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Expanded mixed finite element method is introduced to approximate the two-dimensional Sobolev equation. This formulation
expands the standard mixed formulation in the sense that three unknown variables are explicitly treated. Existence and uniqueness
of the numerical solution are demonstrated. Optimal order error estimates for both the scalar and two vector functions are
established.

1. Introduction

In this paper, we consider the following Sobolev equation:

𝑢
𝑡
(x, 𝑡) − ∇ ⋅ {𝑎 (x, 𝑡) ∇𝑢

𝑡
+ 𝑏
1
(x, 𝑡) ∇𝑢 (x, 𝑡)}

= 𝑓 (x, 𝑡) , (x, 𝑡) ∈ Ω × (0, 𝑇] ,

𝑢 (x, 𝑡) = 0, (x, 𝑡) ∈ 𝜕Ω × [0, 𝑇] ,

𝑢 (x, 0) = 𝑢
0
(x) , x ∈ Ω,

(1)

in a bounded domain Ω ⊂ 𝑅
2 with Lipschitz continuous

boundary 𝜕Ω. Equation (1) has a wide range of applications
in many mathematical and physical problems [1, 2], for
example, the percolation theory when the fluid flows through
the cracks, the transfer problem of the moisture in the soil,
and the heat conduction problem in different materials. So
there exists great and actual significance to research Sobolev
equation. Up till now, there are some different schemes
studied to solve this kind of equation (see [1–4] for instance).

The mixed finite element method, which is a finite
element method [5] with constrained conditions, plays an
important role in the research of the numerical solution for
partial differential equations. Its general theory was proposed
by Babuska [6] and Brezzi [7]. Falk and Osborn [8] improved
their theory and expanded the adaptability of the mixed
finite element method. The mixed finite element method

(see [9, 10] for instance) is wildly used for the modeling of
fluid flow and transport, as it provides accurate and locally
mass conservative velocities.

The main motivation of the expanded mixed finite ele-
ment method [11–15] is to introduce three (or more) aux-
iliary variables for practical problems, while the traditional
finite element method and mixed finite element method
can only approximate one and two variables, respectively.
The expanded mixed finite element method also has some
other advantages except introducing more variables. It can
treat individual boundary conditions. Also, this method is
suitable for differential equation with small coefficient (close
to zero) which does not need to be inverted. Consequently,
this method works for the problems with small diffusion or
low permeability terms in fluid problems. Using this method,
we can get optimal order error estimates for certain nonlinear
problems, while standard mixed formulation sometimes
gives only suboptimal error estimates.

The object of this paper is to present the expanded mixed
finite element method for the Sobolev equation. We conduct
theoretical analysis to study the existence and uniqueness
and obtain optimal order error estimates. The rest of this
paper is organized as follows. In Section 2, the mixed weak
formulation and its mixed element approximation are con-
sidered. In Section 3, we prove the existence and uniqueness
of approximation form. In Section 4, some lemmas are given.
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In Section 5, optimal order semidiscrete error estimates are
established.

Throughout the paper, we will use 𝐶, with or without
subscript, to denote a generic positive constant which does
not depend on the discretization parameter ℎ. Vectors will be
expressed in boldface. At the same time, we show a useful 𝜀-
Cauchy inequality

𝑎𝑏 ≤ 𝜀𝑎
2
+

1

4𝜀

𝑏
2
, 𝜀 > 0. (2)

2. Mixed Weak Form and
Mixed Element Approximation

For 1 ≤ 𝑞 ≤ +∞ and𝑚 any nonnegative integer, let

𝑊
𝑚,𝑞
(Ω) = {𝑓 ∈ 𝐿

𝑞
(Ω) | 𝐷

𝛼
𝑓 ∈ 𝐿

𝑞
(Ω) , |𝛼| ≤ 𝑚} (3)

denote the Sobolev spaces [16] endowed with the norm





𝑓



𝑚,𝑞,Ω

= ( ∑

|𝛼|≤𝑚





𝐷
𝛼
𝑓





𝑞

𝐿
𝑞
(Ω)
)

1/𝑞

(4)

(the subscriptΩ will always be omitted).
Let 𝐻𝑚(Ω) = 𝑊𝑚,2(Ω) with the norm ‖ ⋅ ‖

𝑚
= ‖ ⋅ ‖

𝑚,2
.

The notation ‖ ⋅ ‖ will mean ‖ ⋅ ‖
𝐿
2
(Ω)

or ‖ ⋅ ‖
𝐿
2
(Ω)
2 . We denote

by ( , ) the inner product in either 𝐿2(Ω) or 𝐿2(Ω)2; that is,

(𝜉, 𝜂) = ∫

Ω

𝜉𝜂𝑑x , (𝜉, 𝜂) = ∫
Ω

𝜉 ⋅ 𝜂𝑑x. (5)

The notation ⟨, ⟩ denotes the 𝐿2-inner product on the bound-
ary ofΩ

⟨𝜉, 𝜂⟩ = ∫

𝜕Ω

𝜉𝜂𝑑𝑠. (6)

To formulate the weak form, let 𝑏 = 𝑏
1
/𝑎; we introduce

two vector variables

𝜆 = −∇𝑢
𝑡
− 𝑏∇𝑢, 𝜎 = 𝑎𝜆 = −𝑎∇𝑢

𝑡
− 𝑏
1
∇𝑢. (7)

Letting c = −∇𝑏, we rewrite (1) as the following system:

𝑢
𝑡
+ ∇ ⋅ 𝜎 = 𝑓, (x, 𝑡) ∈ Ω × (0, 𝑇] ,

𝜆 + ∇𝑢
𝑡
− ∇ (𝑏𝑢) + c𝑢 = 0, (x, 𝑡) ∈ Ω × (0, 𝑇] ,

𝜎 − 𝑎𝜆 = 0, (x, 𝑡) ∈ Ω × (0, 𝑇] ,

𝑢 (x, 𝑡) = 0, (x, 𝑡) ∈ 𝜕Ω × (0, 𝑇] ,

𝑢 (x, 0) = 𝑢
0
(x) , x ∈ Ω.

