > 0 to be fixed. In Banach
space 𝑋 = 𝐶0([0, 𝑇]; 𝐿2(Ω)) × 𝐶0([0, 𝑇];𝑊1,2

(Ω)), we define
a bounded closed set

𝑆 := {(𝑢, 𝑤) ∈ 𝑋 | ‖𝑢, 𝑤‖
𝑋
≤ 𝑅} . (11)

Let

𝜓 (𝑢, 𝑤) (𝑡)

= (
𝜓
1
(𝑢, 𝑤) (𝑡)

𝜓
2
(𝑢, 𝑤) (𝑡)

)

= (

𝑒
𝑡

𝑢
0
− ∫

𝑡

0

𝑒
(𝑡−𝑠)

[∇ (𝑢
𝛼

∇𝑔 (𝑤)) + 𝑓 (𝑢)] 𝑑𝑠

𝑒
𝑡(−1)

𝑤
0
+ ∫

𝑡

0

𝑒
(𝑡−𝑠)(−1)

𝑢 (𝑠) 𝑑𝑠

) ,

(12)

where 𝑓(𝑢) = 𝑢(𝑎 − 𝑏𝑢).
Next, we prove that𝜓 is a contractivemapping from 𝑆 into

itself for𝑇 small enough and𝑅 sufficiently large. By Lemma 4,
then
𝜓1 (𝑢, 𝑤)

𝐿2

≤

𝑒
−𝑡𝐴

𝑢
0
(𝑥)
𝐿2
+ 𝑐∫

𝑡

0


𝑒
−(𝑡−𝑠)𝐴

∇ (𝑢
𝛼

∇𝑔 (𝑤))
𝐿2
𝑑𝑠

+ ∫

𝑡

0


𝑒
−(𝑡−𝑠)𝐴

𝑓 (𝑢 (𝑠))
𝐿2
𝑑𝑠

≤
𝑢0 (𝑥)

𝐿2

+ 𝑐∫

𝑡

0

(𝑡 − 𝑠)
(−𝑛/2)((1/𝑞)−(1/2))−(1/2)𝑢

𝛼

∇𝑔 (𝑤)
𝐿𝑞
𝑑𝑠

+ ∫

𝑡

0

(𝑡 − 𝑠)
(−𝑛/2)(1−(1/2))𝑓 (𝑢 (𝑠))

𝐿1
𝑑𝑠,

(13)

where 𝐴 = −. Since 𝛼 < 1/𝑛, there is a 𝑞 ∈ [2𝑛/(2 + 𝑛), 2),
such that 2𝑞𝛼/(2 − 𝑞) ≤ 2 and 1/2 − (𝑛/2)((1/𝑞) − (1/2)) > 0.
By Hölder’s inequality
𝑢

𝛼

∇𝑔 (𝑤)
𝐿𝑞
≤ 𝜆
𝑢

𝛼

∇𝑤
𝐿𝑞
≤ 𝑐 (𝜆) ‖𝑢‖

𝛼

𝐿
2𝑞𝛼/(2−𝑞)‖∇𝑤‖𝐿2

≤ 𝑐 (𝜆) ‖𝑢‖
𝛼

𝐿
2‖∇𝑤‖

𝐿
2

≤ 𝑐 (𝜆) 𝑅
2

,

(14)

then

𝑐 ∫

𝑡

0

(𝑡 − 𝑠)
(−𝑛/2)((1/𝑞)−(1/2))−(1/2)𝑢

𝛼

∇𝑔 (𝑤)
𝐿𝑞
𝑑𝑠

≤ 𝑐 (𝜆) 𝑅
2

𝑇
(1/2)−(𝑛/2)((1/𝑞)−(1/2))

.

(15)

Similarly, for 𝑛 ≤ 3, there is ∫
𝑡

0

(𝑡 −

𝑠)
(−𝑛/2)(1−(1/2))

‖𝑓(𝑢(𝑠))‖
𝐿
1𝑑𝑠 ≤ 𝑅𝑇

1−(𝑛/4). Hence

𝜓1 (𝑢, 𝑤)
𝐿2
≤
𝑢0 (𝑥)

𝐿2
+ 𝑐𝑅

2

𝑇
1/2−(𝑛/2)((1/𝑞)−(1/2))

+ 𝑅𝑇
1−(𝑛/4)

.

(16)

By Lemma 5, for any 𝑡 ∈ [0, 𝑇), there is a 𝛾 ∈ (1/2, 1) such
that

𝜓2 (𝑢, 𝑤)
𝑊1,2

≤

𝑒
−𝑡(𝐴+1)

𝑤
0
(𝑥)
𝑊1,2

+ ∫

𝑡

0


𝑒
−(𝑡−𝑠)(𝐴+1)

𝑢 (𝑠)
𝑊1,2
𝑑𝑠

≤
𝑤0 (𝑥)

𝑊1,2
+ 𝑐∫

𝑡

0


(𝐴 + 1)

𝛾

𝑒
−(𝑡−𝑠)(𝐴+1)

𝑢 (𝑠)
𝐿2
𝑑𝑠

≤
𝑤0 (𝑥)

𝑊1,2
+ 𝑐∫

𝑡

0

(𝑡 − 𝑠)
−𝛾

‖𝑢 (𝑠)‖
𝐿
2𝑑𝑠

≤
𝑤0 (𝑥)

𝑊1,2
+ 𝑐𝑅𝑇

1−𝛾

.

