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We study the free boundary value problem for one-dimensional isentropic compressible Navier-Stokes equations with density-
dependent viscosity coefficient and discontinuous initial data in this paper. For piecewise regular initial density, we show that there
exists a unique global piecewise regular solution, the interface separating the flow and vacuum state propagates along particle
path and expands outwards at an algebraic time-rate, the flow density is strictly positive from blow for any finite time and decays
pointwise to zero at an algebraic time-rate, and the jump discontinuity of density also decays at an algebraic time-rate as the time
tends to infinity.

1. Introduction

In the present paper, we consider the free boundary value
problem to one-dimensional isentropic compressible Navier-
Stokes equations with density-dependent viscosity coefficient
for piecewise regular initial data connected with the infi-
nite vacuum via jump discontinuity. In general, the one-
dimensional isentropic compressible Navier-Stokes equa-
tions with density-dependent viscosity coefficient read

𝜌
𝑡
+ (𝜌𝑢)

𝑥
= 0,

(𝜌𝑢)
𝑡
+ (𝜌𝑢

2
+ 𝑃 (𝜌))

𝑥
= (𝜇 (𝜌) 𝑢

𝑥
)
𝑥
, (𝑥, 𝑡) ∈ 𝑅 × [0, 𝑇] ,

(1)

where 𝜌 > 0 and 𝑢 denote the flow density and velocity,
respectively, the pressure-density function is taken as 𝑃(𝜌) =
𝜌
𝛾 with 𝛾 > 1, and the viscosity coefficient is 𝜇(𝜌) = 𝜌

𝛼

with 𝛼 > 0. Note here that the case 𝛾 = 2 and 𝛼 = 1 in (1)
corresponds to the viscous Saint-Venant system.

There is huge literature on the studies of the global
existence of weak solutions and dynamical behaviors of jump

discontinuity for the compressible Navier-Stokes equations
with discontinuous initial data; for example, as the viscos-
ity coefficients are both constants, the global existence of
discontinuous solutions of one-dimensional Navier-Stokes
equations was derived by Hoff [1–3]. Hoff investigated the
construction of global spherically symmetric weak solutions
of compressible Navier-Stokes equations for isothermal flow
with large and discontinuous initial data [4]; therein it is also
proved that the discontinuities in the density and pressure
persist for all time, convecting along particle trajectories and
decaying at a rate inversely proportional to the viscosity coef-
ficient. The global existence theorems for the multidimen-
sional Navier-Stokes equations of isothermal compressible
flows with the polytropic equation of state 𝑝(𝜌) = 𝜌

𝛾
(𝛾 ≥

1) were also showed by Hoff [5, 6]. Chen et al. obtained
the global existence of weak solutions for the Navier-Stokes
equations for compressible, heat-conducting flow in one
space dimension with large, discontinuous initial data [7].
Hoff showed the global existence of weak solutions of the
Navier-Stokes equations for compressible, heat-conducting
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fluids in two and three space dimensions, when the initial
data may be discontinuous across a hypersurface of 𝑅𝑛
[8]. The global existence of solutions of the Navier-Stokes
equations for compressible, barotropic flow in two space
dimensions which exhibit convecting singularity curves was
also proved by Hoff [9].

If the viscosity coefficients 𝜇(𝜌) = 𝜌
𝛼, 𝜆(𝜌) = 0, for

the case of one space dimension, the global existence of
unique piecewise smooth solution to the free boundary value
problem was obtained by Fang-Zhang for (1) with 0 < 𝛼 < 1,
where the initial density is piecewise smooth with possibly
large jump discontinuities [10]. Lian et al. considered the
initial boundary value problem for (1) with 0 < 𝛼 ≤ 1 subject
to piecewise regular initial data with initial vacuum state
included in [11]. Lian et al. also addressed theCauchy problem
for one-dimensional isentropic compressible Navier-Stokes
equations with density-dependent viscosity coefficient [12];
in these two cases above, they proved the global existence of
unique piecewise regular solution and the finite time vanish-
ing of vacuum state was proved in [11]. In particular, they got
that the jump discontinuity of density decays exponentially
but never vanishes in any finite time and the piecewise regular
solution tends to the equilibrium state as 𝑡 → +∞.

Recently, there are also many significant progresses
achieved on the compressible Navier-Stokes equations with
density-dependent viscosity coefficients. For instance, the
mathematical derivations are obtained in the simulation of
flow surface in shallow region [13, 14]. The good-posedness
of solutions to the free boundary value problem with initial
finite mass and the flow density being connected with the
infinite vacuumeither continuously or via jumpdiscontinuity
was considered by many authors; refer to [15–22] and ref-
erences therein. The global existence of classical solutions is
shown by Mellet and Vasseur [23]. The qualitative behaviors
of global solutions and dynamical asymptotics of vacuum
states are also made, such as the finite time vanishing of
finite vacuum or asymptotical formation of vacuum in long-
time, the dynamical behaviors of vacuumboundary, the long-
time convergence to rarefaction wave with vacuum, and the
stability of shock profile with large shock strength; refer to
[24–28] and references therein.

In this present paper, we consider the free boundary
value problem (FBVP) for one-dimensional isentropic com-
pressible Navier-Stokes equations and focus on the existence,
regularities, and dynamical behaviors of global piecewise
regular solution, and so forth. As 𝛾 > 1, 0 < 𝛼 ≤ 1, we
show that the free boundary value problem with piecewise
regular initial data admits a unique global piecewise regular
solution, the interface separating the flow and vacuum state
propagates along particle path and expands outwards at an
algebraic time-rate, the flow density is strictly positive from
blow for any finite time and decays pointwise to zero at an
algebraic, and the jump discontinuity of density also decays
at an algebraic time-rate as 𝑡 → +∞ (refer to Theorem 2 for
details).

The rest part of the paper is arranged as follows. In
Section 2, themain results about the existence and dynamical
behaviors of global piecewise regular solution for com-
pressible Navier-Stokes equations are stated. Then, some

important a priori estimateswill be given in Section 3. Finally,
the theorem is proved in Section 4.

2. Main Results

We are interested in the global existence and dynamics of the
free boundary value problem for (1) with following initial data
and boundary conditions:

(𝜌, 𝑢) (𝑥, 0) = (𝜌
0
, 𝑢
0
) , 𝑥 ∈ [0, 𝑎

0
] ,

𝑢 (0, 𝑡) = 0, (𝜌
𝛾
− 𝜌
𝛼
𝑢
𝑥
) (𝑎 (𝑡) , 𝑡) = 0, 𝑡 > 0,

(2)

where 𝑥 = 𝑎(𝑡) is the free boundary defined by

𝑑

𝑑𝑡
𝑎 (𝑡) = 𝑢 (𝑎 (𝑡) , 𝑡) , 𝑎 (0) = 𝑎

0
, 𝑡 > 0. (3)

Next, we give the definition of weak solution to the free
boundary problem (1) and (2).

Definition 1 (weak solution). For any 𝑇 > 0, (𝜌, 𝑢) is said to
be a weak solution of the free boundary problems (1) and (2),
if (𝜌, √𝜌𝑢) has the following regularities:

0 ≤ 𝜌 ∈ 𝐿
∞
(0, 𝑇; 𝐿

1
([0, 𝑎 (𝑡)]) ∩ 𝐿

𝛾
([0, 𝑎 (𝑡)])) ,

√𝜌𝑢 ∈ 𝐿
∞
(0, 𝑇; 𝐿

2
([0, 𝑎 (𝑡)])) ,

(𝜌
𝛾
− 𝜌
𝛼
𝑢
𝑥
) ∈ 𝐿
2
(0, 𝑇;𝐻

1
([0, 𝑎 (𝑡)])) ,

(4)

and (1) is satisfied in the sense of distributions. Namely, it
holds for all 𝜑 ∈ 𝐶∞

0
([0, 𝑎(𝑡)] × [0, 𝑇)) that

∫

𝑎0

0

𝜌
0
𝜑 (𝑥, 0) 𝑑𝑥 + ∫

𝑇

0

∫

𝑎(𝑡)

0

𝜌𝜑
𝑡
𝑑𝑥𝑑𝑡

+ ∫

𝑇

0

∫

𝑎(𝑡)

0

√𝜌√𝜌𝑢𝜑𝑥𝑑𝑥𝑑𝑡 = 0

(5)

and for all 𝜓 ∈ 𝐶∞
0
([0, 𝑎(𝑡)] × [0, 𝑇)) that

∫

𝑎0

0

𝜌
0
𝑢
0
𝜓 (𝑥, 0) 𝑑𝑥

+ ∫

𝑇

0

∫

𝑎(𝑡)

0

(√𝜌√𝜌𝑢𝜓𝑡 + (√𝜌𝑢)
2

𝜓
𝑥
) 𝑑𝑥𝑑𝑡

+ ∫

𝑇

0

∫

𝑎(𝑡)

0

(𝜌
𝛾
− 𝜌
𝛼
𝑢
𝑥
) 𝜓
𝑥
𝑑𝑥𝑑𝑡 = 0.