(8)

Let n be the unit exterior normal vector to the boundary of
Ω. Then (8) is formulated in the following expanded mixed
weak form: find (𝑢,𝜆,𝜎) ∈ 𝑊 × Λ × V, such that

(𝑢
𝑡
, 𝑤) + (div 𝜎, 𝑤) = (𝑓, 𝑤) ,

∀𝑤 ∈ 𝑊, 0 < 𝑡 ≤ 𝑇,

(𝜆, k) − (𝑢
𝑡
+ 𝑏𝑢, div k) + (c𝑢, k) = 0,

∀k ∈ V, 0 < 𝑡 ≤ 𝑇,

(𝜎, 𝜏) − (𝑎𝜆, 𝜏) = 0, ∀𝜏 ∈ Λ, 0 < 𝑡 ≤ 𝑇,

(𝑢 (0) , 𝑤) = (𝑢
0
, 𝑤) , ∀𝑤 ∈ 𝑊,

(9)

where

𝑊 = 𝐿
2
(Ω) , Λ = 𝐿

2
(Ω)
2
,

V = 𝐻 (div, Ω) = {k ∈ 𝐿2(Ω)2 | ∇ ⋅ k ∈ 𝐿2 (Ω)} .
(10)

Let 𝑇
ℎ
be a quasiregular polygonalization of Ω (by

triangles or rectangles), with ℎ being the maximum diameter
of the elements of the polygonalization. Let 𝑊

ℎ
× Λ
ℎ
× V
ℎ

be a conforming mixed element space with index 𝑘 and
discretization parameter ℎ.𝑊

ℎ
×Λ
ℎ
×V
ℎ
is an approximation

to𝑊 × Λ × V. There are many conforming (or compatible)
mixed element function spaces such as Raviart-Thomas
elements [17], BDFM elements [18, 19]. Some RT type mixed
elements are listed in Table 1. Here, 𝑃

𝑘
(𝑇) is the polynomial

up to 𝑘 order in two-dimensional domain used in triangle,
while 𝑄

𝑘,𝑙
(𝑇) is the polynomial up to 𝑘, 𝑙 in each dimension

used in rectangle.
Replacing the three variables by their approximation,

we get the expanded mixed finite element approximation
problem: find (𝑢

ℎ
,𝜆
ℎ
,𝜎
ℎ
) ∈ 𝑊

ℎ
× Λ
ℎ
× V
ℎ
, such that

(𝑢
ℎ,𝑡
, 𝑤) + (div 𝜎

ℎ
, 𝑤) = (𝑓, 𝑤) ,

∀𝑤 ∈ 𝑊
ℎ
, 0 < 𝑡 ≤ 𝑇,

(𝜆
ℎ
, k) − (𝑢

ℎ,𝑡
+ 𝑏𝑢
ℎ
, div k) + (c𝑢

ℎ
, k) = 0,

∀k ∈ V
ℎ
, 0 < 𝑡 ≤ 𝑇,

(𝜎
ℎ
, 𝜏) − (𝑎𝜆

ℎ
, 𝜏) = 0, ∀𝜏 ∈ Λ

ℎ
, 0 < 𝑡 ≤ 𝑇,

(𝑢 (0) , 𝑤) = (�̃�
0
, 𝑤) , ∀𝑤 ∈ 𝑊

ℎ
,

(11)

where

𝑊
ℎ
(𝐸) = {𝜔 ∈ 𝑊 : 𝜔|

𝐸
∈ 𝑊
ℎ
(𝐸) , ∀𝐸 ∈ 𝑇

ℎ
} ,

Λ
ℎ
(𝐸) = {𝜏 ∈ Λ : 𝜏|

𝐸
∈ V
ℎ
(𝐸) , ∀𝐸 ∈ 𝑇

ℎ
} ,

V
ℎ
(𝐸) = {k ∈ V : k|

𝐸
∈ V
ℎ
(𝐸) , ∀𝐸 ∈ 𝑇

ℎ
} .

(12)

The error analysis next makes use of three projection
operators.The first operator is the Raviart-Thomas projection
(or Brezzi-Douglas-Marini projection) Π

ℎ
: V → V

ℎ
; Π
ℎ

satisfies

(∇ ⋅ (k − Π
ℎ
k) , 𝜔
ℎ
) = 0, ∀𝜔

ℎ
∈ 𝑊
ℎ
. (13)
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Table 1: Some RT type mixed elements.

Dim Element V
ℎ
(𝐸) 𝑊

ℎ
(𝐸)

2D Triangle RT
𝑘
(𝑇) = 𝑃

𝑘
(𝐸)
2
⊕ x𝑃
𝑘
(𝐸) 𝑃

𝑘
(𝐸)

2D Rectangle RT
[𝑘]
(𝑇) = 𝑄

𝑘+1,𝑘
(𝐸) ⊕ 𝑄

𝑘,𝑘+1
(𝐸) 𝑄

𝑘,𝑘
(𝐸)

The following approximation properties are well known.





k − Π

ℎ
k

≤ 𝐶ℎ
𝑟
‖k‖
𝑟
,

1

2

≤ 𝑟 ≤ 𝑘 + 1, (14)





∇ ⋅ (k − Π

ℎ
k)
𝑟
≤ 𝐶ℎ
𝑟
‖∇ ⋅ k‖

𝑟
, 0 ≤ 𝑟 ≤ 𝑘 + 1. (15)

The other two operators are the standard 𝐿2-projection [5] 𝑃
ℎ

and 𝑅
ℎ
onto𝑊

ℎ
and Λ

ℎ
, respectively,

(𝜔 − 𝑃
ℎ
𝜔, ∇ ⋅ k

ℎ
) = 0, ∀𝜔 ∈ 𝑊, k

ℎ
∈ V
ℎ
,

(𝜏 − 𝑅
ℎ
𝜏, 𝜏
ℎ
) = 0, ∀𝜏 ∈ Λ, 𝜏

ℎ
∈ Λ
ℎ
.

(16)

They have the approximation properties




𝜔 − 𝑃
ℎ
𝜔




≤ 𝐶ℎ
𝑟
‖𝜔‖
𝑟
, 0 ≤ 𝑟 ≤ 𝑘 + 1,





𝜏 − 𝑅
ℎ
𝜏




≤ 𝐶ℎ
𝑟



𝜇



𝑟
, 0 ≤ 𝑟 ≤ 𝑘 + 1.

(17)

The two projections Π
ℎ
and 𝑃

ℎ
preserve the commuting

property

div ∘ Π
ℎ
= 𝑃
ℎ
∘ div : 𝐻1(Ω)2 → 𝑊

ℎ
. (18)

3. Existence and Uniqueness of
Approximation Form

In this section, we consider the existence and uniqueness of
the solution of (11).

Lemma 1. Equation (11) has a unique solution.