(17)

Equations (16) and (17) imply that 𝜓𝑆 ⊂ 𝑆 for any fixed
positive 𝑅 large enough and 𝑇 small enough. Now we show
that 𝜓 is a contractive operator from 𝑆 to 𝑆. For for all (𝑢, 𝑤),
(𝑢, 𝑤) ∈ 𝑆,

𝜓1 (𝑢, 𝑤) − 𝜓1 (𝑢, 𝑤)
𝐿2

≤ 𝑐∫

𝑡

0


𝑒
−(𝑡−𝑠)𝐴

[∇ (𝑢
𝛼

∇𝑔 (𝑤)) − ∇ (𝑢
𝛼

∇𝑔 (𝑤))]
𝐿2
𝑑𝑠

+ ∫

𝑡

0


𝑒
−(𝑡−𝑠)𝐴

(𝑓 (𝑢) − 𝑓 (𝑢))
𝐿2
𝑑𝑠

≤ 𝑐∫

𝑡

0

(𝑡 − 𝑠)
(−𝑛/2)((1/𝑞)−(1/2))−(1/2)𝑢

𝛼

∇𝑤 − 𝑢
𝛼

∇𝑤
𝐿𝑞
𝑑𝑠

+ ∫

𝑡

0

(𝑡 − 𝑠)
−𝑛/4𝑓 (𝑢) − 𝑓 (𝑢)

𝐿1
𝑑𝑠

≤ 𝑐𝑅
2

(𝑇
1/2−(𝑛/2)((1/𝑞)−(1/2))

+ 𝑇
1−𝑛/4

) ‖(𝑢, 𝑤) − (𝑢, 𝑤)‖
𝑋

∀𝑡 ∈ [0, 𝑇) ,

𝜓2 (𝑢, 𝑤) − 𝜓2 (𝑢, 𝑤)
𝑊1,2

≤ 𝑐∫

𝑡

0


(𝐴 + 1)

𝛾

𝑒
−(𝑡−𝑠)(𝐴+1)

(𝑢 (𝑠) − 𝑢 (𝑠))
𝐿2
𝑑𝑠

≤ 𝑐∫

𝑡

0

(𝑡 − 𝑠)
−𝛾

‖𝑢 (𝑠) − 𝑢 (𝑠)‖
𝐿
2𝑑𝑠

≤ 𝑐𝑇
1−𝛾

‖(𝑢, 𝑤) − (𝑢, 𝑤)‖
𝑋
∀𝑡 ∈ [0, 𝑇) .

(18)

Equation (18) implies that 𝜓 is a contractive mapping if
𝑇 is sufficiently small. By Banach’s fixed point theorem, there
exists a unique fixed point (𝑢, 𝑤) ∈ 𝑋 which is just a local
solution to (1) in𝑋.
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Since 𝑢
0
(𝑥) ≥ 0, 𝑤

0
(𝑥) ≥ 0, then, for any given smooth

function𝑤, 𝑢 = 0 is the subsolution of the following problem:

𝜕𝑢

𝜕𝑡
− 𝑢 + ∇ ⋅ ((𝑢 + 1)

𝛼

∇𝑔 (𝑤)) − 𝑢 (𝑎 − 𝑏𝑢) = 0,

𝑥 ∈ Ω, 𝑡 > 0,

𝜕𝑢

𝜕𝑛
= 0, 𝑥 ∈ 𝜕Ω,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) , 𝑥 ∈ Ω

(19)

and, for any given smooth function𝑢,𝑤 = 0 is the subsolution
of the following problem:

𝜕𝑤

𝜕𝑡
− 𝑤 + 𝑤 = 𝑢, 𝑥 ∈ Ω, 𝑡 > 0,

𝜕𝑤

𝜕𝑛
= 0, 𝑥 ∈ 𝜕Ω,

𝑤 (𝑥, 0) = 𝑤
0
(𝑥) , 𝑥 ∈ Ω.

(20)

By the comparison principle, for any 𝑡 ∈ [0, 𝑇max) and 𝑥 ∈ Ω,
𝑢(𝑥, 𝑡) ≥ 0; 𝑤(𝑥, 𝑡) ≥ 0.

Now, we discuss the regularity of the solution to (1). From
the previous analysis, 𝑢(𝑡, 𝑥) is bounded in 𝐿2(Ω) for any 𝑡 ∈
[0, 𝑇]. Then by Lemma 9, for any 𝜏 ∈ (0, 𝑇], we deduce that
𝑤(𝑡) ∈ 𝑊

1,𝑝

(Ω), for all 𝑡 ∈ [𝜏/2, 𝑇], where 𝑛 < 𝑝 < 2𝑛/(𝑛 −
2) and 𝑛 = 2, 3. From the semigroup representation of the
solution to (1) and Lemmas 3 and 4, for any 𝑞 ∈ (2, 𝑛/(𝑛−2)),
𝑡 ∈ [𝜏, 𝑇],

‖𝑢 (𝑥, 𝑡)‖
𝐿
𝑞

≤

𝑒
−(𝑡−𝜏/2)𝐴

𝑢
𝜏/2
(𝑥)
𝐿𝑞

+ 𝑐∫

𝑡

𝜏/2


𝑒
−(𝑡−𝑠)𝐴

∇ ((𝑢 + 1)
𝛼

∇𝑔 (𝑤))
𝐿𝑞
𝑑𝑠

+ ∫

𝑡

𝜏/2


𝑒
−(𝑡−𝑠)𝐴

𝑓 (𝑢 (𝑠))
𝐿𝑞
𝑑𝑠

≤ (𝑡 −
𝜏

2
)

(−𝑛/2)((1/2)−(1/𝑞))

𝑢𝜏/2 (𝑥)
𝐿2

+ 𝑐𝜆∫

𝑡

𝜏/2

(𝑡 − 𝑠)
(−𝑛/2)((1/2)−(1/𝑞))(𝑢 + 1)

𝛼

∇𝑤
𝐿2
𝑑𝑠

+ ∫

𝑡

𝜏/2

(𝑡 − 𝑠)
(−𝑛/2)(1−(1/𝑞))𝑓 (𝑢 (𝑠))

𝐿1
𝑑𝑠.