(6)

For simplicity, we consider the initial data in FBVP (1)
and (2) with one discontinuous point 𝑦

0
∈ (0, 𝑎

0
); namely,

for some constant 𝜌
−
> 0

inf
[0,𝑦0)∪(𝑦0 ,𝑎0]

𝜌
0
≥ 𝜌
−
> 0,

(𝜌
0
, 𝑢
0
) ∈ 𝑊

1,∞
([0, 𝑦
0
) ∪ (𝑦

0
, 𝑎
0
]) ,

(𝜌
𝛾

0
− 𝜌
𝛼

0
𝑢
0𝑥
) (𝑎
0
) = 0,

𝜌
0
(𝑦
0
− 0) > 𝜌

0
(𝑦
0
+ 0) ,

(7)
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and the compatibility conditions between initial data and
boundary conditions hold.

We will give the global existence and time-asymptotic
behavior of piecewise regular solution as follows.

Theorem 2. Let 𝛾 > 1 and 0 < 𝛼 ≤ 1. Assume that the initial
data satisfies (7). Then, there exists a unique global piecewise
regular solution (𝜌, 𝑢, 𝑎) to the FBVP (1) and (2) satisfying for
𝑇 > 0

𝜌 ∈ 𝐿
∞
(0, 𝑇;𝐻

1
([0, 𝑦 (𝑡)) ∪ (𝑦 (𝑡) , 𝑎 (𝑡)]))

∩ 𝐶
0
([0, 𝑦 (𝑡)) ∪ (𝑦 (𝑡) , 𝑎 (𝑡)] × [0, 𝑇]) ,

𝑢 ∈ 𝐿
∞
(0, 𝑇;𝐻

1
([0, 𝑎 (𝑡)]))

∩ 𝐿
2
(0, 𝑇;𝐻

2
([0, 𝑎 (𝑡)])) ,

𝑢
𝑡
∈ 𝐿
2
(0, 𝑇; 𝐿

2
([0, 𝑎 (𝑡)])) ,

𝑎 (𝑡) ∈ 𝐻
1
([0, 𝑇]) ,

(𝜌
𝛾
− 𝜌
𝛼
𝑢
𝑥
) ∈ 𝐿
∞
(0, 𝑇; 𝐿

2
([0, 𝑦 (𝑡)) ∪ (𝑦 (𝑡) , 𝑎 (𝑡)])) ,

(8)

where 𝑥 = 𝑦(𝑡) is a curve defined by

𝑑𝑦 (𝑡)

𝑑𝑡
= 𝑢 (𝑦 (𝑡) , 𝑡) , 𝑦 (0) = 𝑦

0
, 𝑡 > 0, (9)

along which the Rankine-Hugoniot conditions hold

[𝑢 (𝑦 (𝑡) , 𝑡)] = 0, [𝜌
𝛾
(𝑦 (𝑡) , 𝑡)] = [𝜌

𝛼
𝑢
𝑥
(𝑦 (𝑡) , 𝑡)] , (10)

where [𝑓(𝑦(𝑡), 𝑡)] := 𝑓(𝑦(𝑡) + 0, 𝑡) − 𝑓(𝑦(𝑡) − 0, 𝑡), and along
the discontinuity 𝑟 = 𝜉(𝑡) the jump satisfies

[𝜌
𝛼

0
(𝑦
0
)]
 𝑒
−𝐶0𝑡 ≤

[𝜌
𝛼
(𝑦 (𝑡) , 𝑡)]

 ,
(11)

where 𝐶
0
is a positive constant independent of time.

If it further holds that 𝑢
0
∈ 𝐻
2
([0, 𝑎
0
]), then (𝜌, 𝑢, 𝑎, 𝑏)

satisfies

𝜌 ∈ 𝐿
∞
(0, 𝑇;𝐻

1
([0, 𝑦 (𝑡)) ∪ (𝑦 (𝑡) , 𝑎 (𝑡)])) ,

𝜌
𝑡
∈ 𝐿
∞
(0, 𝑇; 𝐿

2
([0, 𝑦 (𝑡)) ∪ (𝑦 (𝑡) , 𝑎 (𝑡)])) ,

𝑢 ∈ 𝐿
∞
(0, 𝑇;𝐻

1
([0, 𝑎 (𝑡)]))

∩ 𝐿
2
(0, 𝑇;𝐻

2
([0, 𝑎 (𝑡)])) ,

𝑢
𝑡
∈ 𝐿
∞
(0, 𝑇; 𝐿

2
([0, 𝑎 (𝑡)]))

∩ 𝐿
2
(0, 𝑇;𝐻

1
([0, 𝑎 (𝑡)])) ,

𝑎 (𝑡) ∈ 𝐻
2
([0, 𝑇]) ,

(𝜌
𝛾
− 𝜌
𝛼
𝑢
𝑥
)∈𝐿
∞
(0, 𝑇;𝐻

1
([0, 𝑦 (𝑡))∪(𝑦 (𝑡) , 𝑎 (𝑡)])) .

(12)

The domain expands outwards at an algebraic rate in time as

𝐶(1 + 𝑡)
𝛾/(𝛾−𝛼)

≥ 𝑎 (𝑡) ≥

{{

{{

{

𝑐 (1 + 𝑡) , 1 < 𝛾 < 2𝛼,

𝑐(1 + 𝑡)
1−]
, 𝛾 = 2𝛼,

𝑐(1 + 𝑡)
𝛼/(𝛾−𝛼)

, 𝛾 > 2𝛼,

(13)

and the density decays pointwise to zero for any 𝑥 ∈ [0, 𝑦(𝑡)) ∪
(𝑦(𝑡), 𝑎(𝑡)] and 𝑡 > 0 as

𝜌 (𝑎 (𝑡) , 𝑡) = ((𝛾 − 𝛼) 𝑡 + 𝜌
0
(𝑎
0
)
𝛼−𝛾

)
−1/(𝛾−𝛼)

, (14)

𝜌 (𝑥, 𝑡) ≤ 𝐶(1 + 𝑡)
−1/𝛾−𝛼

+

{{{{{{{{{

{{{{{{{{{

{

𝐶(1 + 𝑡)
−(𝛾−1)/(3𝛾+2𝛼−1)

,

1 < 𝛾 < 2𝛼,

𝐶(1 + 𝑡)
−((𝛾−1)/(3𝛾+2𝛼−1))+]

,

𝛾 = 2𝛼,

𝐶(1 + 𝑡)
−𝛼(𝛾−1)/(3𝛾+2𝛼−1)(𝛾−𝛼)

,

𝛾 > 2𝛼,

+

{{{{{{{{{

{{{{{{{{{

{

𝐶(1 + 𝑡)
−2/(3𝛾+2𝛼−1)

,

1 < 𝛾 < 2𝛼,

𝐶(1 + 𝑡)
−(2/(3𝛾+2𝛼−1))+]

,

𝛾 = 2𝛼,

𝐶(1 + 𝑡)
−2𝛼/(3𝛾+2𝛼−1)(𝛾−𝛼)

,

𝛾 > 2𝛼,

(15)

where 𝐶 > 0 and 𝑐 > 0 are positive constants independent of
time, and ] ∈ (0, 1) is a small constant.

Remark 3. Theorem 2 holds for the Saint-Venant model for
shallow water; that is, 𝛾 = 2, 𝛼 = 1.

Remark 4. Fang-Zhang [10] obtained that

[𝜌
𝛼

0
(𝑦
0
)]
 𝑒
−𝐶0𝑡 ≤

[𝜌
𝛼
(𝑦 (𝑡) , 𝑡)]

 ,
(16)

which show that the discontinuity in the density persists for
all time. However, in this paper, from (15) we can shows that
the discontinuity in the density decays at an algebraic rate in
time; namely,

[𝜌
𝛼
(𝑦 (𝑡) , 𝑡)]

 ≤ 𝐶(1 + 𝑡)
−𝛼/(𝛾−𝛼)

+

{{{{{{{{{

{{{{{{{{{

{

𝐶(1 + 𝑡)
−𝛼(𝛾−1)/(3𝛾+2𝛼−1)

,

1 < 𝛾 < 2𝛼,

𝐶(1 + 𝑡)
−(𝛼(𝛾−1)/(3𝛾+2𝛼−1))+𝛼]

,

𝛾 = 2𝛼,

𝐶(1 + 𝑡)
−𝛼
2
(𝛾−1)/(3𝛾+2𝛼−1)(𝛾−𝛼)

,

𝛾 > 2𝛼,

+

{{{{{{{{{

{{{{{{{{{

{

𝐶(1 + 𝑡)
−2𝛼/(3𝛾+2𝛼−1)

,

1 < 𝛾 < 2𝛼,

𝐶(1 + 𝑡)
−(2𝛼/(3𝛾+2𝛼−1))+]

,

𝛾 = 2𝛼,

𝐶(1 + 𝑡)
−2𝛼
2
/(3𝛾+2𝛼−1)(𝛾−𝛼)

,

𝛾 > 2𝛼,

(17)

where 𝐶 > 0 is a positive constant independent of time, and
] ∈ (0, 1) is a small constant.
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3. The A Priori Estimates

