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Let 𝐷 denote the distance matrix of a connected graph 𝐺. The inertia of 𝐷 is the triple of integers (𝑛
+
(𝐷), 𝑛

0
(𝐷), 𝑛

−
(𝐷)), where

𝑛
+
(𝐷), 𝑛

0
(𝐷), and 𝑛

−
(𝐷) denote the number of positive, 0, and negative eigenvalues of 𝐷, respectively. In this paper, we mainly

study the inertia of distance matrices of some graphs related to wheel graphs and give a construction for graphs whose distance
matrices have exactly one positive eigenvalue.

1. Introduction

A simple graph 𝐺 = (𝑉, 𝐸) consists of 𝑉, a nonempty set of
vertices, and 𝐸, a set of unordered pairs of distinct elements
of 𝑉 called edges. All graphs considered here are simple and
connected. Let𝐺 be a simple connected graph with vertex set
𝑉(𝐺) and edge set 𝐸(𝐺).The distance between two vertices 𝑢,
V ∈ 𝑉(𝐺) is denoted by 𝑑

𝑢V and is defined as the length of the
shortest path between 𝑢 and V in𝐺.The distancematrix of𝐺 is
denoted by𝐷(𝐺) and is defined by𝐷(𝐺) = (𝑑

𝑢V)𝑢,V∈𝑉(𝐺). Since
𝐷(𝐺) is a symmetric matrix, its inertia is the triple of integers
(𝑛
+
(𝐷(𝐺)), 𝑛

0
(𝐷(𝐺)), 𝑛

−
(𝐷(𝐺))), where 𝑛

+
(𝐷(𝐺)), 𝑛

0
(𝐷(𝐺)),

and 𝑛
−
(𝐷(𝐺)) denote the number of positive, 0, and negative

eigenvalues of𝐷(𝐺), respectively.
The distancematrix of a graph has numerous applications

to chemistry [1]. It contains information on various walks
and self-avoiding walks of chemical graphs. Moreover, the
distance matrix is not only immensely useful in the compu-
tation of topological indices such as the Wiener index [1] but
also useful in the computation of thermodynamic properties
such as pressure and temperature virial coefficients [2]. The
distance matrix of a graph contains more structural informa-
tion compared to a simple adjacency matrix. Consequently,
it seems to be a more powerful structure discriminator than
the adjacency matrix. In some cases, it can differentiate
isospectral graphs although there are nonisomorphic trees
with the same distance polynomials [3]. In addition to
such applications in chemical sciences, distance matrices

find applications in music theory, ornithology [4], molecular
biology [5], psychology [4], archeology [6], sociology [7],
and so forth. For more information, we can see [1] which is
an excellent recent review on the topic and various uses of
distance matrices.

Since the distance matrix of a general graph is a compli-
cated matrix, it is very difficult to compute its eigenvalues.
People focus on studying the inertia of the distance matrices
of some graphs. Unfortunately, up to now, only few graphs
are known to have exactly one positive 𝐷-eigenvalue, such
as trees [8], connected unicyclic graphs [9], the polyacenes,
honeycomb and square lattices [10], complete bipartite graphs
[11], 𝐾

𝑛
, and iterated line graphs of some regular graphs [12],

and cacti [13]. This inspires us to find more graphs whose
distance matrices have exactly one positive eigenvalue.

Thewheel graph of 𝑛 vertices𝑊
𝑛
is a graph that contains a

cycle of length 𝑛−1 plus a vertex V (sometimes called the hub)
not in the cycle such that V is connected to every other vertex.
In this paper, we first study the inertia of the distancematrices
in wheel graphs if one or more edges are removed from the
graph, and then, with the help of the structural characteristics
of wheel graphs, we give a construction for graphs whose
distance matrices have exactly one positive eigenvalue.

2. Preliminaries

We first give some lemmas that will be used in the main
results.
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Lemma 1 (see [14]). Let 𝐴 be a Hermitian matrix with
eigenvalues 𝜆

1
⩾ ⋅ ⋅ ⋅ ⩾ 𝜆

𝑛
and 𝐵 one of its principal

submatrices. Let 𝐵 have eigenvalues 𝜇
1
⩾ ⋅ ⋅ ⋅ ⩾ 𝜇

𝑚
. Then the

inequalities 𝜆
𝑛−𝑚+𝑖

⩽ 𝜇
𝑖
⩽ 𝜆
𝑖
(𝑖 = 1, . . . , 𝑚) hold.