(21)

Since 𝛼 < 1/𝑛, then there exists 𝑝
1
∈ (𝑛/2, 1/𝛼] such that

2𝛼𝑝
1
≤ 2, 2𝑝

1
< 2𝑛/(𝑛 − 2) and

(𝑢 + 1)
𝛼

∇𝑤
𝐿2

≤ 𝑐‖𝑢‖
𝛼

𝐿
2𝛼𝑝1 ‖∇𝑤‖

𝐿
2𝑝
1
≤ 𝑐‖𝑢‖

𝛼

𝐿
2‖∇𝑤‖

𝐿
2𝑝
1
.

(22)

Here 1/𝑝
1
+ 1/𝑝



1
= 1. Then

‖𝑢 (𝑥, 𝑡)‖
𝐿
𝑞

≤ 𝑐𝜏
(−𝑛/2)((1/2)−(1/𝑞))𝑢0 (𝑥)

𝐿2

+ 𝑐 sup
𝜏/2<𝑠<𝑡

‖𝑢‖
𝐿
2‖∇𝑤‖

𝐿
2𝑝
1
∫

𝑡

𝜏/2

(𝑡 − 𝑠)
(−𝑛/2)((1/2)−(1/𝑞))−(1/2)

𝑑𝑠

+ 𝑐∫

𝑡

𝜏/2

(𝑡 − 𝑠)
(−𝑛/2)(1−1/𝑞)

𝑑𝑠 𝑡 ∈ [𝜏, 𝑇]

(23)

which implies that, for any 𝑞 ∈ (2, 𝑛/(𝑛 − 2)), ‖𝑢(𝑥, 𝑡)‖
𝐿
𝑞

is bounded for all 𝑡 ∈ [𝜏, 𝑇]. By using Lemma 9 again and
repeating the above process, it can be proved that

𝑢 ∈ 𝐶
0

((𝜏, 𝑇] ; 𝐿
∞

(Ω)) , 𝑤 ∈ 𝐶
0

((𝜏, 𝑇] ; 𝐶
0

(Ω)) .

(24)

There exist 𝑝, 𝛽, and 𝜀 satisfying 𝑝 > 𝑛, 1/2 > 𝛽 > 𝑛/2𝑝, and
𝜀 < 1/2 − 𝛽 such that, for any small enough constant 𝜂 > 0,

‖𝑢 (𝑥, 𝑡)‖
𝐶
0

≤

𝑒
−(𝑡−𝜏)𝐴

𝑢
𝜏
(𝑥)
𝐶0

+ 𝑐∫

𝑡

𝜏


𝑒
−(𝑡−𝑠)𝐴

∇ ((𝑢 + 1)
𝛼

∇𝑔 (𝑤))
𝐶0
𝑑𝑠

+ ∫

𝑡

𝜏


𝑒
−(𝑡−𝑠)𝐴

𝑓 (𝑢 (𝑠))
𝐶0
𝑑𝑠

≤

(𝐴 + 1)

𝛽

𝑒
−(𝑡−𝜏)𝐴

𝑢
𝜏
(𝑥)
𝐿𝑝

+ 𝑐𝜆∫

𝑡

𝜏


(𝐴 + 1)

𝛽

𝑒
−(𝑡−𝑠)𝐴

∇ ((𝑢 + 1)
𝛼

∇𝑤)
𝐿𝑝
𝑑𝑠

+ ∫

𝑡

𝜏


(𝐴 + 1)

𝛽

𝑒
−(𝑡−𝑠)𝐴

𝑓 (𝑢 (𝑠))
𝐿𝑝
𝑑𝑠

≤ 𝜂
(−𝑛/2)((1/2)−(1/𝑝))

𝑒
(1−𝜇)𝑡𝑢𝜏 (𝑥)

𝐿2

+ 𝑐 sup
𝜏<𝑠<𝑡

(𝑢 + 1)
𝛼

∇𝑤
𝐿𝑝 ∫

𝑡

𝜏

(𝑡 − 𝑠)
−𝛽−1/2−𝜀

𝑑𝑠

+ 𝑐∫

𝑡

𝜏

(𝑡 − 𝑠)
−𝛽−𝜀1𝑑𝑠 𝑡 ∈ [𝜏 + 𝜂, 𝑇) ,

(25)

where 𝜀
1
= (𝑛/2)((1/𝑞) − (1/𝑝)) ≤ 1 − 𝛽, which implies that

𝑢 ∈ 𝐶
0

((0, 𝑇]; 𝐶
0

(Ω)). In conclusion, we see that

𝑢 (𝑥, 𝑡) ∈ 𝐶 ([0, 𝑇] ; 𝐿
2

(Ω))⋂𝐶
2,1

(Ω; (0, 𝑇]) ,

𝑤 (𝑥, 𝑡) ∈ 𝐶 ([0, 𝑇] ;𝑊
1,2

(Ω))⋂𝐶
2,1

(Ω; (0, 𝑇])

⋂𝐶((0, 𝑇] ; 𝐶
3

(Ω)) .