According to the analysis made in [29], there is a curve 𝑥 =
𝑦(𝑡) defined by

𝑑𝑦 (𝑡)

𝑑𝑡
= 𝑢 (𝑦 (𝑡) , 𝑡) , 𝑦 (0) = 𝑦

0
, 𝑡 > 0, (18)

along which the Rankine-Hugoniot conditions hold

[𝑢 (𝑦 (𝑡) , 𝑡)] = 0, [𝜌
𝛾
(𝑦 (𝑡) , 𝑡)] = [𝜌

𝛼
𝑢
𝑥
(𝑦 (𝑡) , 𝑡)] ,

(19)

where [𝑓(𝑦(𝑡), 𝑡)] := 𝑓(𝑦(𝑡) + 0, 𝑡) − 𝑓(𝑦(𝑡) − 0, 𝑡).
It is convenient to make use of the Lagrange coordinates

in order to establish the uniformly a-priori estimates. Let
(𝜌, 𝑢, 𝑎) be a piecewise regular solution to the FBVP (1) and
(2), and take the Lagrange coordinates transform

𝜉 = ∫

𝑥

0

𝜌 (𝑧, 𝑡) 𝑑𝑧, 𝜏 = 𝑡. (20)

Since the conservation of total mass holds

∫

𝑎(𝑡)

0

𝜌 (𝑧, 𝑡) 𝑑𝑧 = ∫

𝑎0

0

𝜌
0
(𝑧) 𝑑𝑧 := 1 > 0, (21)

the boundaries 𝑥 = 0 and 𝑥 = 𝑎(𝑡) are transformed into
𝜉 = 0 and 𝜉 = 1, respectively, and the domain [0, 𝑎(𝑡)] is
transformed into [0, 1], the curve 𝑥 = 𝑦(𝑡) in the Eulerian
coordinates is changed to a line 𝜉 = 𝜉

0
in the Lagrangian

coordinates, where

𝜉
0
:= ∫

𝑦(𝑡)

0

𝜌 (𝑧, 𝑡) 𝑑𝑧 = ∫

𝑦0

0

𝜌
0
(𝑧) 𝑑𝑧, (22)

and the jump conditions become

[𝑢 (𝜉
0
, 𝜏)] = 0, [𝜌

𝛾
(𝜉
0
, 𝜏)] = [𝜌

1+𝛼
𝑢
𝜉
(𝜉
0
, 𝜏)] . (23)

Meanwhile, the FBVP (1) and (2) is reformulated into

𝜌
𝜏
+ 𝜌
2
𝑢
𝜉
= 0,

𝑢
𝜏
+ (𝜌
𝛾
)
𝜉
= (𝜌
1+𝛼
𝑢
𝜉
)
𝜉
,

(𝜌
𝛾
− 𝜌
1+𝛼
𝑢
𝜉
) (0, 𝜏) = (𝜌

𝛾
− 𝜌
1+𝛼
𝑢
𝜉
) (1, 𝜏) = 0,

(𝜌
0
, 𝑢
0
) = (𝜌

0
, 𝑢
0
) (𝜉) , 𝜉 ∈ [0, 1] ,

(24)

where the initial data satisfies
inf

[0,𝜉0)∪(𝜉0 ,1]

𝜌
0
≥ 𝜌
−
> 0,

(𝜌
0
, 𝑢
0
) ∈ 𝑊

1,∞
([0, 𝜉
0
) ∪ (𝜉
0
, 1]) ,

(𝜌
𝛾

0
− 𝜌
1+𝛼

0
𝑢
0𝑥
) (1) = 0,

𝜌
0
(𝜉
0
− 0) > 𝜌

0
(𝜉
0
+ 0) ,

(25)

for some constant 𝜌
−
> 0, and the consistencies between

initial data and boundary value hold.
Next, we will give the a-priori estimates for the solution

(𝜌, 𝑢) to the FBVP (24). Similarly to the arguments used in
[10, 16, 20], we can establish the following a priori estimates
and omit the details here.

Lemma 5. Let 𝑇 > 0. Under the assumptions of Theorem 2, it
holds for any piecewise regular solution (𝜌, 𝑢) to the FBVP (24)
that

∫

1

0

(
𝑢
2

2
+

1

𝛾 − 1
𝜌
𝛾−1
)𝑑𝜉 + ∫

𝜏

0

∫

1

0

𝜌
1+𝛼
𝑢
2

𝜉
𝑑𝜉𝑑𝑠

= ∫

1

0

(
𝑢
2

0

2
+

1

𝛾 − 1
𝜌
𝛾−1

0
)𝑑𝜉, 𝜏 ∈ [0, 𝑇] ,

(26)

𝜌 (𝜉, 𝜏) ≤ 𝐶, (𝜉, 𝜏) ∈ [0, 𝜉
0
) ∪ (𝜉
0
, 1] × [0, 𝑇] , (27)

∫

1

0

𝑢
2𝑛
𝑑𝜉 + 𝑛 (2𝑛 − 1) ∫

𝜏

0

∫

1

0

𝜌
1+𝛼
𝑢
2𝑛−2

𝑢
2

𝜉
𝑑𝜉𝑑𝑠

≤ 𝐶 (𝑇) , 𝜏 ∈ [0, 𝑇] ,

(28)

⨏

1

0

(𝜌
𝛼
)
2𝑛

𝜉
𝑑𝜉 ≤ 𝐶 (𝑇) , 𝜏 ∈ [0, 𝑇] , (29)

for any positive integer 𝑛 ∈ 𝑁, 𝐶 > 0 denotes a constant
independent of time and 𝐶(𝑇) > 0 denotes a constant
dependent on time, where ⨏ 1

0
:= ∫
𝜉0

0
+∫
1

𝜉0

.

Lemma 6. Let 𝑇 > 0. Under the assumptions of Theorem 2, it
holds for any piecewise regular solution (𝜌, 𝑢) to the FBVP (24)
that

𝜌 (0, 𝜏) = ((𝛾 − 𝛼) 𝜏 + 𝜌
0
(0)
𝛼−𝛾
)
−1/(𝛾−𝛼)

, (30)

𝜌 (𝜉
0
− 0, 𝜏) > 𝜌 (𝜉

0
+ 0, 𝜏) , 𝜏 ∈ [0, 𝑇] . (31)

Proof. From (24)
1
and (24)

3
, we have

𝜌
𝜏
(0, 𝜏) + 𝜌

𝛾−𝛼+1
(0, 𝜏) = 0, (32)

which yields (30) similarly, because of (23) and (24)
1
, it holds

that

[𝜌
𝛼
]
𝜏
+ 𝛼 [𝜌

𝛾
] = 0, (33)

which together with (25) implies

[𝜌
𝛼
] = [𝜌

𝛼

0
] exp{−𝛼∫

𝜏

0

[𝜌
𝛾
]

[𝜌𝛼]
𝑑𝑠} < 0. (34)

Lemma 7. Let 𝑇 > 0. Under the assumptions of Theorem 2, it
holds for any piecewise regular solution (𝜌, 𝑢) to the FBVP (24)
that

1

2
⨏

1

0

(𝑢 +

(𝜌
𝛼
)
𝜉

𝛼
)

2

𝑑𝜉 +
1

𝛾 − 1
∫

1

0

𝜌
𝛾−1
𝑑𝜉

+ 𝛾∫

𝜏

0

⨏

1

0

𝜌
𝛾+𝛼−2

𝜌
2

𝜉
𝑑𝜉𝑑𝑠 + 𝜌

𝛾
(1, 𝜏) 𝑎 (𝜏)
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+ 𝛾∫

𝜏

0

𝜌
2𝛾−𝛼

(1, 𝑠) 𝑎 (𝑠) 𝑑𝑠 − [𝜌
𝛾
] 𝑦 (𝜏)

− 𝛾∫

𝜏

0

[𝜌
𝛾+1
] 𝑢
𝜉
𝑦 (𝑠) 𝑑𝑠

=
1

2
⨏

1

0

(𝑢
0
+

(𝜌
𝛼
)
𝜉

𝛼
)

2

𝑑𝜉

+
1

𝛾 − 1
∫

1

0

𝜌
𝛾−1

0
𝑑𝜉 + 𝜌

𝛾

0
(1) 𝑎
0
− [𝜌
𝛾

0
] 𝑦
0

𝜏 ∈ [0, 𝑇] ,

(35)

where 𝑎(𝜏) satisfies 𝑎(𝜏) = 𝑢(0, 𝜏) and 𝑎(0) = 𝑎
0
, 𝑦(𝜏) satisfies

𝑦

(𝜏) = 𝑢(𝜉

0
, 𝜏) and 𝑦(0) = 𝑦

0
.