Proof. In fact, this equation is linear; it suffices to show that
the associated homogeneous system

(𝑢
ℎ,𝑡
, 𝑤) + (div 𝜎

ℎ
, 𝑤) = 0,

∀𝑤 ∈ 𝑊
ℎ
, 0 < 𝑡 ≤ 𝑇,

(𝜆
ℎ
, k) − (𝑢

ℎ,𝑡
+ 𝑏𝑢
ℎ
, div k) + (c𝑢

ℎ
, k) = 0,

∀k ∈ V
ℎ
, 0 < 𝑡 ≤ 𝑇,

(𝜎
ℎ
, 𝜏) − (𝑎𝜆

ℎ
, 𝜏) = 0,

∀𝜏 ∈ Λ
ℎ
, 0 < 𝑡 ≤ 𝑇,

(𝑢 (0) , 𝑤) = 0, ∀𝑤 ∈ 𝑊
ℎ
,

(19)

has only the trivial solution. In the first equation of (19), if we
take 𝜔 = 𝑢

ℎ,𝑡
and 𝜔 = div 𝜎

ℎ
, respectively, then we have that





𝑢
ℎ,𝑡





≤




div 𝜎
ℎ





,





div 𝜎
ℎ





≤




𝑢
ℎ,𝑡





.

(20)

By (20), it is easy to see that




div 𝜎
ℎ





=




𝑢
ℎ,𝑡





. (21)

Choosing 𝜔 = div 𝜎
ℎ
, k = 𝜎

ℎ
, and 𝜏 = 𝜆

ℎ
in (19), we get

(𝑎𝜆
ℎ
,𝜆
ℎ
) + (div 𝜎

ℎ
, div 𝜎

ℎ
) = (𝑏𝑢

ℎ
, div 𝜎

ℎ
) − (c𝑢

ℎ
,𝜎
ℎ
) .

(22)

In the third equation of (19), letting 𝜏 = 𝜎
ℎ
and 𝜏 = 𝜆

ℎ
,

respectively, then




𝜎
ℎ





≤ 𝐶





𝜆
ℎ





, (23)





𝜆
ℎ





≤ 𝐶





𝜎
ℎ





. (24)

Using the 𝜀-Cauchy inequality to (22), we have

𝑎
0





𝜆
ℎ






2

+




div 𝜎
ℎ






2

≤ 𝐶




𝑢
ℎ






2

+

1

2





div 𝜎
ℎ






2

+

𝑎
0

2





𝜆
ℎ






2

.

(25)

Note that (21), we deserve




𝜆
ℎ





≤ 𝐶





𝑢
ℎ





, (26)





𝑢
ℎ,𝑡





≤ 𝐶





𝑢
ℎ





. (27)

From (27), we know





𝑢
ℎ





=










∫

𝑡

0

𝑢
ℎ,𝑡
𝑑𝑡










≤ 𝐶∫

𝑡

0





𝑢
ℎ,𝑡





𝑑𝑡 ≤ 𝐶∫

𝑡

0





𝑢
ℎ





𝑑𝑡. (28)

Using Gronwall’s inequality to (28), we can prove 𝑢
ℎ
= 0.

Further, from (26) and (23), we know that 𝜆
ℎ
= 0, 𝜎

ℎ
= 0.

The proof is completed.

4. Some Lemmas

In the study of parabolic equations, we usually introduce
a mixed elliptic projection associated with our equations.
Define a map: find (�̃�

ℎ
,
̃𝜆
ℎ
, �̃�
ℎ
) ∈ 𝑊

ℎ
× Λ
ℎ
× V
ℎ
, such that

(div (𝜎 − �̃�
ℎ
) , 𝑤) = 0, ∀𝑤 ∈ 𝑊

ℎ
, 0 < 𝑡 ≤ 𝑇,

(𝜆 − ̃𝜆
ℎ
, k) − (𝑢

𝑡
− �̃�
ℎ,𝑡
+ 𝑏 (𝑢 − �̃�

ℎ
) , div k) + (c (𝑢 − �̃�

ℎ
) , k)

= 0, ∀k ∈ V
ℎ
, 0 < 𝑡 ≤ 𝑇,

(𝜎 − �̃�
ℎ
, 𝜏) − (𝑎 (𝜆 − ̃𝜆

ℎ
) , 𝜏) = 0, ∀𝜏 ∈ Λ

ℎ
, 0 < 𝑡 ≤ 𝑇,

(𝑢 (0) − �̃�
ℎ
(0) , 𝑤) = 0, ∀𝑤 ∈ 𝑊

ℎ
.

(29)

Similarly to Lemma 1, we can prove that system (29) has a
unique solution.

Now we give some error estimates of (�̃�
ℎ
,
̃𝜆
ℎ
, �̃�
ℎ
). Define

𝑢 − �̃�
ℎ
= (𝑝
ℎ
𝑢 − �̃�
ℎ
) + (𝑢 − 𝑝

ℎ
𝑢) = 𝑢

1
+ 𝑢
2
,

𝜆
1
= 𝜆 − ̃𝜆

ℎ
, 𝜎

1
= 𝜎 − �̃�

ℎ
.

(30)
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System (29) can be rewritten as follows:

(div 𝜎
1
, 𝑤) = 0, ∀𝑤 ∈ 𝑊

ℎ
,

(𝜆
1
, k) − (𝑢

1,𝑡
+ 𝑏 (𝑢

1
+ 𝑢
2
) , div k) + (c (𝑢

1
+ 𝑢
2
) , k) = 0,

∀k ∈ V
ℎ
,

(𝜎
1
, 𝜏) − (𝑎𝜆

1
, 𝜏) = 0, ∀𝜏 ∈ Λ

ℎ
.

(𝑢 (0) − �̃�
ℎ
(0) , 𝑤) = 0, ∀𝑤 ∈ 𝑊

ℎ
.

(31)

Now we consider the estimates of 𝑢
1
and 𝑢

1,𝑡
.

Lemma2. Let (𝑢
1
,𝜆
1
,𝜎
1
) be the solution of system (31). If 𝑢,𝜆,

and𝜎 are sufficiently smooth, then there exist positive constants
𝐶 such that





𝑢
1





≤ 𝐶∫

𝑡

0

(ℎ




𝜆
1





+ ℎ
1−𝛿𝑘0 



𝜆
1





+ ℎ




𝑢
2





+




𝑢
2




−1
) 𝑑𝑡,





𝑢
1,𝑡





≤ 𝐶 (ℎ





𝜆
1





+ ℎ
1−𝛿𝑘0 



𝜆
1





+ ℎ




𝑢
2





+




𝑢
2




−1
+




𝑢
1





) ,

(32)

where 𝛿
𝑘0
= 0 for 𝑘 = 0, and 𝛿

𝑘0
= 0 for 𝑘 ≥ 1.