(26)
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By semigroup techniques and Schauder estimates (Theo-
rem IV. 5.1–5.3 in [7] and Lemmas 3.2–3.3 in [10]), we have
that

𝑢 ∈ 𝐶
0

([0, 𝑇] ; 𝐿
2

(Ω))⋂𝐶
0

((0, 𝑇] ;𝐻
2

𝑁
(Ω)) ,

𝑤 ∈ 𝐶
0

([0, 𝑇] ;𝑊
1,2

(Ω))⋂𝐶
0

((0, 𝑇] ;𝐻
3

𝑁
(Ω)) .

(27)

Here we denote that𝐻𝑠

𝑁
= {𝑢 ∈ 𝐻

𝑠

(Ω); 𝜕𝑢/𝜕𝑛 = 0, on 𝜕Ω}.
The proof of Theorem 10 is completed.

4. Global Solution and Some
A Priori Estimates

In this section, the global-in-time existence of a solution to
system (1) is proved.The following a priori estimates will play
a crucial role in the proof of our result.

Lemma 11. Suppose that 0 ≤ 𝑢
0
∈ 𝐿

2

(Ω), (𝑢, V) is a solution
to (1), and then there exists a positive constant 𝑐

0
such that

‖𝑢 (𝑡)‖
1
≤ 𝑐

0
, ∀𝑡 > 0. (28)

Proof. Integrating the first equation of (1) onΩ, we obtain

𝑑‖𝑢 (𝑡)‖
1

𝑑𝑡
= ∫

Ω

(𝑎𝑢 − 𝑏𝑢
2

) 𝑑𝑥 = 𝑎‖𝑢‖
1
− 𝑏∫

Ω

𝑢
2

𝑑𝑥

≤ 𝑎‖𝑢‖
1
−
𝑏

|Ω|
‖𝑢‖

2

1
.

(29)

From the above equation, it is easy to know that𝑑‖𝑢(𝑡)‖
1
/𝑑𝑡 <

0 if ‖𝑢(𝑡)‖
1
≥ 𝑎|Ω|/𝑏.Then there exists a constant 𝑐

0
(depend-

ing on 𝑎, 𝑏, andΩ) such that ‖𝑢(𝑡)‖
1
≤ 𝑐

0
.

Lemma 12. Suppose that 0 ≤ 𝑢
0
∈ 𝐿

2

(Ω), 0 ≤ 𝑤
0
∈ 𝑊

1,2

(Ω),
and 𝛼 < 1/𝑛; (𝑢, 𝑤) is a local solution to (1) in [0, 𝑇] satisfying

𝑢 ∈ 𝐶
0

([0, 𝑇] ; 𝐿
2

(Ω))⋂𝐶
0

((0, 𝑇] ;𝐻
1

(Ω))

⋂𝐶
0

((0, 𝑇] ;𝐻
2

𝑁
(Ω)) ,

𝑤 ∈ 𝐶
0

([0, 𝑇] ;𝑊
1,2

(Ω))⋂𝐶
0

((0, 𝑇] ;𝐻
2

𝑁
(Ω))

⋂𝐶
0

((0, 𝑇] ;𝐻
3

𝑁
(Ω)) .

(30)

Then for any 𝜏 > 0,

‖𝑢 (𝑡)‖
2

𝐿
2 + ‖𝑤 (𝑡)‖

2

𝑊
1,2 ≤ 𝑐 (1 + 𝑒

−𝜐𝑡

(
𝑢0


2

𝐿
2 +
𝑤0


2

𝑊
1,2)) ,

0 ≤ 𝑡 ≤ 𝑇,

‖𝑢 (𝑡)‖
𝐻
1 + ‖𝑤 (𝑡)‖

𝐻
2 ≤ 𝐶, 𝜏 < 𝑡 ≤ 𝑇,

(31)

where 𝐶 depends only on Ω, 𝑢
𝜏
, 𝑤

𝜏
, and 𝜐 > 0.

Proof. In the process of the proof, we denote any positive
constant by 𝑐 which may change from line to line and let 𝜏
be a small enough constant.

Step 1. Taking the inner product of the first equation of (1)
with 𝑢 in 𝐿2(Ω),

1

2

𝑑‖𝑢 (𝑡)‖
2

𝐿
2

𝑑𝑡
+ ∫

Ω

|∇𝑢|
2

𝑑𝑥

= ∫
Ω

𝑢
𝛼

∇𝑢 ⋅ ∇𝑔 (𝑤) 𝑑𝑥 + ∫
Ω

𝑢 (𝑎𝑢 − 𝑏𝑢
2

) 𝑑𝑥

≤
1

2
∫
Ω

|∇𝑢|
2

𝑑𝑥 +
1

2
∫
Ω

𝑢
2𝛼

|∇𝑤|
2

𝑑𝑥 +
𝑎
2

4𝑏
∫
Ω

𝑢𝑑𝑥.