Proof. Multiplying (24)
1
by 𝜌𝛼−1 gives

(𝜌
𝛼
)
𝜏

𝛼
+ 𝜌
1+𝛼
𝑢
𝜉
= 0, (36)

which leads to

(𝜌
𝛼
)
𝜏𝜉

𝛼
+ (𝜌
1+𝛼
𝑢
𝜉
)
𝜉
= 0. (37)

Summing (24)
2
and (37), we have

(𝑢 +

(𝜌
𝛼
)
𝜉

𝛼
)

𝜏

+ (𝜌
𝛾
)
𝜉
= 0. (38)

Multiplying (38) by (𝑢 + (𝜌𝛼) 𝜉/𝛼) and integrating the result
over [0, 1] × [0, 𝜏], we get

1

2
⨏

1

0

(𝑢 +

(𝜌
𝛼
)
𝜉

𝛼
)

2

𝑑𝜉 +
1

𝛾 − 1
∫

1

0

𝜌
𝛾−1
𝑑𝜉

+ 𝛾∫

𝜏

0

⨏

1

0

𝜌
𝛾+𝛼−2

𝜌
2

𝜉
𝑑𝜉𝑑𝑠 + ∫

𝜏

0

𝜌
𝛾
𝑢

𝜉=𝜉0−0

𝜉=0
𝑑𝑠

+ ∫

𝜏

0

𝜌
𝛾
𝑢

𝜉=1

𝜉=𝜉0+0
𝑑𝑠

=
1

2
⨏

1

0

(𝑢
0
+

(𝜌
𝛼

0
)
𝜉

𝛼
)

2

𝑑𝜉 +
1

𝛾 − 1
∫

1

0

𝜌
𝛾−1

0
𝑑𝜉,

(39)

which together with the fact that

∫

𝜏

0

𝜌
𝛾
𝑢

𝜉=𝜉0−0

𝜉=0
𝑑𝑠

= ∫

𝜏

0

𝜌
𝛾
(𝜉
0
− 0, 𝑠) 𝑦


(𝑠) 𝑑𝑠

= 𝜌
𝛾
(𝜉
0
− 0, 𝑠) 𝑦 (𝑠)


𝜏

0

+ 𝛾∫

𝜏

0

𝜌
𝛾−1
𝜌
2
(𝜉
0
− 0, 𝑠) 𝑢

𝜉
(𝜉
0
, 𝑠) 𝑦 (𝑠) 𝑑𝑠

= 𝜌
𝛾
(𝜉
0
− 0, 𝜏) 𝑦 (𝜏) − 𝜌

𝛾

0
(𝜉
0
− 0) 𝑦

0

+ 𝛾∫

𝜏

0

𝜌
𝛾+1

(𝜉
0
− 0, 𝑠) 𝑢

𝜉
(𝜉
0
, 𝑠) 𝑦 (𝑠) 𝑑𝑠,

(40)

∫

𝜏

0

𝜌
𝛾
𝑢

𝜉=1

𝜉=𝜉0+0
𝑑𝑠

= ∫

𝜏

0

𝜌
𝛾
(1, 𝜏) 𝑎


(𝑠) 𝑑𝑠

− ∫

𝜏

0

𝜌
𝛾
(𝜉
0
+ 0, 𝜏) 𝑦


(𝑠) 𝑑𝑠

= 𝜌
𝛾
(1, 𝑠) 𝑎 (𝑠)


𝜏

0

+ 𝛾∫

𝜏

0

𝜌
2𝛾−𝛼

(1, 𝑠) 𝑎 (𝑠) 𝑑𝑠

− 𝜌
𝛾
(𝜉
0
+ 0, 𝑠) 𝑦 (𝑠) |

𝜏

0

− 𝛾∫

𝜏

0

𝜌
𝛾+1

(𝜉
0
+ 0, 𝑠) 𝑢

𝜉
(𝜉
0
, 𝑠) 𝑦 (𝑠) 𝑑𝑠

= 𝜌
𝛾
(1, 𝜏) 𝑎 (𝜏) − 𝜌

𝛾

0
(1) 𝑎
0

+ 𝛾∫

𝜏

0

𝑏 (𝑠) 𝜌
2𝛾−𝛼

(1, 𝑠) 𝑑𝑠

− 𝜌
𝛾
(𝜉
0
+ 0, 𝜏) 𝑦 (𝜏) + 𝜌

𝛾

0
(𝜉
0
+ 0) 𝑦

0

− 𝛾∫

𝜏

0

𝜌
𝛾+1

(𝜉
0
+ 0, 𝑠) 𝑢

𝜉
(𝜉
0
, 𝑠) 𝑦 (𝑠) 𝑑𝑠,

[𝜌 (𝜉
0
, 𝜏)] < 0,

𝑢
𝜉
(𝜉
0
, 𝜏) =

[𝜌
𝛾
]

[𝜌1+𝛼]
> 0,

𝑎 (𝜏) = ∫

1

0

1

𝜌 (𝜁, 𝜏)
𝑑𝜁 > 0,

𝑦 (𝜏) = ∫

𝜉0

0

1

𝜌 (𝜁, 𝜏)
𝑑𝜁 > 0,

(41)

gives rise to (35).

Remark 8. The estimate (35) can be written in the following
form in the Eulerian coordinates; that is to say, for all 𝑡 ∈
[0, 𝑇],

1

2
⨏

𝑎(𝑡)

0

𝜌(𝑢 + 𝜌
−1
(𝜌
𝛼
)
𝑥
)
2

𝑑𝑥 +
1

𝛾 − 1
∫

𝑎(𝑡)

0

𝜌
𝛾
𝑑𝑥

+ 𝛾∫

𝑡

0

⨏

𝑎(𝑡)

0

𝜌
𝛾+𝛼−3

𝜌
2

𝑥
𝑑𝑥𝑑𝑠 + 𝜌

𝛾
(𝑎 (𝑡) , 𝑡) 𝑎 (𝑡)

+ 𝛾∫

𝑡

0

𝜌
2𝛾−𝛼

(𝑎 (𝑠) , 𝑠) 𝑎 (𝑠) 𝑑𝑠

− [𝜌
𝛾
] 𝑦 (𝑡) − 𝛾∫

𝑡

0

[𝜌
𝛾
] 𝑢
𝑥
𝑦 (𝑠) 𝑑𝑠

=
1

2
⨏

𝑎0

0

𝜌
0
(𝑢
0
+ 𝜌
−1

0
(𝜌
𝛼

0
)
𝑥
)
2

𝑑𝑥

+
1

𝛾 − 1
∫

𝑎0

0

𝜌
𝛾

0
𝑑𝑥 + 𝜌

𝛾

0
(𝑎
0
) 𝑎
0
− [𝜌
𝛾

0
] 𝑦
0
.

(42)

Lemma 9. Let 𝑇 > 0, for 𝑛 ∈ 𝑁, and 𝑛 > (1 + 𝛼)/4(𝛾 − 𝛼).
Under the assumptions ofTheorem 2, it holds for any piecewise
regular solution (𝜌, 𝑢) to the FBVP (24) that

∫

𝜏

0


(𝜌
𝛾
)
2𝑛

𝜉

𝐿∞([0,𝜉0)∪(𝜉0 ,1])
𝑑𝑠 ≤ 𝐶 (𝑇) , 𝜏 ∈ [0, 𝑇] . (43)
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Proof. It follows from (24)
1,2

that

(𝜌
𝛼
)
𝜉
(𝜉, 𝜏) = (𝜌

𝛼

0
)
𝜉
(𝜉) − 𝛼𝑢 (𝜉, 𝜏)

+ 𝛼𝑢
0
(𝜉) − 𝛼∫

𝜏

0

(𝜌
𝛾
)
𝜉
(𝜉, 𝑠) 𝑑𝑠.

(44)

By means of (25), (26), and (44), we have

∫

𝜏

0


(𝜌
𝛾
)
2𝑛

𝜉

𝐿∞([0,𝜉0)∪(𝜉0 ,1])
𝑑𝑠

=
𝛾
2𝑛

𝛼2𝑛
∫

𝜏

0


𝜌
2𝑛(𝛾−𝛼)

(𝜌
𝛼
)
2𝑛

𝜉

𝐿∞([0,𝜉0)∪(𝜉0 ,1])
𝑑𝑠

≤ 𝐶 (𝑇) + 𝐶 (𝑇)∫

𝜏

0


𝜌
2𝑛(𝛾−𝛼)

𝑢
2𝑛𝐿∞([0,𝜉0)∪(𝜉0 ,1])

𝑑𝑠

+ 𝐶 (𝑇)∫

𝜏

0

∫

𝑠

0


(𝜌
𝛾
)
2𝑛

𝜉

𝐿∞([0,𝜉0)∪(𝜉0 ,1])
𝑑𝑙𝑑𝑠

≤ 𝐶 (𝑇) + 𝐶 (𝑇)∫

𝜏

0

∫

𝑠

0


(𝜌
𝛾
)
2𝑛

𝜉

𝐿∞([0,𝜉0)∪(𝜉0 ,1])
𝑑𝑙𝑑𝑠,

(45)

where we have used

∫

𝜏

0


𝜌
2𝑛(𝛾−𝛼)

𝑢
2𝑛𝐿∞([0,𝜉0)∪(𝜉0 ,1])

𝑑𝑠

≤ ∫

𝜏

0

⨏

1

0

𝜌
2𝑛(𝛾−𝛼)

𝑢
2𝑛
𝑑𝜉𝑑𝑠

+ ∫

𝜏

0

⨏

1

0


(𝜌
2𝑛(𝛾−𝛼)

𝑢
2𝑛
)
𝜉


𝑑𝜉𝑑𝑠

≤ 𝐶 (𝑇)

+ 𝐶∫

𝜏

0

⨏

1

0

(𝜌
2(2𝑛(𝛾−𝛼)−𝛼)

𝜌
2𝛼−2

𝜌
2

𝜉
+ 𝑢
4𝑛

+ 𝜌
4𝑛(𝛾−𝛼)−(1+𝛼)

𝑢
2𝑛

+ 𝜌
1+𝛼
𝑢
2𝑛−2

𝑢
2

𝜉
) 𝑑𝜉𝑑𝑠

≤ 𝐶 (𝑇) ,

(46)

which can be deduced from (26) and (27). Making use of
Gronwall’s inequality to (46), we obtain (43).