Proof. Let 𝜙 ∈ 𝐻
2
(Ω)⋂𝐻

1

0
(Ω) be the solution of the

following problem:

∇ ⋅ (𝑎∇𝜙) = 𝜓, ∀𝑥 ∈ Ω,

𝜙|
𝜕Ω
= 0.

(33)

Then we know





𝜙



2
≤ 𝐶





𝜓




. (34)

For 0 < 𝑡 ≤ 𝑇, from the second equation of (31), we have that

(𝑢
1,𝑡
, 𝜓) = (𝑢

1,𝑡
, div (𝑎∇𝜙))

= (𝑢
1,𝑡
, divΠ

ℎ
(𝑎∇𝜙))

= (𝜆
1
, Π
ℎ
(𝑎∇𝜙)) + (c (𝑢

1
+ 𝑢
2
) , Π
ℎ
(𝑎∇𝜙))

− (𝑏 (𝑢
1
+ 𝑢
2
) , divΠ

ℎ
(𝑎∇𝜙))

= 𝐼
1
+ 𝐼
2
+ 𝐼
3
.

(35)

It is easy to see that

𝐼
1
= (𝜆
1
, Π
ℎ
(𝑎∇𝜙))

= (𝜆
1
, Π
ℎ
(𝑎∇𝜙) − 𝑎∇𝜙) + (𝜆

1
, 𝑎∇𝜙)

= (𝜆
1
, Π
ℎ
(𝑎∇𝜙) − 𝑎∇𝜙) + (𝑎𝜆

1
, ∇𝜙)

= 𝐸
1
+ 𝐸
2
,

𝐸
1
≤ 𝐶ℎ





𝜆
1










𝜙



2
≤ 𝐶ℎ





𝜆
1










𝜓




,

𝐸
2
= (𝑎𝜆

1
, ∇ (𝜙 − 𝑝

ℎ
𝜙)) + (𝑎𝜆

1
, ∇ (𝑝
ℎ
𝜙))

= (𝑎𝜆
1
, ∇ (𝜙 − 𝑝

ℎ
𝜙)) + (𝜎

1
, ∇ (𝑝
ℎ
𝜙))

= (𝑎𝜆
1
, ∇ (𝜙 − 𝑝

ℎ
𝜙)) − (div 𝜎

1
, (𝑝
ℎ
𝜙))

= (𝑎𝜆
1
, ∇ (𝜙 − 𝑝

ℎ
𝜙))

≤ 𝐶




𝜆
1










∇ (𝜙 − 𝑝

ℎ
𝜙)





≤ 𝐶ℎ
1−𝛿𝑘𝑜



𝜙



2





𝜆
1






≤ 𝐶ℎ
1−𝛿𝑘𝑜 



𝜓









𝜆
1





.

(36)

Now, we estimate 𝐼
2
,

(c𝑢
1
, Π
ℎ
(𝑎∇𝜙))

≤ 𝐶




𝑢
1










Π
ℎ
(𝑎∇𝜙) − 𝑎∇𝜙 + 𝑎∇𝜙






≤ 𝐶




𝑢
1





(ℎ




∇𝜙




+




∇𝜙




)

≤ 𝐶




𝑢
1










𝜓




,

(c𝑢
2
, Π
ℎ
(𝑎∇𝜙))

= (c𝑢
2
, Π
ℎ
(𝑎∇𝜙) − 𝑎∇𝜙) + (c𝑢

2
, 𝑎∇𝜙)

≤ 𝐶 (ℎ




𝑢
2





+




𝑢
2




−1
)




𝜓




.

(37)

We turn to consider 𝐼
3
,

(−𝑏𝑢
1
, divΠ

ℎ
(𝑎∇𝜙))

≤ 𝐶




𝑢
1










∇𝜙




≤ 𝐶





𝑢
1










𝜓




,

(−𝑏𝑢
2
, divΠ

ℎ
(𝑎∇𝜙))

≤ − ((𝑏 − 𝑝
0

ℎ
𝑏) 𝑢
2
, divΠ

ℎ
(𝑎∇𝜙))

− ∑

𝑒∈𝑇ℎ

((𝑝
0

ℎ
𝑏) 𝑢
2
, divΠ

ℎ
(𝑎∇𝜙))

𝑒

= − ((𝑏 − 𝑝
0

ℎ
𝑏) 𝑢
2
, divΠ

ℎ
(𝑎∇𝜙))

≤ 𝐶ℎ




𝑢
2










𝜓




,

(38)

where 𝑝0
ℎ
𝑏 is the piecewise constant interpolation of function

𝑏. Using the previous estimates, we obtain




𝑢
1,𝑡






≤ 𝐶 (ℎ




𝜆
1





+ ℎ
1−𝛿𝑘0 



𝜆
1





+ ℎ




𝑢
2





+




𝑢
2




−1
+




𝑢
1





) .

(39)
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So we deserve





𝑢
1





=










∫

𝑡

0

𝑢
1,𝑡
𝑑𝑡










≤ 𝐶∫

𝑡

0





𝑢
1,𝑡





𝑑𝑡

≤ 𝐶∫

𝑡

0

(ℎ




𝜆
1





+ ℎ
1−𝛿𝑘0 



𝜆
1





+ ℎ




𝑢
2






+




𝑢
2




−1
+




𝑢
1





) 𝑑𝑡.

(40)

Applying Gronwall’s inequality to (40), we have





𝑢
1






≤ 𝐶∫

𝑡

0

(ℎ




𝜆
1





+ ℎ
1−𝛿𝑘0 



𝜆
1





+ ℎ




𝑢
2





+




𝑢
2




−1
) 𝑑𝑡.

(41)

Noting the estimates of 𝐼
1
, 𝐼
2
, and 𝐼

3
, the proof is completed.

Define

‖𝑢,𝜆,𝜎‖
𝑟
= ‖𝑢‖
𝑟
+ ‖𝜆‖
𝑟
+ ‖𝜎‖
𝑟
,

|‖𝑢,𝜆,𝜎‖|
𝑟
= ∫

𝑡

0

(‖𝑢‖
𝑟
+ ‖𝜆‖
𝑟
+ ‖𝜎‖
𝑟
) 𝑑𝑡.