(32)

By Hölder’s inequality,

∫
Ω

𝑢
2𝛼

|∇𝑤|
2

𝑑𝑥 ≤ (∫
Ω

𝑢
2𝑝𝛼

𝑑𝑥)

1/𝑝

(∫
Ω

|∇𝑤|
2𝑝


𝑑𝑥)

1/𝑝


= ‖𝑢‖
2𝛼

𝐿
2𝑝𝛼‖∇𝑤‖

2

𝐿
2𝑝

(
1

𝑝
+
1

𝑝
= 1) .

(33)

If 2𝑝𝛼(𝑛 − 2) ≤ 2𝑛 and 2𝑝𝛼 > 1, then, from Lemma 3, there
exists 𝑎 = (𝑛 − (𝑛/2𝑝𝛼))/(1 + (𝑛/2)) ∈ (0, 1) such that

‖𝑢‖
2𝛼

𝐿
2𝑝𝛼 ≤ ‖𝑢‖

2𝑎𝛼

𝑊
1,2‖𝑢‖

2𝛼(1−𝑎)

𝐿
1 . (34)

Lemmas 9 and 11 imply that ‖∇𝑤(𝑡)‖
𝑞
is bounded for any 𝑞 ∈

(1, 𝑛/(𝑛 − 1)).
If 𝑞 < 𝑛/(𝑛 − 1) < 2𝑝 < 2𝑛/(𝑛 − 2), then there exists

𝑏 = ((𝑛/𝑞) − (𝑛/2𝑝


))/(1 − (𝑛/2) + (𝑛/𝑞)) ∈ (0, 1) such that

‖∇𝑤‖
2

𝐿
2𝑝
≤ 𝑐‖∇𝑤‖

2𝑏

𝑊
1,2‖∇𝑤‖

2(1−𝑏)

𝐿
𝑞 ≤ 𝑐‖𝑤‖

2𝑏

𝐿
2 . (35)

Let 𝑡 = 1/𝑝 > (𝑛 − 2)/𝑛, 𝑔(𝛼, 𝑝, 𝑞) = 2𝑎𝛼 + 2𝑏 since
𝛼 < 1/𝑛,

𝑔(𝛼, 𝑝,
𝑛

−1
)

=
4𝑛𝛼 − 2𝑛 (1 − 𝑡)

𝑛 + 2
+
2

𝑛
(2𝑛 − 2 − 𝑛𝑡)

=
(4𝛼 + 2) 𝑛

2

+ 4𝑛 − 8

𝑛 (𝑛 + 2)
+
−4𝑡

𝑛 + 2

<
(4𝛼 + 2) 𝑛

2

𝑛 (𝑛 + 2)
< 2.

(36)

Then there exist 𝑝, 𝑞 which satisfy the above condition such
that 2𝑎𝛼 + 2𝑏 < 2. By Lemma 6, for any 𝜀 > 0, there is a
constant 𝑐

𝜀
such that

∫
Ω

𝑢
2𝛼

|∇𝑤|
2

𝑑𝑥

≤ ‖∇𝑢 (𝑡)‖
2𝑎𝛼

𝐿
2 ‖𝑤 (𝑡)‖

2𝑏

𝐿
2

≤ 𝜀 (‖∇𝑢 (𝑡)‖
2

𝐿
2 + ‖𝑤 (𝑡)‖

2

𝐿
2) + 𝑐

𝜀
.

(37)
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Taking the inner product of the second equation of (1) with
𝑤 in 𝐿2(Ω), for any 𝜀

1
> 0,

1

2

𝑑‖∇𝑤 (𝑡)‖
2

𝐿
2

𝑑𝑡

+ ∫
Ω

|𝑤|
2

𝑑𝑥 + ∫
Ω

|∇𝑤|
2

𝑑𝑥 = −∫
Ω

𝑢𝑤𝑑𝑥

≤
𝜀
2

1

2
∫
Ω

|∇𝑢|
2

𝑑𝑥 +
1

2𝜀
2

1

∫
Ω

|∇𝑤|
2

𝑑𝑥.

(38)

From (32) and (38), there are 𝜀, 𝜀
1
such that 𝜐 = min{1 − 𝜀 −

𝜀
2

1
, 2 − 1/𝜀

2

1
} > 0 and

𝑑 (‖∇𝑤 (𝑡)‖
2

𝐿
2 + ‖𝑢 (𝑡)‖

2

𝐿
2)

𝑑𝑡

+ 𝜐 (∫
Ω

|𝑤|
2

𝑑𝑥 + ∫
Ω

|∇𝑤|
2

𝑑𝑥 + ∫
Ω

|∇𝑢|
2

𝑑𝑥) ≤ 𝑐.

(39)

By the Poincaré inequality,

∫
Ω

|∇𝑢|
2

𝑑𝑥 ≥ 𝑐∫
Ω

𝑢
2

𝑑𝑥, ∫
Ω

|𝑤|
2

𝑑𝑥 ≥ 𝑐∫
Ω

|∇𝑤|
2

𝑑𝑥.

(40)

Gronwall’s lemma implies that

‖𝑢 (𝑡)‖
2

𝐿
2 + ‖𝑤 (𝑡)‖

2

𝑊
1,2 ≤ 𝑐 (1 + 𝑒

−𝜐𝑡

(
𝑢0


2

𝐿
2 +
𝑤0


2

𝑊
1,2)) ,

𝑡 ∈ [0, 𝑇] .