Lemma 10. Let𝑇 > 0. Under the assumptions ofTheorem 2, it
holds for any piecewise regular solution (𝜌, 𝑢) to the FBVP (24)
that

𝜌 (𝜉, 𝜏) ≥ 𝐶 (𝑇) , (𝜉, 𝜏) ∈ [0, 𝜉
0
) ∪ (𝜉
0
, 1] × [0, 𝑇] . (47)

Proof. Denote

V (𝜉, 𝜏) =
1

𝜌 (𝜉, 𝜏)
. (48)

By (24)
1
, we have

V
𝜏
= 𝑢
𝜉
. (49)

Multiplying (49) by 𝛽V𝛽−1, integrating the result over [0, 1] ×
[0, 𝜏], and using (43), (44), we can obtain that for 𝛽 ∈ (1, 2)

∫

1

0

V𝛽𝑑𝜉 + 𝛽 (𝛽 − 1)∫
𝜏

0

∫

1

0

V𝛼+𝛽−1𝑢2𝑑𝜉𝑑𝑠

= ∫

1

0

V𝛽
0
𝑑𝜉 + 𝛽∫

𝜏

0

V𝛽−1𝑢𝑑𝑠


𝜉=𝜉0−0

𝜉=0

+ 𝛽∫

𝜏

0

V𝛽−1𝑢𝑑𝑠


𝜉=1

𝜉0+0
+
𝛽 (𝛽 − 1)

𝛼
∫

𝜏

0

⨏

1

0

V𝛼+𝛽−1𝑢(𝜌𝛼
0
)
𝜉
𝑑𝜉𝑑𝑠

+ 𝛽 (𝛽 − 1)∫

𝜏

0

∫

1

0

V𝛼+𝛽−1𝑢𝑢
0
𝑑𝜉𝑑𝑠 − 𝛽 (𝛽 − 1)

× ∫

𝜏

0

∫

1

0

V𝛼+𝛽−1𝑢∫
𝑠

0

(𝜌
𝛾
)
𝜉
𝑑𝑙𝑑𝜉𝑑𝑠

≤ 𝐶 (𝑇) + 𝐶∫

𝜏

0

V𝛽−1𝑢 (1, 𝑠) 𝑑𝑠 +
𝛽 (𝛽 − 1)

2

× ∫

𝜏

0

∫

1

0

V𝛼+𝛽−1𝑢2𝑑𝜉𝑑𝑠 + 𝐶 (𝑇)∫
𝜏

0

∫

1

0

V𝛽𝑑𝜉𝑑𝑠,

(50)

where we use the fact that

∫

𝜏

0

V𝛽−1 (𝜉
0
− 0, 𝑠) 𝑢 (𝜉

0
, 𝑠) 𝑑𝑠

− ∫

𝜏

0

V𝛽−1 (𝜉
0
+ 0, 𝑠) 𝑢 (𝜉

0
, 𝑠) 𝑑𝑠

= ∫

𝜏

0

𝜌
1−𝛽

(𝜉
0
− 0, 𝑠) 𝑦


(𝑠) 𝑑𝑠

− ∫

𝜏

0

𝜌
1−𝛽

(𝜉
0
+ 0, 𝑠) 𝑦


(𝑠) 𝑑𝑠

= 𝜌
1−𝛽

(𝜉
0
− 0, 𝑠) 𝑦 (𝑠)



𝜏

0
− 𝜌
1−𝛽

(𝜉
0
+ 0, 𝑠) 𝑦 (𝑠)



𝜏

0

+ (1 − 𝛽)∫

𝜏

0

𝜌
2−𝛽

(𝜉
0
− 0, 𝑠) 𝑢

𝜉
(𝜉
0
, 𝑠) 𝑦 (𝑠) 𝑑𝑠

− (1 − 𝛽)∫

𝜏

0

𝜌
2−𝛽

(𝜉
0
+ 0, 𝑠) 𝑢

𝜉
(𝜉
0
, 𝑠) 𝑦 (𝑠) 𝑑𝑠

= − [𝜌
1−𝛽
] 𝑦 (𝜏) + [𝜌

1−𝛽

0
] 𝑦
0

+ (𝛽 − 1)∫

𝜏

0

[𝜌
2−𝛽
] 𝑢
𝜉
(𝜉
0
, 𝑠) 𝑦 (𝑠) 𝑑𝑠

≤ [𝜌
1−𝛽

0
] 𝑦
0
≤ 𝐶.

(51)

Since it holds that

𝜌 (1, 𝜏) = ((𝛾 − 𝛼) 𝜏 + 𝜌
0
(1)
𝛼−𝛾
)
−1/(𝛾−𝛼)

≥ 𝐶 (𝑇) , (52)

we have from (25) that

∫

𝜏

0

V𝛽−1𝑢 (1, 𝑠) 𝑑𝜉

≤ 𝐶 (𝑇)∫

𝜏

0

((∫

1

0

𝑢
2
𝑑𝜉)

1/2

+ (∫

1

0

𝜌
1+𝛼
𝑢
2

𝜉
𝑑𝜉)

1/2

(∫

1

0

V1+𝛼𝑑𝜉)
1/2

)𝑑𝑠

≤ 𝐶 (𝑇) + 𝐶 (𝑇)∫

𝜏

0

∫

1

0

V𝛽𝑑𝜉𝑑𝑠.

(53)
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Substituting (53) in (50), we have

∫

1

0

V𝛽𝑑𝜉 +
𝛽 (𝛽 − 1)

2
∫

𝜏

0

∫

1

0

V𝛼+𝛽−1𝑢2𝑑𝜉𝑑𝑠

≤ 𝐶 (𝑇) + 𝐶 (𝑇)∫

𝜏

0

∫

1

0

V𝛽𝑑𝜉𝑑𝑠.

(54)

Using Gronwall’s inequality, we get from (54) that

∫

1

0

V𝛽𝑑𝜉 ≤ 𝐶 (𝑇) . (55)

It follows from (29) and (55) that

V𝛽 (𝜉, 𝜏) ≤ ∫
1

0

V𝛽𝑑𝜉 + ⨏
1

0


V𝛽
𝜉


𝑑𝜉

≤ 𝐶 (𝑇) + 𝐶(⨏

1

0

𝜌
−𝛽−1 

𝜌
𝜉


𝑑𝜉)

≤ 𝐶 (𝑇) + 𝐶(∫

1

0

𝜌
−2𝑛(𝛼+𝛽)/(2𝑛−1)

𝑑𝜉)

(2𝑛−1)/2𝑛

× (⨏

1

0

(𝜌
𝛼
)
2𝑛

𝜉
𝑑𝜉)

1/2𝑛

≤ 𝐶 (𝑇) + 𝐶 (𝑇) sup
[0,𝜉0)∪(𝜉0,1]

V𝛼+𝛽/2𝑛(∫
1

0

V𝛽𝑑𝜉)
(2𝑛−1)/2𝑛

≤ 𝐶 (𝑇) + 𝐶 (𝑇) sup
[0,𝜉0)∪(𝜉0 ,1]

(V𝛽 (𝜉, 𝜏))
𝛼/𝛽+1/2𝑛

,

(56)

as 𝛼 ∈ (0, 1], 𝛽 ∈ (1, 2); for some 𝑛 ∈ 𝑁 large enough, we have

𝛼

𝛽
+
1

2𝑛
< 1, (57)

which implies (47).

We also have the regularity estimates for the solution
(𝜌, 𝑢) to the FBVP (24) as follows.

Lemma 11. Let 𝑇 > 0. Under the assumptions of Theorem 2, it
holds for any piecewise regular solution (𝜌, 𝑢) to the FBVP (24)
that

𝜌 ∈ 𝐿
∞
(0, 𝑇;𝐻

1
([0, 𝜉
0
) ∪ (𝜉
0
, 1]))

∩ 𝐶
0
([0, 𝜉
0
) ∪ (𝜉
0
, 1] × [0, 𝑇]) ,

𝑢 ∈ 𝐿
∞
(0, 𝑇;𝐻

1
([0, 1])) ∩ 𝐿

2
(0, 𝑇;𝐻

2
([0, 1])) ,

𝑢
𝜏
∈ 𝐿
2
(0, 𝑇; 𝐿

2
([0, 1])) , 𝑎 (𝜏) ∈ 𝐻

1
([0, 𝑇]) ,

(𝜌
𝛾
− 𝜌
1+𝛼
𝑢
𝜉
) ∈ 𝐿
∞
(0, 𝑇; 𝐿

2
([0, 𝜉
0
) ∪ (𝜉
0
, 1])) .