(42)

Lemma 3. Let (𝑢,𝜆,𝜎) and (�̃�
ℎ
,
̃𝜆
ℎ
, �̃�
ℎ
) be the solution of (19)

and (29), respectively. If𝑢,𝜆, and𝜎 are sufficiently smooth, then
there exist positive constants 𝐶 such that

(I) if 𝑘 ≥ 0, then




div (𝜎 − �̃�

ℎ
)




≤ 𝐶ℎ
𝑟
‖𝜎‖
𝑟+1
, 0 ≤ 𝑟 ≤ 𝑘 + 1, (43)





𝑝
ℎ
𝑢 − �̃�
ℎ





≤ 𝐶ℎ
𝑟+1−𝛿𝑘0

|‖𝑢,𝜆,𝜎‖|
𝑟
, 1 ≤ 𝑟 ≤ 𝑘 + 1, (44)





𝑝
ℎ
𝑢
𝑡
− �̃�
ℎ,𝑡





≤ 𝐶ℎ
𝑟+1−𝛿𝑘0

‖𝑢,𝜆,𝜎‖
𝑟
, 1 ≤ 𝑟 ≤ 𝑘 + 1, (45)

(II) if 𝑘 = 0, then




𝑢 − �̃�
ℎ





≤ 𝐶ℎ (‖𝑢‖

1
+ |‖𝑢,𝜆,𝜎‖|

1
) , (46)





𝑢
𝑡
− �̃�
ℎ,𝑡





≤ 𝐶ℎ (





𝑢
𝑡




1
+ ‖𝑢,𝜆,𝜎‖

1
+ |‖𝑢,𝜆,𝜎‖|

1
) , (47)






𝜆 − ̃𝜆
ℎ






≤ 𝐶ℎ (‖𝑢,𝜆,𝜎‖

1
+ |‖𝑢,𝜆,𝜎‖|

1
) , (48)





𝜎 − �̃�
ℎ





≤ 𝐶ℎ (‖𝑢,𝜆,𝜎‖

1
+ |‖𝑢,𝜆,𝜎‖|

1
) , (49)

(III) if 𝑘 ≥ 1, 2 ≤ 𝑟 ≤ 𝑘 + 1, then




𝑢 − �̃�
ℎ





≤ 𝐶ℎ
𝑟
(‖𝑢‖
𝑟
+ |‖𝑢,𝜆,𝜎‖|

𝑟−1
) , (50)





𝑢
𝑡
− �̃�
ℎ,𝑡





≤ 𝐶ℎ
𝑟
(




𝑢
𝑡




𝑟
+ ‖𝑢,𝜆,𝜎‖

𝑟
+ |‖𝑢,𝜆,𝜎‖|

𝑟−1
) , (51)






𝜆 − ̃𝜆
ℎ






≤ 𝐶ℎ
𝑟
(‖𝑢,𝜆,𝜎‖

𝑟
+ |‖𝑢,𝜆,𝜎‖|

𝑟−1
) , (52)





𝜎 − �̃�
ℎ





≤ 𝐶ℎ
𝑟
(‖𝑢,𝜆,𝜎‖

𝑟
+ |‖𝑢,𝜆,𝜎‖|

𝑟−1
) . (53)

Proof. For 0 < 𝑡 ≤ 𝑇, the proof proceeds in three steps as
follows.

(I) In the first equation of (29), taking 𝜔 = div 𝜎
1
, we

know

(div 𝜎
1
, div 𝜎

1
)

= (div 𝜎
1
, div (𝜎 − Π

ℎ
𝜎))

≤




div 𝜎
1










div (𝜎 − Π

ℎ
𝜎)




,

(54)

which implies that




div 𝜎
1





≤




div (𝜎 − Π

ℎ
𝜎)





≤ 𝐶ℎ
𝑟
‖𝜎‖
𝑟+1
, 0 ≤ 𝑟 ≤ 𝑘 + 1.

(55)

Choosing 𝜔 ∈ 𝑊
ℎ
, note that (div(𝜎− �̃�

ℎ
), 𝜔) = 0 and (div(𝜎−

Π
ℎ
𝜎), 𝜔) = 0, we get

div (Π
ℎ
𝜎 − �̃�
ℎ
) = 0. (56)

Combing (15) with (56), we can prove (43).
(II) In (29), letting k = Π

ℎ
𝜎 − �̃�

ℎ
, together with (43), we

obtain

(𝜆 − ̃𝜆
ℎ
, Π
ℎ
𝜎 − �̃�
ℎ
) − (c (𝑢 − �̃�

ℎ
) , Π
ℎ
𝜎 − �̃�
ℎ
) = 0. (57)

Hence

(𝑅
ℎ
𝜆 − ̃𝜆
ℎ
, Π
ℎ
𝜎 − �̃�
ℎ
) − (c (𝑢 − �̃�

ℎ
) , Π
ℎ
𝜎 − �̃�
ℎ
) = 0. (58)

In the third equation of (29), choosing 𝜏 = 𝑅
ℎ
𝜆 − ̃𝜆
ℎ
, we get

(𝜎 − �̃�
ℎ
, 𝑅
ℎ
𝜆 − ̃𝜆
ℎ
) = (𝑎 (𝜆 − ̃𝜆

ℎ
) , 𝑅
ℎ
𝜆 − ̃𝜆
ℎ
) . (59)

So we know

(𝜎 − Π
ℎ
𝜎, 𝑅
ℎ
𝜆 − ̃𝜆
ℎ
) + (Π

ℎ
𝜎 − �̃�
ℎ
, 𝑅
ℎ
𝜆 − ̃𝜆
ℎ
)

= (𝑎 (𝜆 − ̃𝜆
ℎ
) , 𝑅
ℎ
𝜆 − ̃𝜆
ℎ
) .

(60)

Note that (44) and (45), we obtain

(Π
ℎ
𝜎 − �̃�
ℎ
, 𝑅
ℎ
𝜆 − ̃𝜆
ℎ
)

= (c (𝑢
ℎ
− �̃�
ℎ
) , Π
ℎ
𝜎 − �̃�
ℎ
)

= (𝑎 (𝜆 − ̃𝜆
ℎ
) , 𝑅
ℎ
𝜆 − ̃𝜆
ℎ
) − (𝜎 − Π

ℎ
𝜎, 𝑅
ℎ
𝜆 − ̃𝜆
ℎ
) ,

(61)

which implies that

(Π
ℎ
𝜎 − �̃�
ℎ
, 𝑅
ℎ
𝜆 − ̃𝜆
ℎ
)

≤ 𝐶




𝑢 − �̃�
ℎ










Π
ℎ
𝜎 − �̃�
ℎ






≤ 𝐶 (




𝑢
1





+




𝑢
2





)




Π
ℎ
𝜎 − �̃�
ℎ





.