(41)

Step 2. From the analysis in Step 1, ‖𝑢(𝑡)‖
𝐿
2 is bounded in

[0, 𝑇]. Furthermore, by using Lemma 9, for any𝑝 < 2𝑛/(𝑛−2)
and small enough constant 𝜏 > 0, there is a constant 𝑐
such that ‖∇𝑤(𝑡)‖

𝐿
𝑝 ≤ 𝑐 for all 𝑡 ∈ [𝜏, 𝑇] since 𝑤(𝑥, 𝑡) ∈

𝐶
2,1

(Ω; (𝜏, 𝑇])∩𝐶((𝜏, 𝑇]; 𝐶
3

(Ω)). Applying the operator∇ on
both sides of the second equation of (1),

𝜕∇𝑤

𝜕𝑡
= ∇ (𝑤) − ∇𝑤 + ∇𝑢. (42)

Taking the inner product of (42) with−∇(𝑤), for any 𝜀
2
> 0,

1

2

𝑑‖𝑤‖
2

𝐿
2

𝑑𝑡

+ ∫
Ω

|∇ (𝑤)|
2

𝑑𝑥 + ∫
Ω

|𝑤|
2

𝑑𝑥 = −∫
Ω

∇𝑢 ⋅ ∇ (𝑤) 𝑑𝑥

≤
𝜀
2

2

2
∫
Ω

|∇ (𝑤)|
2

𝑑𝑥 +
1

2𝜀
2

2

∫
Ω

|∇𝑢|
2

𝑑𝑥.

(43)

From (32) and (43), there exist 𝜀 = 1/4, 𝜀
2
= √2, and a

constant 𝑐
𝜀,𝜀2

depending only on 𝑎, 𝑏, |Ω| such that

1

2
(
𝑑‖𝑢 (𝑡)‖

2

𝐿
2

𝑑𝑡
+
𝑑‖𝑤‖

2

𝐿
2

𝑑𝑡
) +
1

8
‖∇𝑢‖

2

𝐿
2 +
7

8
‖𝑤‖

2

𝐿
2 ≤ 𝑐

𝜀,𝜀2
.

(44)

By Poincaré inequality and Gronwall’s lemma, then

‖𝑢‖
2

𝐿
2 + ‖𝑤‖

2

𝐿
2 ≤ 𝑐 (2𝑐

𝜀,𝜀2
+ 𝑒

(−1/8)𝑡

(
𝑢𝜏


2

𝐿
2 +
𝑤𝜏



2

𝐿
2)) ,

𝑡 ∈ (𝜏, 𝑇] .

(45)

Taking the inner product of the first equation of (1) with −𝑢
in 𝐿2(Ω), then

1

2

𝑑‖∇𝑢‖
2

𝐿
2

𝑑𝑡

+ ∫
Ω

|𝑢|
2

𝑑𝑥 = ∫
Ω

∇ ⋅ (𝑢
𝛼

∇𝑔 (𝑤)) 𝑢 𝑑𝑥

+ ∫
Ω

𝑓


(𝑢) |∇𝑢|
2

𝑑𝑥

≤
𝜀
2

3

2
∫
Ω

|𝑢|
2

𝑑𝑥 +
1

2𝜀
2

3

∫
Ω

∇ ⋅ (𝑢
𝛼

∇𝑔 (𝑤))


2

𝑑𝑥

+ 𝑎∫
Ω

|∇𝑢|
2

𝑑𝑥.

(46)

Since 𝑔(𝑠) is a real smooth function and |𝑔(𝑠)| < 𝜆 for all 𝑠 ∈
[0, +∞), then there is a constant𝑀 > 0, such that |𝑔(𝑠)| ≤
𝑀 and
∇ ⋅ ((𝑢 + 1)

𝛼

∇𝑔 (𝑤))


2

=

𝛼𝑔



(𝑤) (𝑢 + 1)
𝛼−1

∇𝑢 ⋅ ∇𝑤 + 𝑔


(𝑤) (𝑢 + 1)
𝛼

|∇𝑤|
2

+𝑔


(𝑤) (𝑢 + 1)
𝛼

𝑤


2

≤ 𝑐 [|∇𝑢 ⋅ ∇𝑤|
2

+ (𝑢 + 1)
2𝛼

|𝑤|
2

+ (𝑢 + 1)
2𝛼

|∇𝑤|
4

] .

(47)

By Hölder’s inequality,

∫
Ω

|∇𝑢 ⋅ ∇𝑤|
2

𝑑𝑥 ≤ ‖∇𝑢‖
2

𝐿
2𝑝‖∇𝑤‖

2

𝐿
2𝑞 , (48)

where 1/𝑝 + 1/𝑞 = 1. There is 𝑝 ∈ (𝑛/2, 𝑛/(𝑛 − 2)) for 𝑛 = 2, 3
such that 2𝑞 < 2𝑛/(𝑛−2), 2𝑝(𝑛−2) < 2𝑛. By using Lemma 9,
there is a constant 𝑐 such that ‖∇𝑤‖

𝐿
4 ≤ 𝑐.Then fromLemmas

3 and 7 and the Poincaré inequality, for any 𝜀
0
> 0, there exists

a constant 𝑐
𝜀0
such that

‖∇𝑢‖
2

𝐿
2𝑝

≤ ‖∇𝑢‖
2𝑎

𝑊
1,2‖∇𝑢‖

2(1−𝑎)

𝐿
2 ≤ 𝑐‖𝑢‖

2𝑎

𝐻
2‖𝑢‖

2(1−𝑎)

𝐻
1

≤ 𝑐‖𝑢‖
2𝑎

𝐻
2(‖𝑢‖

1/2

𝐻
2 ‖𝑢‖

1/2

𝐿
2 )