(58)

If it is also satisfied that

𝑢
0
∈ 𝐻
2
([0, 1]) ; (59)

then the piecewise regular solution (𝜌, 𝑢) has the regularities

𝜌 ∈ 𝐿
∞
(0, 𝑇;𝐻

1
([0, 𝜉
0
) ∪ (𝜉
0
, 1])) ,

𝜌
𝜏
∈ 𝐿
∞
(0, 𝑇; 𝐿

2
([0, 𝜉
0
) ∪ (𝜉
0
, 1])) ,

𝑢 ∈ 𝐿
∞
(0, 𝑇;𝐻

1
([0, 1])) ∩ 𝐿

2
(0, 𝑇;𝐻

2
([0, 1])) ,

𝑢
𝜏
∈ 𝐿
∞
(0, 𝑇; 𝐿

2
([0, 1])) ∩ 𝐿

2
(0, 𝑇;𝐻

1
([0, 1])) ,

𝑎 (𝜏) ∈ 𝐻
2
([0, 𝑇]) ,

(𝜌
𝛾
− 𝜌
1+𝛼
𝑢
𝜉
) ∈ 𝐿
∞
(0, 𝑇;𝐻

1
([0, 𝜉
0
) ∪ (𝜉
0
, 1])) .

(60)

Proof. Multiplying (24)
2
by 𝑢
𝜏
, integrating the result over

[0, 1], and making use of the boundary condition(24)
3
, after

a direct computation and recombination, we deduce

1

2
∫

1

0

𝜌
1+𝛼
𝑢
2

𝜉
𝑑𝜉 + ∫

𝜏

0

∫

1

0

𝑢
2

𝑠
𝑑𝜉𝑑𝑠

= −∫

1

0

𝜌
𝛾

0
𝑢
0𝜉
𝑑𝜉 +

1

2
∫

1

0

𝜌
1+𝛼
𝑢
2

0𝜉
𝑑𝜉 + ∫

1

0

𝜌
𝛾
𝑢
𝜉
𝑑𝜉

+ 𝛾∫

𝜏

0

∫

1

0

𝜌
1+𝛾
𝑢
2

𝜉
𝑑𝜉𝑑𝑠 −

1 + 𝛼

2
∫

𝜏

0

∫

1

0

𝜌
2+𝛼
𝑢
3

𝜉
𝑑𝜉𝑑𝑠

≤ 𝐶 +
1

4
∫

1

0

𝜌
1+𝛼
𝑢
2

𝜉
𝑑𝜉 + ∫

𝜏

0

∫

1

0


𝑢
𝜉



3

𝑑𝜉𝑑𝑠,

(61)

where we have used (26) and (27). On the other hand,
integrating (24)

2
over [𝜉, 1] and making use of (23) and the

boundary conditions (24)
3
, it holds that

𝜌
1+𝛼
𝑢
𝜉
= 𝜌
𝛾
− ∫

1

𝜉

𝑢
𝜏
𝑑𝜉 ≤ 𝐶 + 𝐶(∫

1

0

𝑢
2

𝜏
𝑑𝜉)

1/2

, (62)

which implies

sup
[0,𝜉0)∪(𝜉0 ,1]

𝑢
𝜉
≤ 𝐶 (𝑇) + 𝐶 (𝑇) (∫

1

0

𝑢
2

𝜏
𝑑𝜉)

1/2

. (63)

It holds from (61) and (63) that

1

2
∫

1

0

𝑢
2

𝜉
𝑑𝜉 + ∫

𝜏

0

∫

1

0

𝑢
2

𝑠
𝑑𝜉𝑑𝑠

≤ 𝐶 (𝑇) + 𝐶 (𝑇)∫

𝜏

0

sup
[0,𝜉0)∪(𝜉0,1]


𝑢
𝜉


∫

1

0

𝑢
2

𝜉
𝑑𝜉𝑑𝑠

≤ 𝐶 (𝑇) + 𝐶 (𝑇)∫

𝜏

0

(1 + ∫

1

0

𝑢
2

𝜏
𝑑𝜉)

1/2

∫

1

0

𝑢
2

𝜉
𝑑𝜉𝑑𝑠

≤
1

2
∫

𝜏

0

∫

1

0

𝑢
2

𝑠
𝑑𝜉𝑑𝑠 + ∫

𝜏

0


𝑢
𝜉



2

𝐿
2
∫

1

0

𝑢
2

𝜉
𝑑𝜉𝑑𝑠;

(64)

using Gronwall’s inequality, (26), and (47), we have

∫

1

0

𝑢
2

𝜉
𝑑𝜉 + ∫

𝜏

0

∫

1

0

𝑢
2

𝑠
𝑑𝜉𝑑𝑠 ≤ 𝐶 (𝑇) , (65)

where 𝐶(𝑇) > 0 denotes a constant dependent of time.
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Differentiating (24)
2
with respect to 𝜏, we get

𝑢
𝜏𝜏
+ (𝜌)
𝛾

𝜉𝜏
= (𝜌
1+𝛼
𝑢
𝜉
)
𝜉𝜏
. (66)

Taking inner product between (66) and 𝑢
𝜏
, integrating the

results over [0, 1], and using the boundary conditions (24)
3
,

it holds that
1

2

𝑑

𝑑𝜏
∫

1

0

𝑢
2

𝜏
𝑑𝜉 = ∫

1

0

(𝜌
𝛾
)
𝜏
𝑢
𝜉𝜏
𝑑𝜉 − ∫

1

0

(𝜌
1+𝛼
𝑢
𝜉
)
𝜏
𝑢
𝜉𝜏
𝑑𝜉. (67)

The terms on the right-hand side of (67) can be bounded,
respectively,as described below:

∫

1

0

(𝜌
𝛾
)
𝜏
𝑢
𝜉𝜏
𝑑𝜉

= −∫

1

0

𝛾𝜌
𝛾+1
𝑢
𝜉
𝑢
𝜉𝜏
𝑑𝜉

≤ −
𝛾

2

𝑑

𝑑𝜏
∫

1

0

𝜌
𝛾+1
𝑢
2

𝜉
𝑑𝜉

+ 𝐶∫

1

0

(𝜌
1+𝛼
𝑢
2

𝜉
+ 𝜌
2𝛾−𝛼+3

𝑢
4

𝜉
) 𝑑𝜉,

− ∫

1

0

(𝜌
1+𝛼
𝑢
𝜉
)
𝜏
𝑢
𝜉𝜏
𝑑𝜉

= −∫

1

0

((1 + 𝛼) 𝜌
𝛼
𝜌
𝜏
𝑢
𝜉
+ 𝜌
1+𝛼
𝑢
𝜉𝜏
) 𝑢
𝜉𝜏
𝑑𝜉

≤ −
1

2
∫

1

0

𝜌
1+𝛼
𝑢
2

𝜉𝜏
𝑑𝜉 + 𝐶∫

1

0

𝜌
3+𝛼
𝑢
4

𝜉
𝑑𝜉.

(68)

Summing (67) and (68) together and making use of (27) and
(65), we obtain

1

2

𝑑

𝑑𝜏
∫

1

0

𝑢
2

𝜏
𝑑𝜉 +

𝛾

2

𝑑

𝑑𝜏
∫

1

0

𝜌
𝛾+1
𝑢
2

𝜉
𝑑𝜉 +

1

2
∫

1

0

𝜌
1+𝛼
𝑢
2

𝜉𝜏
𝑑𝜉

≤ 𝐶∫

1

0

(𝜌
1+𝛼
𝑢
2

𝜉
+ 𝜌
2𝛾−𝛼+3

𝑢
4

𝜉
) 𝑑𝜉 + ∫

1

0

𝜌
3+𝛼
𝑢
4

𝜉
𝑑𝜉

≤ 𝐶 (𝑇) + 𝐶

𝜌
1+𝛼
𝑢
𝜉



2

𝐿
∞
([0,1])

∫

1

0

𝜌
1−𝛼
𝑢
2

𝜉
𝑑𝜉.