(62)

Now we estimate ‖Π
ℎ
𝜎 − �̃�
ℎ
‖,

(𝜎 − �̃�
ℎ
, Π
ℎ
𝜎 − �̃�
ℎ
) = (𝑎 (𝜆 − ̃𝜆

ℎ
) , Π
ℎ
𝜎 − �̃�
ℎ
) . (63)
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It is easy to see that





Π
ℎ
𝜎 − �̃�
ℎ






2

= (Π
ℎ
𝜎 − 𝜎, Π

ℎ
𝜎 − �̃�
ℎ
) + (𝑎 (𝜆 − ̃𝜆

ℎ
) , Π
ℎ
𝜎 − �̃�
ℎ
)

= (Π
ℎ
𝜎 − 𝜎, Π

ℎ
𝜎 − �̃�
ℎ
) + (𝑎 (𝜆 − 𝑅

ℎ
𝜆) , Π

ℎ
𝜎 − �̃�
ℎ
)

+ (𝑎 (𝑅
ℎ
𝜆 − ̃𝜆
ℎ
) , Π
ℎ
𝜎 − �̃�
ℎ
)

≤ 𝐶 (




Π
ℎ
𝜎 − 𝜎





+




𝜆 − 𝑅
ℎ
𝜆




+




𝑢
1





+




𝑢
2





)

×




Π
ℎ
𝜎 − �̃�
ℎ





.

(64)

By the properties of projectionΠ
ℎ
, we get





Π
ℎ
𝜎 − �̃�
ℎ





≤ 𝐶ℎ
𝑟
(‖𝑢‖
𝑟
+ ‖𝜆‖
𝑟
+ ‖𝜎‖
𝑟
+




𝑢
1





) ,

0 ≤ 𝑟 ≤ 𝑘 + 1,

(65)

which proves (49) and (53).
Now we estimate ‖𝑅

ℎ
𝜆 − ̃𝜆
ℎ
‖,

(𝑎 (𝑅
ℎ
𝜆 − ̃𝜆
ℎ
) , 𝑅
ℎ
𝜆 − ̃𝜆
ℎ
)

= (𝑎 (𝜆 − ̃𝜆
ℎ
, 𝑅
ℎ
𝜆 − ̃𝜆
ℎ
)

+ (𝑎 (𝑅
ℎ
𝜆 − 𝜆) , 𝑅

ℎ
𝜆 − ̃𝜆
ℎ
)

= (𝜎 − Π
ℎ
𝜎, 𝑅
ℎ
𝜆 − ̃𝜆
ℎ
) + (Π

ℎ
𝜎 − �̃�
ℎ
, 𝑅
ℎ
𝜆 − ̃𝜆
ℎ
)

+ (𝑎 (𝑅
ℎ
𝜆 − 𝜆) , 𝑅

ℎ
𝜆 − ̃𝜆
ℎ
)

= (𝜎 − Π
ℎ
𝜎, 𝑅
ℎ
𝜆 − ̃𝜆
ℎ
) + (c (𝑢 − �̃�

ℎ
) , Π
ℎ
𝜎 − �̃�
ℎ
)

+ (𝑎 (𝑅
ℎ
𝜆 − 𝜆) , 𝑅

ℎ
𝜆 − ̃𝜆
ℎ
)

≤ (




𝜎 − Π

ℎ
𝜎




+ 𝐶




𝜆 − 𝑅
ℎ
𝜆




)






𝑅
ℎ
𝜆 − ̃𝜆
ℎ







+ 𝐶




𝑢
1
+ 𝑢
2










Π
ℎ
𝜎 − �̃�
ℎ






≤ 𝐶 (




𝜎 − Π

ℎ
𝜎





2

+




𝑢
1






2

+




𝑢
2






2

+




𝑅
ℎ
𝜆 − 𝜆






2

)

+

𝑐
0

2






𝑅
ℎ
𝜆 − ̃𝜆
ℎ







2

,

(66)

where

(𝑎 (𝑅
ℎ
𝜆 − ̃𝜆
ℎ
) , 𝑅
ℎ
𝜆 − ̃𝜆
ℎ
) ≥ 𝑐
0






𝑅
ℎ
𝜆 − ̃𝜆
ℎ







2

. (67)

From (66) and (67), we know






𝑅
ℎ
𝜆 − ̃𝜆
ℎ






≤ 𝐶 (ℎ

𝑟
(‖𝑢‖
𝑟
+ ‖𝜆‖
𝑟
+ ‖𝜎‖
𝑟
) +




𝑢
1





) ,






𝜆 −
̃
𝜆
ℎ






≤ 𝐶 (ℎ

𝑟
(‖𝑢‖
𝑟
+ ‖𝜆‖
𝑟
+ ‖𝜎‖
𝑟
) +




𝑢
1





) ,

0 ≤ 𝑟 ≤ 𝑘 + 1.

(68)

By Lemma 2, if 𝑘 = 0, we have that






𝜆 − ̃𝜆
ℎ






=




𝜆
1






≤ 𝐶ℎ(‖𝑢‖
1
+ ‖𝜆‖
1
+ ‖𝜎‖
1

+∫

𝑡

0

(‖𝑢‖
1
+ ‖𝜆‖
1
+ ‖𝜎‖
1
) 𝑑𝜏) .

(69)

If 𝑘 ≥ 1, 2 ≤ 𝑟 ≤ 𝑘 + 1, we have that






𝜆 − ̃𝜆
ℎ






≤ 𝐶ℎ
𝑟
(‖𝑢‖
𝑟
+ ‖𝜆‖
𝑟
+ ‖𝜎‖
𝑟

+∫

𝑡

0

(‖𝑢‖
𝑟−1
+ ‖𝜆‖
𝑟−1
‖𝜎‖
𝑟−1
) 𝑑𝑡) .

(70)

Using the estimate of ‖Π
ℎ
𝜎 − �̃�
ℎ
‖, we obtain





𝜎 − �̃�
ℎ





≤ 𝐶 (ℎ

𝑟
(‖𝑢‖
𝑟
+ ‖𝜆‖
𝑟
+ ‖𝜎‖
𝑟
) +




𝑢
1





) ,

0 ≤ 𝑟 ≤ 𝑘 + 1.