For a square matrix, let cof (𝐴) denote the sum of
cofactors of 𝐴. Form the matrix 𝐴 by subtracting the first
row from all other rows then the first column from all other
columns and let𝐴

11
denote the principle submatrix obtained

from 𝐴 by deleting the first row and first column.

Lemma 2 (see [15]). 𝑐𝑜𝑓(𝐴) = det𝐴
11
.

A cut vertex is a vertex the removal of which would
disconnect the remaining graph; a block of a graph is defined
to be a maximal subgraph having no cut vertices.

Lemma3 (see [15]). If 𝐺 is a strongly connected directed graph
with blocks 𝐺

1
, 𝐺
2
, . . . , 𝐺

𝑟
, then

𝑐𝑜𝑓𝐷 (𝐺) =

𝑟

∏

𝑖=1

𝑐𝑜𝑓𝐷 (𝐺
𝑖
) ,

det𝐷 (𝐺) =
𝑟

∑

𝑖=1

det 𝐷(𝐺
𝑖
)∏

𝑗 ̸= 𝑖

𝑐𝑜𝑓𝐷 (𝐺
𝑖
) .

(1)

Lemma 4. Let

𝐶 =

[
[
[
[
[
[
[
[
[
[

[

1 1 1 1 ⋅ ⋅ ⋅ 1 1

−1 −2 −1 0 ⋅ ⋅ ⋅ 0 0

0 −1 −2 −1 ⋅ ⋅ ⋅ 0 0

0 0 −1 −2 ⋅ ⋅ ⋅ 0 0

...
...

...
... d

...
...

0 0 0 0 ⋅ ⋅ ⋅ −2 −1

0 0 0 0 ⋅ ⋅ ⋅ −1 −2

]
]
]
]
]
]
]
]
]
]

]𝑛×𝑛

. (2)

Then

det 𝐶 =
{{{

{{{

{

−
𝑛

2
, 𝑖𝑓 𝑛 𝑖𝑠 𝑒V𝑒𝑛,

𝑛 + 1

2
, 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑.

(3)

Proof. Let

𝐶
𝑛
=



1 1 1 1 ⋅ ⋅ ⋅ 1 1

−1 −2 −1 0 ⋅ ⋅ ⋅ 0 0

0 −1 −2 −1 ⋅ ⋅ ⋅ 0 0

0 0 −1 −2 ⋅ ⋅ ⋅ 0 0

...
...

...
... d

...
...

0 0 0 0 ⋅ ⋅ ⋅ −2 −1

0 0 0 0 ⋅ ⋅ ⋅ −1 −2


𝑛×𝑛

,

𝐷
𝑛
=



1

2
−1 0 0 ⋅ ⋅ ⋅ 0 0

1 −2 −1 0 ⋅ ⋅ ⋅ 0 0

1 −1 −2 −1 ⋅ ⋅ ⋅ 0 0

1 0 −1 −2 ⋅ ⋅ ⋅ 0 0

...
...

...
... d

...
...

1 0 0 0 ⋅ ⋅ ⋅ −2 −1

1 0 0 0 ⋅ ⋅ ⋅ −1 −2

𝑛×𝑛

.

(4)

Comparing 𝐶
𝑛
to𝐷
𝑛
, we get the following:

𝐶
𝑛
= 𝐷
𝑛
+
𝑛

2
× (−1)

𝑛−1

. (5)

Expanding the determinant 𝐷
𝑛
according to the last column

and then the last line, we get the following incursion:

𝐷
𝑛
= −2𝐷

𝑛−1
− 𝐷
𝑛−2

+ 1; (6)

that is,

𝐷
𝑛
+ 𝐷
𝑛−1

= − (𝐷
𝑛−1

+ 𝐷
𝑛−2
) + 1. (7)

Since 𝐷
1
= 1/2, 𝐷

2
= 0, and 𝐷

3
= 1/2, from the above

incursion, we get the following:

𝐷
𝑛
=

{{

{{

{

0, if 𝑛 is even,

1

2
, if 𝑛 is odd.

(8)

So, we have the following:

𝐶
𝑛
=

{{{

{{{

{

−
𝑛

2
, if 𝑛 is even,

𝑛 + 1

2
, if 𝑛 is odd.