(69)

Substituting (62) into (69), it follows from (27), (47), and (59)
that
1

2
∫

1

0

𝑢
2

𝜏
𝑑𝜉 +

𝛾

2
∫

1

0

𝜌
𝛾+1
𝑢
2

𝜉
𝑑𝜉 +

1

2
∫

𝜏

0

∫

1

0

𝜌
1+𝛼
𝑢
2

𝜉𝜏
𝑑𝜉𝑑𝑠

≤ 𝐶 (𝑇) + 𝐶 (𝑇)∫

𝜏

0

∫

1

0

𝑢
2

𝑠
𝑑𝜉𝑑𝑠,

(70)

which together withGronwall’s inequality, (27), (47), and (65)
yields

∫

1

0

𝑢
2

𝜉
𝑑𝜉 + ∫

1

0

𝑢
2

𝜏
𝑑𝜉 + ∫

𝜏

0

∫

1

0

𝑢
2

𝑠
𝑑𝜉𝑑𝑠 + ∫

𝜏

0

∫

1

0

𝑢
2

𝜉𝑠
𝑑𝜉𝑑𝑠 ≤ 𝐶 (𝑇) ,

(71)

which implies (𝜌𝛾 − 𝜌1+𝛼𝑢
𝜉
) ∈ 𝐿

∞
(0, 𝑇;𝐻

1
([0, 1])), and it

follows from the definition of 𝑎(𝜏) = 𝑢(0, 𝜏) that 𝑎(𝜏) ∈
𝐻
2
([0, 𝑇]). The proof of this Lemma is completed.

Lemma 12. Let 𝑇 > 0. Under the assumptions ofTheorem 2, it
holds for any piecewise regular solution (𝜌, 𝑢) to the FBVP (24)
that

[𝜌
𝛼

0
(𝜉
0
)]
 𝑒
−𝐶0𝜏 ≤

[𝜌
𝛼
(𝜉
0
, 𝜏)]

 , 𝜏 ∈ [0, 𝑇] , (72)

where 𝐶
0
is a positive constant independent of time.

Proof. From (27) and (34), we can obtain (72).

Finally, we will give the large time behaviors of the
interface and decay rate of the density as follows.

Lemma 13. Let (𝜌, 𝑢, 𝑎) be any piecewise regular solution to
the FBVP (1) and (2). Under the assumptions of Theorem 2, it
holds for 𝛼 ∈ (0, 1] and time 𝑡 > 0 large enough that

𝐶(1 + 𝑡)
𝛾/(𝛾−𝛼)

≥ 𝑎 (𝑡) ≥

{{

{{

{

𝑐 (1 + 𝑡) , 1 < 𝛾 < 2𝛼,

𝑐(1 + 𝑡)
1−]
, 𝛾 = 2𝛼,

𝑐(1 + 𝑡)
𝛼/(𝛾−𝛼)

, 𝛾 > 2𝛼,

(73)

and the density decays pointwise to zero for any 𝑥 ∈ [0, 𝑎(𝑡)]
and 𝑡 > 0 as

𝜌 (𝑎 (𝑡) , 𝑡) = ((𝛾 − 𝛼) 𝑡 + 𝜌
0
(𝑎
0
)
𝛼−𝛾

)
−1/(𝛾−𝛼)

, (74)

𝜌 (𝑥, 𝑡) ≤ 𝐶(1 + 𝑡)
−1/(𝛾−𝛼)

+

{{{{{{{{{

{{{{{{{{{

{

𝐶(1 + 𝑡)
−(𝛾−1)/(3𝛾+2𝛼−1)

,

1 < 𝛾 < 2𝛼,

𝐶(1 + 𝑡)
−((𝛾−1)/(3𝛾+2𝛼−1))+]

,

𝛾 = 2𝛼,

𝐶(1 + 𝑡)
−𝛼(𝛾−1)/(3𝛾+2𝛼−1)(𝛾−𝛼)

,

𝛾 > 2𝛼,

+

{{{{{{{{{

{{{{{{{{{

{

𝐶(1 + 𝑡)
−2/(3𝛾+2𝛼−1)

,

1 < 𝛾 < 2𝛼,

𝐶(1 + 𝑡)
−(2/(3𝛾+2𝛼−1))+]

,

𝛾 = 2𝛼,

𝐶(1 + 𝑡)
−2𝛼/(3𝛾+2𝛼−1)(𝛾−𝛼)

,

𝛾 > 2𝛼,

(75)

where 𝐶 > 0 and 𝑐 > 0 are positive constants independent of
time and ] ∈ (0, 1) is a small constant.

Proof. We introduce the following functional 𝐻(𝑡) in the
Eulerian form as [22, 28]:

𝐻(𝑡)

= ∫

𝑎(𝑡)

0

(𝑥 − (1 + 𝑡) 𝑢 (𝑥, 𝑡))
2
𝜌 (𝑥, 𝑡) 𝑑𝑥

+
2

𝛾 − 1
(1 + 𝑡)

2
∫

𝑎(𝑡)

0

𝜌
𝛾
(𝑥, 𝑡) 𝑑𝑥

= ∫

𝑎(𝑡)

0

𝑥
2
𝜌 (𝑥, 𝑡) 𝑑𝑥 − 2 (1 + 𝑡)
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× ∫

𝑎(𝑡)

0

𝑥𝜌𝑢𝑑𝑥 + (1 + 𝑡)
2
∫

𝑎(𝑡)

0

(𝜌𝑢
2
+

2

𝛾 − 1
𝜌
𝛾
)𝑑𝑥

:= 𝐼
1
+ 𝐼
2
+ 𝐼
3
.

(76)

Differentiating (76)with respect to 𝑡, using (1), (2), and 𝑎(𝑡) =
𝑢(𝑎(𝑡), 𝑡), we have

𝐼


1
= ∫

𝑎(𝑡)

0

𝑥
2
𝜌
𝑡
𝑑𝑥 + 𝑎

2
(𝑡) 𝜌 (𝑎 (𝑡) , 𝑡) 𝑎


(𝑡)

= 2∫

𝑎(𝑡)

0

𝑥𝜌𝑢𝑑𝑥 + 𝑦
2
(𝑡) 𝑦

(𝑡) [𝜌] ,

𝐼


2
= − 2∫

𝑎(𝑡)

0

𝑥𝜌𝑢𝑑𝑥 − 2 (1 + 𝑡)

× ∫

𝑎(𝑡)

0

(𝜌𝑢
2
+ 𝜌
𝛾
) 𝑑𝑥 + 2 (1 + 𝑡) ∫

𝑎(𝑡)

0

𝜌
𝛼
𝑢
𝑥
𝑑𝑥

− 2 (1 + 𝑡) 𝑦 (𝑡) (𝑦

(𝑡))
2

[𝜌] ,

𝐼


3
= 2 (1 + 𝑡) ∫

𝑎(𝑡)

0

(𝜌𝑢
2
+

2

𝛾 − 1
𝜌
𝛾
)𝑑𝑥

− 2(1 + 𝑡)
2
∫

𝑎(𝑡)

0

𝜌
𝛼
𝑢
2

𝑥
𝑑𝑥

+ (1 + 𝑡)
2
(𝑦

(𝑡))
3

[𝜌] +
2

𝛾 − 1
(1 + 𝑡)

2
𝑦

(𝑡) [𝜌
𝛾
] .

(77)

Combining (77), we deduce

𝐻

(𝑡) =

2 (3 − 𝛾)

𝛾 − 1
(1 + 𝑡) ∫

𝑎(𝑡)

0

𝜌
𝛾
𝑑𝑥 + 2 (1 + 𝑡)

× ∫

𝑎(𝑡)

0

𝜌
𝛼
𝑢
𝑥
𝑑𝑥 − 2(1 + 𝑡)

2
∫

𝑎(𝑡)

0

𝜌
𝛼
𝑢
2

𝑥
𝑑𝑥

+ (𝑦 (𝑡) − (1 + 𝑡) 𝑦

(𝑡))
2

𝑦

(𝑡) [𝜌]

+
2

𝛾 − 1
(1 + 𝑡)

2
𝑦

(𝑡) [𝜌
𝛾
]

≤
2 (3 − 𝛾)

𝛾 − 1
(1 + 𝑡) ∫

𝑎(𝑡)

0

𝜌
𝛾
𝑑𝑥 +

1

2
∫

𝑎(𝑡)

0

𝜌
𝛼
𝑑𝑥,

(78)

where we use the fact that as 𝑡 > 0 becomes large enough; it
holds from (31) and

𝑦 (𝑡) = ∫

𝜉0

0

1

𝜌 (𝜁, 𝑡)
𝑑𝜁

= ∫

𝑡

0

𝑢 (𝑦 (𝑠) , 𝑠) 𝑑𝑠 + 𝑦
0
> 0, 𝑡 ∈ [0, +∞) ,

(79)

that

𝑦

(𝑡) = 𝑢 (𝑦 (𝑡) , 𝑡) ≥ 0. (80)

If 𝛾 ≥ 3, we have from (78) and the conservation of mass
that

𝐻

(𝑡) ≤ ∫

𝑎(𝑡)

0

𝜌
𝛼
𝑑𝑥

≤ (∫

𝑎(𝑡)

0

𝜌𝑑𝑥)

𝛼

(∫

𝑎(𝑡)

0

1𝑑𝑥)

1−𝛼

≤ 𝐶𝑎(𝑡)
1−𝛼
.