2(1−𝑎)

≤ 𝜀
0
‖𝑢‖

2

𝐻
2 + 𝑐

𝜀0
‖𝑢‖

2

𝐿
2 ,

(49)

where 𝑎 = 𝑛/2 − 𝑛/2𝑝 < 1.
Using the same method as the above analysis, for any 𝑝

1

satisfying 𝑝
1
> 𝑛/2, 2𝑝

1
𝛼 ≤ 2, and 𝑝

1
< 𝑛/(𝑛 − 2), there exist
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𝑎 = 𝑛/2 − 𝑛/2𝑝
1
∈ (0, 1) and arbitrary constant 𝛿 > 0 such

that

∫
Ω

(𝑢 + 1)
2𝛼

|𝑤|
2

𝑑𝑥 ≤ ‖𝑢 + 1‖
2𝛼

𝐿
2𝑝1𝛼‖𝑤‖

2

𝐿
2𝑝
1
,

‖𝑤‖
2

𝐿
2𝑝
1
≤ ‖𝑤‖

2𝑎

𝐻
1‖𝑤‖

2(1−𝑎)

𝐿
2 ≤ 𝛿‖∇𝑤‖

2

𝐿
2 + 𝑐

𝛿
‖𝑤‖

2

𝐻
2 .

(50)

Equation (45) implies that ‖𝑤‖
𝐿
2 and ‖𝑢‖

𝐿
2 are bounded,

and then there exists a constant 𝑐 such that ‖𝑢 + 1‖2𝛼
𝐿
2𝑝𝛼 ≤

‖𝑢 + 1‖
2𝛼

𝐿
2 ≤ 𝑐 and ∫

Ω

(𝑢 + 1)
2𝛼

|𝑤|
2

𝑑𝑥 ≤ 𝑐𝛿‖∇𝑤‖
2

𝐿
2 +

𝑐𝑐
𝛿
‖𝑤‖

2

𝐻
2 .

By Lemma 9 and𝛼 < 1/𝑛, for any𝑝
2
satisfying𝑝

2
> 𝑛/(4−

𝑛), 2𝑝
2
𝛼 ≤ 2, and 4𝑝

2
< 2𝑛/(𝑛 − 2), there exists a constant 𝑐

such that

∫
Ω

(𝑢 + 1)
2𝛼

|∇𝑤|
4

𝑑𝑥 ≤ ‖𝑢 + 1‖
2𝛼

𝐿
2𝑝2𝛼‖∇𝑤‖

4

𝐿
4𝑝
2

≤ ‖𝑢 + 1‖
2

𝐿
2‖∇𝑤‖

4

𝐿
4𝑝
2
≤ 𝑐,

(51)

where 1/𝑝
1
+ 1/𝑝



1
= 1.

From the above analysis, if 𝜀
2
= 1, 𝜀

3
= 1 in (43), (46)

and 𝜀
0
, 𝛿 are small enough, then there exists positive constant

𝜐 > 0 such that

1

2

𝑑 (‖𝑤‖
2

𝐿
2 + ‖∇𝑢‖

2

𝐿
2)

𝑑𝑡

+ ∫
Ω

|∇ (𝑤)|
2

𝑑𝑥

+ 𝜐∫
Ω

(|𝑤|
2

+ |∇𝑢|
2

) 𝑑𝑥 ≤ 𝑐 (‖𝑢‖
𝐿
2 , ‖𝑤‖

𝐻
1) .

(52)

By Gronwall’s lemma,

‖𝑤‖
𝐻
2 + ‖𝑢‖

𝐻
1 ≤ 𝑐 [𝑐 (𝜀, 𝜀

1
) + 𝑒

−𝜐𝑡

(
𝑤𝜏
𝐻2
+
𝑢𝜏
𝐻1
)] ,

𝑡 ∈ (𝜏, 𝑇] .

(53)

Equations (45), (53), and the choice of 𝑇 (in Theo-
rem 10) depending on ‖𝑢

0
‖
𝐿
2
(Ω)
+ ‖𝑤

0
‖
𝑊
1,2
(Ω)

imply that
(𝑢(𝑥, 𝑇), 𝑤(𝑥, 𝑇)) ∈ 𝑆. It is clear by a standard argument
that the solution (𝑢, 𝑤) to (1) can be extended up to some
𝑇max ≤ ∞. With the same method as in the proof of Lemma
12, for any finite 𝑇max,

𝑢 (𝑇max)


2

𝐿
2

+
𝑤 (𝑇max)



2

𝑊
1,2 ≤ 𝑐 (1 + 𝑒

−𝜐𝑇max (
𝑢0


2

𝐿
2 +
𝑤0


2

𝑊
1,2))

𝑢 (𝑇max)
𝐻1
+
𝑤 (𝑇max)

𝐻2
≤ 𝐶

(54)

which implies that 𝑇max = +∞. The global existence of the
solution to (1) is obtained as the following theorem.