(71)

If 𝑘 = 0, we get





𝜎 − �̃�
ℎ






≤ 𝐶ℎ(‖𝑢‖
1
+ ‖𝜆‖
1
+ ‖𝜎‖
1

+∫

𝑡

0

(‖𝑢‖
1
+ ‖𝜆‖
1
+ ‖𝜎‖
1
) 𝑑𝑡) .

(72)

If 𝑘 ≥ 1, 2 ≤ 𝑟 ≤ 𝑘 + 1, we get





𝜎 − �̃�
ℎ






≤ 𝐶ℎ
𝑟
(‖𝑢‖
𝑟
+ ‖𝜆‖
𝑟
+ ‖𝜎‖
𝑟

+∫

𝑡

0

(‖𝑢‖
𝑟−1
+ ‖𝜆‖
𝑟−1
+ ‖𝜎‖
𝑟−1
) 𝑑𝑡) .

(73)

(III) By Lemma 2, we have that





𝑝
ℎ
𝑢 − �̃�
ℎ





=




𝑢
1





≤ 𝐶ℎ
𝑟+1−𝛿𝑘0

× ∫

𝑡

0

(‖𝑢‖
𝑟
+ ‖𝜆‖
𝑟
+ ‖𝜎‖
𝑟
) 𝑑𝜏, 0 ≤ 𝑟 ≤ 𝑘 + 1,





𝑝
ℎ
𝑢
𝑡
− �̃�
ℎ,𝑡






≤ 𝐶ℎ
𝑟+1−𝛿𝑘0

(‖𝑢‖
𝑟
+ ‖𝜆‖
𝑟
+ ‖𝜎‖
𝑟

+∫

𝑡

0

(‖𝑢‖
𝑟
+ ‖𝜆‖
𝑟
+ ‖𝜎‖
𝑟
) 𝑑𝑡) ,

0 ≤ 𝑟 ≤ 𝑘 + 1.

(74)
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If 𝑘 = 0, we know





𝑢 − �̃�
ℎ





≤




𝑢 − 𝑝
ℎ
𝑢




+




𝑢
1






≤ 𝐶ℎ(‖𝑢‖
1
+ ∫

𝑡

0

(‖𝑢‖
1
+ ‖𝜆‖
1
+ ‖𝜎‖
1
) 𝑑𝑡) ,





𝑢
𝑡
− �̃�
ℎ,𝑡






≤ 𝐶ℎ(




𝑢
𝑡




1
+ ‖𝑢‖
1
+ ‖𝜆‖
1
+ ‖𝜎‖
1

+∫

𝑡

0

(‖𝑢‖
1
+ ‖𝜆‖
1
+ ‖𝜎‖
1
) 𝑑𝑡) .

(75)

If 𝑘 ≥ 1, 2 ≤ 𝑟 ≤ 𝑘 + 1, we know





𝑢 − �̃�
ℎ






≤ 𝐶ℎ
𝑟
(‖𝑢‖
𝑟
+ ∫

𝑡

0

(‖𝑢‖
𝑟−1
+ ‖𝜆‖
𝑟−1
+ ‖𝜎‖
𝑟−1
) 𝑑𝑡) ,





𝑢
𝑡
− �̃�
ℎ,𝑡






≤ 𝐶ℎ
𝑟
(




𝑢
𝑡




𝑟
+ ‖𝑢‖
𝑟−1
+ ‖𝜆‖
𝑟−1

+∫

𝑡

0

(‖𝑢‖
𝑟−1
+ ‖𝜆‖
𝑟−1
+ ‖𝜎‖
𝑟−1
) 𝑑𝑡) .

(76)

The proof is completed.

Remark 4. The estimate results of (46)–(53) are optimal. If
𝑘 ≥ 1, the estimate results of (43)–(45) are superconvergent.

5. Main Result

In this section, we consider error estimates for the
continuous-in-time mixed finite element approximation.
Define

𝑢 − 𝑢
ℎ
= (𝑢 − �̃�

ℎ
) + (�̃�

ℎ
− 𝑢
ℎ
) = 𝑢
3
+ 𝑢
4
,

𝜆 − 𝜆
ℎ
= (𝜆 − ̃𝜆

ℎ
) + (

̃𝜆
ℎ
− 𝜆
ℎ
) = 𝜆
1
+ 𝜆
2
,

𝜎 − 𝜎
ℎ
= (𝜎 − �̃�

ℎ
) + (�̃�

ℎ
− 𝜎
ℎ
) = 𝜎
1
+ 𝜎
2
,





𝑢, 𝑢
𝑡
,𝜆,𝜎




𝑟
= ‖𝑢‖
𝑟
+




𝑢
𝑡




𝑟
+ ‖𝜆‖
𝑟
+ ‖𝜎‖
𝑟
,










𝑢, 𝑢
𝑡
,𝜆,𝜎









𝑟
= ∫

𝑡

0

(‖𝑢‖
𝑟
+




𝑢
𝑡




𝑟
+ ‖𝜆‖
𝑟
+ ‖𝜎‖
𝑟
) 𝑑𝑡.

(77)

Theorem5. Let (𝑢,𝜆,𝜎) and (𝑢
ℎ
,𝜆
ℎ
,𝜎
ℎ
) be the solution of (9)

and (11), respectively. If 𝑢, 𝜆, and 𝜎 are sufficiently smooth, then
there exist positive constants 𝐶 such that

(I) if 𝑘 = 0, then





𝑢 − 𝑢
ℎ





≤ 𝐶ℎ (‖𝑢‖

1
+









𝑢, 𝑢
𝑡
,𝜆,𝜎









1
) , (78)





𝑢
𝑡
− 𝑢
ℎ,𝑡





≤ 𝐶ℎ (





𝑢, 𝑢
𝑡
,𝜆,𝜎




1
+ |‖𝑢,𝜆,𝜎‖|

1
) , (79)





𝜆 − 𝜆
ℎ





≤ 𝐶ℎ (





𝑢, 𝑢
𝑡
,𝜆,𝜎




1
+









𝑢, 𝑢
𝑡
,𝜆,𝜎









1
) , (80)





𝜎 − 𝜎
ℎ





≤ 𝐶ℎ (





𝑢, 𝑢
𝑡
,𝜆,𝜎




1
+









𝑢, 𝑢
𝑡
,𝜆,𝜎









1
) , (81)





div (𝜎 − 𝜎

ℎ
)