(81)

Hence, it holds that

𝐻(𝑡) ≤ 𝐻 (0) + 𝐶∫

𝑡

0

𝑎(𝑠)
1−𝛼
𝑑𝑠 ≤ 𝐶(1 + ∫

𝑡

0

𝑎(𝑠)
1−𝛼
𝑑𝑠) ,

(82)

∫

𝑎(𝑡)

0

𝜌
𝛾
𝑑𝑥 ≤ 𝐶(1 + ∫

𝑡

0

𝑎(𝑠)
1−𝛼
𝑑𝑠) (1 + 𝑡)

−2
. (83)

From (30) and (35), we obtain

𝑎 (𝑡) ≤ 𝐶𝜌
−𝛾
(𝑎 (𝑡) , 𝑡) ≤ 𝐶(1 + 𝑡)

𝛾/(𝛾−𝛼)
, (84)

and then

∫

𝑡

0

𝑎(𝑠)
1−𝛼
𝑑𝑠 ≤ 𝐶(1 + 𝑡)

𝛾(1−𝛼)/(𝛾−𝛼)+1
, (85)

which with (83) implies

∫

𝑎(𝑡)

0

𝜌
𝛾
𝑑𝑥 ≤ 𝐶(1 + 𝑡)

−𝛼(𝛾−1)/(𝛾−𝛼)
, 𝛾 ≥ 3. (86)

If 1 < 𝛾 < 3, we deduce from (76), (78), and the conserva-
tion of mass that

𝐻

(𝑡) = (3 − 𝛾) (1 + 𝑡)

−1
𝐻(𝑡) + 2∫

𝑎(𝑡)

0

𝜌
𝛼
𝑑𝑥

≤ (3 − 𝛾) (1 + 𝑡)
−1
𝐻(𝑡) + 𝐶𝑎(𝑡)

1−𝛼
,

(87)

to which the application of Gronwall’s inequality gives

𝐻(𝑡) ≤ 𝐶(𝐻 (0) + ∫

𝑡

0

𝑎(𝑠)
1−𝛼
(1 + 𝑠)

𝛾−3
𝑑𝑠) (1 + 𝑡)

3−𝛾
, (88)

∫

𝑎(𝑡)

0

𝜌
𝛾
𝑑𝑥 ≤ 𝐶(1 + ∫

𝑡

0

𝑎(𝑠)
1−𝛼
(1 + 𝑠)

𝛾−3
𝑑𝑠) (1 + 𝑡)

1−𝛾
.

(89)

We get from (84) that

∫

𝑡

0

𝑎(𝑠)
1−𝛼
(1 + 𝑠)

𝛾−3
𝑑𝑠

≤ {
𝐶(1 + 𝑡)

𝛾(1−𝛼)/(𝛾−𝛼)+𝛾−2
, 𝛾 ∈ (1, 3) , 𝛾 ̸= 2𝛼,

𝐶 ln (1 + 𝑡) , 𝛾 = 2𝛼,

(90)

which together with (89) yields

∫

𝑎(𝑡)

0

𝜌
𝛾
𝑑𝑥 ≤

{{

{{

{

𝐶(1 + 𝑡)
−(𝛾−1)

, 𝛾 ∈ (1, 2𝛼) ,

𝐶(1 + 𝑡)
−(𝛾−1) ln (1 + 𝑡) , 𝛾 = 2𝛼,

𝐶(1 + 𝑡)
−𝛼(𝛾−1)/(𝛾−𝛼)

, 𝛾 ∈ (2𝛼, 3) .

(91)
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Also, it follows from the conservation of mass and
Hölder’s inequality that

0 < (∫

𝑎0

0

𝜌
0
(𝑥) 𝑑𝑥)

𝛾

= (∫

𝑎(𝑡)

0

𝜌 (𝑥, 𝑡) 𝑑𝑥)

𝛾

≤ 𝑎(𝑡)
𝛾−1

∫

𝑎(𝑡)

0

𝜌
𝛾
𝑑𝑥,

(92)

which together with (84), (86), and (91) gives (73). Similarly,
we have

0 < (∫

𝑦0

0

𝜌
0
(𝑥) 𝑑𝑥)

𝛾

= (∫

𝑦(𝑡)

0

𝜌 (𝑥, 𝑡) 𝑑𝑥)

𝛾

≤ 𝑦(𝑡)
𝛾−1

∫

𝑦(𝑡)

0

𝜌
𝛾
𝑑𝑥,

(93)

which together with (35) implies that

𝑦 (𝑡) ≥

{{

{{

{

𝑐 (1 + 𝑡) , 1 < 𝛾 < 2𝛼,

𝑐(1 + 𝑡)
1−]
, 𝛾 = 2𝛼,

𝑐(1 + 𝑡)
𝛼/(𝛾−𝛼)

, 𝛾 > 2𝛼,

(94)

− [𝜌
𝛾
] ≤

{{

{{

{

𝑐(1 + 𝑡)
−1
, 1 < 𝛾 < 2𝛼,

𝑐(1 + 𝑡)
−1+]

, 𝛾 = 2𝛼,

𝑐(1 + 𝑡)
−𝛼/(𝛾−𝛼)

, 𝛾 > 2𝛼.

(95)

Finally, it follows from (30) that

𝜌 (𝑎 (𝑡) , 𝑡) = ((𝛾 − 𝛼) 𝑡 + 𝜌
𝛼−𝛾

0
(𝑎
0
))
−1/(𝛾−𝛼)

, (96)

and as 𝑡 is large enough, it holds due to (35) that

𝜌
(3𝛾+2𝛼−1)/2

(𝑥, 𝑡)

≤ 𝜌
(3𝛾+2𝛼−1)/2

(𝑎 (𝑡) , 𝑡)

+ ∫

𝑎(𝑡)

0


(𝜌
(3𝛾+2𝛼−1)/2

)
𝑥


𝑑𝑥 − [𝜌

(3𝛾+2𝛼−1)/2
]

≤ 𝜌
(3𝛾+2𝛼−1)/2

(𝑎 (𝑡) , 𝑡)

+ 𝐶(∫

𝑎(𝑡)

0

𝜌
𝛾
𝑑𝑥)

1/2

− 𝐶 [𝜌
𝛾
] ,

(97)

which together with (86), (91), (95), and (96) gives (75).

4. Proof of the Main Results

Proof. The global existence of unique piecewise regular solu-
tion to the FBVP (1) and (2) can be established in terms of the
short-time existence carried out as in [1, 2, 4], the uniform a-
priori estimates, and the analysis of regularities, which indeed
follow from Lemmas 5–11.We omit the details.The large time
behaviors follow from Lemmas 12–13 directly. The proof of
Theorem 2 is completed.
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dell’Università di Ferrara Nuova 8, vol. 48, no. 1, pp. 1–20, 2002.

[19] S.-W. Vong, T. Yang, and C. Zhu, “Compressible Navier-Stokes
equations with degenerate viscosity coefficient and vacuum. II,”
Journal of Differential Equations, vol. 192, no. 2, pp. 475–501,
2003.

[20] T. Yang, Z. A. Yao, and C. Zhu, “Compressible Navier-Stokes
equations with density-dependent viscosity and vacuum,”Com-
munications in Partial Differential Equations, vol. 26, no. 5-6, pp.
965–981, 2001.

[21] T. Yang and H. Zhao, “A vacuum problem for the one-
dimensional compressible Navier-Stokes equations with
density-dependent viscosity,” Journal of Differential Equations,
vol. 184, no. 1, pp. 163–184, 2002.

[22] T. Yang and C. Zhu, “Compressible Navier-Stokes equations
with degenerate viscosity coefficient and vacuum,”Communica-
tions inMathematical Physics, vol. 230, no. 2, pp. 329–363, 2002.

[23] A. Mellet and A. Vasseur, “Existence and uniqueness of global
strong solutions for one-dimensional compressible Navier-
Stokes equations,” SIAM Journal on Mathematical Analysis, vol.
39, no. 4, pp. 1344–1365, 2008.

[24] Z. Guo, Q. Jiu, and Z. Xin, “Spherically symmetric isentropic
compressible flows with density-dependent viscosity coeffi-
cients,” SIAM Journal on Mathematical Analysis, vol. 39, no. 5,
pp. 1402–1427, 2008.

[25] Q. Jiu, Y. Wang, and Z. Xin, “Stability of rarefaction waves
to the 1D compressible Navier-Stokes equations with density-
dependent viscosity,” Communications in Partial Differential
Equations, vol. 36, no. 4, pp. 602–634, 2011.

[26] Q. Jiu and Z. Xin, “The Cauchy problem for 1D compressible
flowswith density-dependent viscosity coefficients,”Kinetic and
Related Models, vol. 1, no. 2, pp. 313–330, 2008.

[27] H. L. Li, J. Li, and Z. Xin, “Vanishing of vacuum states and blow-
up phenomena of the compressible Navier-Stokes equations,”
Communications in Mathematical Physics, vol. 281, no. 2, pp.
401–444, 2008.

[28] Z. Xin, “Blowup of smooth solutions to the compressible
Navier-Stokes equationwith compact density,”Communications
on Pure and Applied Mathematics, vol. 51, no. 3, pp. 229–240,
1998.

[29] D. Hoff and J. Smoller, “Solutions in the large for certain non-
linear parabolic systems,” Annales de l’Institut Henri Poincaré.
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