(9)

This completes the proof.

3. Main Results

In the following, we always assume that 𝑉(𝑊
𝑛
) = {V

0
, V
1
, . . . ,

V
𝑛−1
}, where V

0
is the hub of𝑊

𝑛
.

Theorem 5. Let 𝑒 = V
𝑖
V
𝑖+1 mod (𝑛−1) (1 ⩽ 𝑖 ⩽ 𝑛 − 1). Then

det 𝐷(𝑊
𝑛
− 𝑒) =

{{{{

{{{{

{

−
𝑛
2

4
, 𝑖𝑓 𝑛 𝑖𝑠 𝑒V𝑒𝑛,

𝑛
2
− 1

4
, 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑,

(10)

where 𝑛 ⩾ 3.

Proof. Without loss of generality, we may assume that 𝑒 =
V
1
V
𝑛−1

. Let

𝐴
𝑛
= det𝐷(𝑊

𝑛
− 𝑒) =



0 1 1 1 ⋅ ⋅ ⋅ 1 1

1 0 1 2 ⋅ ⋅ ⋅ 2 2

1 1 0 1 ⋅ ⋅ ⋅ 2 2

1 2 1 0 ⋅ ⋅ ⋅ 2 2

...
...

...
... d

...
...

1 2 2 2 ⋅ ⋅ ⋅ 0 1

1 2 2 2 ⋅ ⋅ ⋅ 1 0


𝑛×𝑛

. (11)
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Then

𝐴
𝑛
=



0 1 1 −
1

2
1 ⋅ ⋅ ⋅ 1 1

1 −2 0 0 ⋅ ⋅ ⋅ 0 0

1 −
1

2
0 −2 +

1

2
−1 ⋅ ⋅ ⋅ 0 0

1 0 −1 −2 ⋅ ⋅ ⋅ 0 0

...
...

...
... d

...
...

1 0 0 0 ⋅ ⋅ ⋅ −2 −1

1 0 0 0 ⋅ ⋅ ⋅ −1 −2

𝑛×𝑛

. (12)

Expanding the determinant 𝐴
𝑛
according to the second line,

we get the following incursion:

𝐴
𝑛
= (−1)

𝑛−1 𝑛

2
− 2𝐴
𝑛−1

− 𝐶
𝑛−2

− 𝐷
𝑛−2

− 𝐴
𝑛−2
, (13)

where 𝐶
𝑛
and𝐷

𝑛
are defined as in Lemma 4.

By Lemma 4, we get the following:

𝐴
𝑛
= {

−1 − 2𝐴
𝑛−1

− 𝐴
𝑛−2
, if 𝑛 is even,

−2𝐴
𝑛−1

− 𝐴
𝑛−2
, if 𝑛 is odd.

(14)

Since 𝐴
3
= 2, 𝐴

4
= −4, 𝐴

5
= 6, and 𝐴

6
= −9, according to

the above incursion, we get the following:

𝐴
𝑛
=

{{{{

{{{{

{

−
𝑛
2

4
, if 𝑛 is even,

𝑛
2
− 1

4
, if 𝑛 is odd,

(15)

where 𝑛 ⩾ 3. This completes the proof.

Corollary 6. Let 𝑒 = V
𝑖
V
𝑖+1 mod (𝑛−1) (1 ⩽ 𝑖 ⩽ 𝑛 − 1). Then

𝑛
+
(𝐷 (𝑊

𝑛
− 𝑒)) = 1, 𝑛

0
(𝐷 (𝑊

𝑛
− 𝑒)) = 0,

𝑛
−
(𝐷 (𝑊

𝑛
− 𝑒)) = 𝑛 − 1.

(16)

Proof. We will prove the result by induction on 𝑛.
If 𝑛 = 3,𝑊

3
− 𝑒 ≅ 𝑃

3
is obviously true.

Suppose that the result is true for 𝑛−1; that is, 𝑛
+
(𝐷(𝑊

𝑛−1
−

𝑒)) = 1, 𝑛
0
(𝐷(𝑊

𝑛−1
− 𝑒)) = 0, 𝑛

−
(𝐷(𝑊

𝑛−1
− 𝑒)) = 𝑛 − 2.