Theorem 13. Suppose that nonnegative functions 𝑢
0
∈ 𝐿

2

(Ω),
𝑤
0
∈ 𝑊

1,2

(Ω), and 𝛼 < 1/𝑛, and then there is a unique
nonnegative global solution (𝑢, 𝑤) to (1) satisfying

𝑢 ∈ 𝐶 ([0,∞) ; 𝐿
2

(Ω))⋂𝐶
1

((0,∞) ; 𝐿
2

(Ω))

⋂𝐶((0,∞) ;𝐻
1

(Ω)) ,

𝑤 ∈ 𝐶 ([0,∞) ;𝑊
1,2

(Ω))⋂𝐶
1

((0,∞) ;𝑊
1,2

(Ω))

⋂𝐶((0,∞) ;𝐻
2

(Ω)) ,

‖𝑢 (𝑡)‖
2

𝐿
2 + ‖𝑤 (𝑡)‖

2

𝑊
1,2 ≤ 𝑐 (1 + 𝑒

−𝜐𝑡

(
𝑢0


2

𝐿
2 +
𝑤0


2

𝑊
1,2)) ,

𝑡 ≥ 0,

‖𝑢 (𝑡)‖
𝐻
1 + ‖𝑤 (𝑡)‖

𝐻
2 ≤ 𝐶, 𝑡 > 𝑇

1
+ 1,

(55)

where 𝐶 depends only on Ω, 𝑢
𝑇1
, 𝑤

𝑇1
, and 𝑇

1
=

(1/𝜐) ln(‖𝑢
0
‖
2

𝐿
2 + ‖𝑤

0
‖
2

𝑊
1,2).

Remark 14. From the estimates in Lemma 12, there exists
fixed constant𝑀 > 0 and 𝑇

1
= (1/𝜐) ln(‖𝑢

0
‖
2

𝐿
2 + ‖𝑤

0
‖
2

𝑊
1,2)

such that

‖𝑢 (𝑡)‖
𝐿
2 + ‖𝑤 (𝑡)‖

𝑊
1,2 ≤ 𝑀, 𝑡 > 𝑇

1
. (56)

Denote the set 𝐵 = {(𝑢, 𝑤) ∈ 𝐿2(Ω) × 𝐻1

(Ω) : ‖𝑢, 𝑤‖
𝐿
2
×𝐻
1 ≤

𝑀; 𝑢 ≥ 0, 𝑤 ≥ 0}, where 𝑀 is the constant in (56). The
results ofTheorem 13 imply that the existence of a dynamical
system {𝑆(𝑡)}

𝑡≥0
which maps 𝑉 = {(𝑢, 𝑤) : (𝑢, 𝑤) ∈ 𝐿2 ×

𝐻
1

; 𝑢 ≥ 0, 𝑤 ≥ 0} into itself and satisfying (𝑢(𝑡), 𝑤(𝑡)) =
𝑆(𝑡)(𝑢

0
, 𝑤

0
). Since 𝐵 is bounded, by Lemma 12, there exists

𝑇(𝐵) depending only on 𝐵 and |Ω| such that

𝑆 (𝑡) 𝐵 ⊂ 𝐵, 𝑡 ≥ 𝑇 (𝐵) (57)

which implies that 𝐵 is a bounded absorbing set of the semi-
group {𝑆(𝑡)}

𝑡≥0
.

Next, by the Sobolev embedding theorem, the asymptoti-
cal compactness of the semigroup {𝑆(𝑡)}

𝑡≥0
is shown, and then

the existence of a global attractor to system (1) is given.

Theorem 15. Assume that 𝛼 < 1/𝑛. Then the problem (1) has
a global attractor which is a compact invariant set and attracts
every bounded set in 𝑉.

Proof. If (𝑢
𝑛
, 𝑤

𝑛
) is bounded in 𝑉, assume that there exists

𝑅 such that ‖(𝑢
𝑛
, 𝑤

𝑛
)‖
𝑉
≤ 𝑅. Then by Lemma 12, there is a

constant 𝑇
1
(𝑅) (depending on 𝑅) such that

(𝑢
𝑛

(𝑡) , 𝑤
𝑛

(𝑡)) = 𝑆 (𝑡) (𝑢
𝑛
, 𝑤

𝑛
) ⊂ 𝐵, 𝑡 ≥ 𝑇

1
(𝑅) , (58)

where 𝐵 is the absorbing set given in (57) and 𝑛 = 1, 2, . . .. For
any sequence 𝑡

𝑛
(𝑡
𝑛
→ +∞ as 𝑛 → ∞), there exists𝑁 such

that, for any 𝑛 > 𝑁(𝑅), 𝑡
𝑛
≥ 𝑇

1
(𝑅) + 1,

(𝑢
𝑛

(𝑡
𝑛
) , 𝑤

𝑛

(𝑡
𝑛
))

= 𝑆 (𝑡
𝑛
− 𝑇

1
(𝑅) − 1) (𝑆 (𝑇

1
(𝑅) + 1) (𝑢

𝑛
, 𝑤

𝑛
)) .

(59)
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Since the two embedding 𝐻1

(Ω) → 𝐿
2

(Ω),𝐻
2

(Ω) →

𝐻
1

(Ω) are compact, from the estimates in Theorem 13, it is
clear that {𝑢𝑛(𝑡

𝑛
)} lies in a compact set in 𝐿2(Ω) and {𝑤𝑛(𝑡

𝑛
)}

lies in a compact set in 𝐻1

(Ω). Hence, {𝑆(𝑡
𝑛
)(𝑢

𝑛
, 𝑤

𝑛
)|
Ω
} is

precompact in𝐿2(Ω) × 𝐻1

(Ω), which implies that {𝑆(𝑡)}
𝑡≥0

is
asymptotically compact. In Remark 14, we have obtained the
bounded absorbing set of {𝑆(𝑡)}

𝑡≥0
. Then by Proposition 1, we

obtain the existence of the global attractor to (1).
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