≤ 𝐶ℎ (‖𝑢‖
1
+




𝑢
𝑡




1
+ ‖𝜎‖
2
+









𝑢, 𝑢
𝑡
,𝜆,𝜎









1
) ,

(82)

(II) if 𝑘 ≥ 1 and 2 ≤ 𝑟 ≤ 𝑘 + 1, then





𝑢 − 𝑢
ℎ





≤ 𝐶ℎ
𝑟
(‖𝑢‖
𝑟
+









𝑢, 𝑢
𝑡
,𝜆,𝜎









𝑟−1
) ,





𝑢
𝑡
− 𝑢
ℎ,𝑡






≤ 𝐶ℎ
𝑟
(




𝑢
𝑡




𝑟
+ ‖𝑢‖
𝑟−1
+ ‖𝜆‖
𝑟−1
+ ‖𝜎‖
𝑟−1

+∫

𝑡

0

(‖𝑢‖
𝑟−1
+




𝑢
𝑡




𝑟
+ ‖𝜆‖
𝑟−1
+ ‖𝜎‖
𝑟−1
) 𝑑𝑡) ,





𝜆 − 𝜆
ℎ






≤ 𝐶ℎ
𝑟
(‖𝑢,𝜆,𝜎‖

𝑟

+∫

𝑡

0

(




𝑢
𝑡




𝑟
+ ‖𝑢‖
𝑟−1
+ ‖𝜆‖
𝑟−1
+ ‖𝜎‖
𝑟−1
) 𝑑𝑡) ,





𝜎 − 𝜎
ℎ






≤ 𝐶ℎ
𝑟
( ‖𝑢,𝜆,𝜎‖

𝑟

+∫

𝑡

0

(




𝑢
𝑡




𝑟
+ ‖𝑢‖
𝑟−1
+ ‖𝜆‖
𝑟−1
+ ‖𝜎‖
𝑟−1
) 𝑑𝑡) ,

(83)




div (𝜎 − 𝜎

ℎ
)





≤ 𝐶ℎ
𝑟
(




𝑢
𝑡




𝑟
+ ‖𝜆‖
𝑟
+ ‖𝜎‖
𝑟+1
+ ‖𝑢‖
𝑟−1

+∫

𝑡

0

(




𝑢
𝑡




𝑟
+ ‖𝑢‖
𝑟−1
+ ‖𝜆‖
𝑟−1
+ ‖𝜎‖
𝑟−1
) 𝑑𝑡) .

(84)

Proof. From (9) and (19), we have the following error equa-
tion:

(𝑢
4,𝑡
+ 𝑢
3,𝑡
, 𝑤) + (div 𝜎

2
, 𝑤) = 0,

∀𝑤 ∈ 𝑊
ℎ
, 0 < 𝑡 ≤ 𝑇,
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(𝜎
2
, 𝜏) − (𝑎𝜆

2
, 𝜏) = 0,

∀𝜏 ∈ Λ
ℎ
, 0 < 𝑡 ≤ 𝑇,

(𝜆
2
, k) − (𝑢

4,𝑡
+ 𝑏𝑢
4
, div k) + (c𝑢

4
, k) = 0,

∀k ∈ V
ℎ
, 0 < 𝑡 ≤ 𝑇,

𝑢
4
(0) = 0.

(85)

In (85), choosing 𝜔 = 𝑢
4,𝑡
+ 𝑝
ℎ
(𝑏𝑢
4
), 𝜏 = 𝜆

2
, and k = 𝜎

2
, we

have
(𝜆
2
,𝜎
2
) + (𝑢

4,𝑡
, 𝑢
4,𝑡
)

= − (𝑢
3,𝑡
, 𝑢
4,𝑡
+ 𝑝
ℎ
(𝑏𝑢
4
)) − (𝑢

4,𝑡
, 𝑝
ℎ
(𝑏𝑢
4
))

− (c𝑢
4
,𝜎
2
) .

(86)

In the second equation of (85), letting 𝜏 = 𝜎
2
, we know

𝜎
2
≤ 𝐶𝜆
2
. (87)

Further, using 𝜀-inequality to (86), we get




𝑢
4,𝑡






2

+




𝜆
2






2

≤ 𝐶 (




𝑢
4






2

+




𝑢
3,𝑡






2

) . (88)

Hence,





𝑢
4





=










∫

𝑡

0

𝑢
4,𝑡
𝑑𝜏










≤ 𝐶∫

𝑡

0





𝑢
4,𝑡





𝑑𝜏 ≤ 𝐶∫

𝑡

0

(




𝑢
4





+




𝑢
3,𝑡





) 𝑑𝑡.

(89)

Using Gronwall’s inequality to (89), we obtain





𝑢
4





≤ 𝐶∫

𝑡

0





𝑢
3,𝑡





𝑑𝑡. (90)

Further, we know





𝜎
2





+




𝑢
4,𝑡





+




𝜆
2





≤ 𝐶(





𝑢
3,𝑡





+ ∫

𝑡

0





𝑢
3,𝑡





𝑑𝑡) . (91)

Noting the first equation of (78), we get





div 𝜎
2





≤




𝑢
3,𝑡





+




𝑢
4,𝑡





≤ 𝐶(





𝑢
3,𝑡





+ ∫

𝑡

0





𝑢
3,𝑡





𝑑𝑡) . (92)

So we have that




𝑢 − 𝑢
ℎ





≤




𝑢
3





+ 𝐶∫

𝑡

0





𝑢
3,𝑡





𝑑𝑡,





𝑢
𝑡
− 𝑢
ℎ,𝑡





≤ 𝐶(





𝑢
3,𝑡





+ ∫

𝑡

0





𝑢
3,𝑡





𝑑𝑡) ,





𝜆 − 𝜆
ℎ





≤




𝜆
1





+ 𝐶(





𝑢
3,𝑡





+ ∫

𝑡

0





𝑢
3,𝑡





𝑑𝑡) ,





𝜎 − 𝜎
ℎ





≤




𝜎
1





+ 𝐶(





𝑢
3,𝑡





+ ∫

𝑡

0





𝑢
3,𝑡





𝑑𝑡) ,





div (𝜎 − 𝜎

ℎ
)




≤




div 𝜎
1





+




div 𝜎
2





.

(93)

Together with the results of Lemmas 2 and 3, the proof is
completed.

Remark 6. The estimate results of (78)–(84) are optimal.
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