Since 𝐷(𝑊
𝑛−1

− 𝑒) is a principle submatrix of 𝐷(𝑊
𝑛
−

𝑒), by Lemma 1, the eigenvalues of 𝐷(𝑊
𝑛−1

− 𝑒) interlace
the eigenvalues of 𝐷(𝑊

𝑛
− 𝑒). By Theorem 5, det𝐷(𝑊

𝑛−1
−

𝑒) det𝐷(𝑊
𝑛
− 𝑒) < 0. So, 𝐷(𝑊

𝑛
− 𝑒) has one negative

eigenvaluemore than𝐷(𝑊
𝑛−1
−𝑒). According to the induction

hypothesis, we get 𝑛
+
(𝐷(𝑊

𝑛
−𝑒)) = 1, 𝑛

0
(𝐷(𝑊

𝑛
−𝑒)) = 0, and

𝑛
−
(𝐷(𝑊

𝑛
− 𝑒)) = 𝑛 − 1. This completes the proof.

Theorem 7. One has

det 𝐷(𝑊
𝑛
) = {

1 − 𝑛, 𝑖𝑓 𝑛 𝑖𝑠 𝑒V𝑒𝑛,

0, 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑,
(17)

where 𝑛 ⩾ 3.

Proof. Consider the following

det𝐷(𝑊
𝑛
) =



0 1 1 1 ⋅ ⋅ ⋅ 1 1

1 0 1 2 ⋅ ⋅ ⋅ 2 1

1 1 0 1 ⋅ ⋅ ⋅ 2 2

1 2 1 0 ⋅ ⋅ ⋅ 2 2

...
...

...
... d

...
...

1 2 2 2 ⋅ ⋅ ⋅ 0 1

1 1 2 2 ⋅ ⋅ ⋅ 1 0


𝑛×𝑛

=



0 1 1 1 ⋅ ⋅ ⋅ 1 1

1 −2 −1 0 ⋅ ⋅ ⋅ 0 −1

1 −1 −2 −1 ⋅ ⋅ ⋅ 0 0

1 0 −1 −2 ⋅ ⋅ ⋅ 0 0

...
...

...
... d

...
...

1 0 0 0 ⋅ ⋅ ⋅ −2 −1

1 −1 0 0 ⋅ ⋅ ⋅ −1 −2


𝑛×𝑛

=



0 𝑛 − 1 1 1 ⋅ ⋅ ⋅ 1 1

𝑛 − 1 −4 (𝑛 − 1) −4 −4 ⋅ ⋅ ⋅ −4 −4

1 −4 −2 −1 ⋅ ⋅ ⋅ 0 0

1 −4 −1 −2 ⋅ ⋅ ⋅ 0 0

...
...

...
... d

...
...

1 −4 0 0 ⋅ ⋅ ⋅ −2 −1

1 −4 0 0 ⋅ ⋅ ⋅ −1 −2


𝑛×𝑛

=



0 𝑛 − 1 1 1 ⋅ ⋅ ⋅ 1 1

𝑛 − 1 4 (𝑛 − 1) 0 0 ⋅ ⋅ ⋅ 0 0

1 0 −2 −1 ⋅ ⋅ ⋅ 0 0

1 0 −1 −2 ⋅ ⋅ ⋅ 0 0

...
...

...
... d

...
...

1 0 0 0 ⋅ ⋅ ⋅ −2 −1

1 0 0 0 ⋅ ⋅ ⋅ −1 −2


𝑛×𝑛

.

(18)

Expanding the above determinant according to the second
line, we get the following:

det𝐷(𝑊
𝑛
) = (−1)

𝑛−1

(𝑛 − 1)
3

+ 4 (𝑛 − 1)𝐴
𝑛−1
, (19)

where 𝐴
𝑛
is defined as inTheorem 5.

ByTheorem 5, when 𝑛 ⩾ 3, we get the following:

det𝐷(𝑊
𝑛
) = {

1 − 𝑛, if 𝑛 is even,
0, if 𝑛 is odd.

(20)

This completes the proof.

Similar to Corollary 6, we can get the following corollary.

Corollary 8. (i) If 𝑛 is even, 𝑛
+
(𝐷(𝑊

𝑛
)) = 1, 𝑛

0
(𝐷(𝑊

𝑛
)) = 0,

𝑛
−
(𝐷(𝑊

𝑛
)) = 𝑛 − 1.

(ii) If 𝑛 is odd, 𝑛
+
(𝐷(𝑊

𝑛
)) = 1, 𝑛

0
(𝐷(𝑊

𝑛
)) = 1,

𝑛
−
(𝐷(𝑊

𝑛
)) = 𝑛 − 2.

Denote by𝑊
𝑛
− V
0
the graph obtained from𝑊

𝑛
by deleting

the vertex V
0
and all the edges adjacent to V

0
; that is,𝑊

𝑛
− V
0
≅

𝐶
𝑛−1

. Let 𝐸
𝑘
(1 ⩽ 𝑘 ⩽ 𝑛) be any subset of 𝐸(𝑊

𝑛
− V
0
) with

|𝐸
𝑘
| = 𝑘. In the following, we always denote by 𝑊

𝑛
− 𝐸
𝑘
the

graph obtained from𝑊
𝑛
by deleting all the edges in 𝐸

𝑘
.
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Theorem 9. One has 𝑛
+
(𝐷(𝑊

𝑛
− 𝐸
𝑘
)) = 1, 𝑛

0
(𝐷(𝑊

𝑛
− 𝐸
𝑘
)) =

0, 𝑛
−
(𝐷(𝑊

𝑛
− 𝐸
𝑘
)) = 𝑛 − 1.

Proof. Denote the components of𝑊
𝑛
− 𝐸
𝑘
− V
0
by 𝐶
1
, . . . , 𝐶

𝑠
.

Let 𝐺
𝑖
denote the graph that contains 𝐶

𝑖
plus the vertex V

0

such that V
0
is connected to every other vertex, 1 ⩽ 𝑖 ⩽ 𝑠.

Then each 𝐺
𝑖
(1 ⩽ 𝑖 ⩽ 𝑠) is isomorphism to𝑊

|𝑉(𝐺𝑖)|
− 𝑒
𝑖
or

𝐾
2
, where 𝑒

𝑖
is an edge of𝑊

|𝑉(𝐺𝑖)|
− V
0
. By Lemma 2 and some

direct calculations, we get the following:

cof (𝐺
𝑖
) = det𝐷 ̃

(𝑊
|𝑉(𝐺𝑖)|

− 𝑒
𝑖
)
11

= (−1)
|𝑉(𝐺𝑖)|−1

𝑉 (𝐺𝑖)
 .

(21)

It is easy to check that cof (𝐺
𝑖
) = (−1)

|𝑉(𝐺𝑖)|−1|𝑉(𝐺
𝑖
)| is also

true when 𝐺
𝑖
is isomorphism to 𝐾

2
.

In the following, we will prove the theorem by introduc-
tion on 𝑠.

For 𝑠 = 1, 𝐺 ≅ 𝑊
𝑛
− 𝑒, where 𝑒 is an edge of𝑊

𝑛
− V
0
, by

Corollary 6, we get the result.
Suppose the result is true for 𝑠 − 1.
For 𝑠, let 𝐺 = 𝐺

1
∪𝐺
2
∪ ⋅ ⋅ ⋅ ∪𝐺

𝑠−1
. Then by the induction

hypothesis, 𝑛
+
(𝐷(𝐺

)) = 1, 𝑛

0
(𝐷(𝐺

)) = 0, and 𝑛

−
(𝐷(𝐺

)) =

|𝑉(𝐺

)| − 1, which implies that

det𝐷(𝐺) = (−1)|𝑉(𝐺

)|−1

𝑎, (22)

where 𝑎 is a positive integer.
Since

cof (𝐺
𝑖
) = (−1)

|𝑉(𝐺𝑖)|−1
𝑉 (𝐺𝑖)

 , 1 ⩽ 𝑖 ⩽ 𝑠, (23)

by Lemma 3,

cof𝐷(𝐺) =
𝑠−1

∏

𝑗=1

cof𝐷(𝐺
𝑗
) = (−1)

|𝑉(𝐺

)|−1

𝑠−1

∏

𝑗=1


𝑉 (𝐺
𝑗
)

.

(24)

Then
det𝐷(𝑊

𝑛
− 𝐸
𝑘
)

= det𝐷(𝐺) cof𝐷(𝐺
𝑖
) + det𝐷(𝐺

𝑖
) cof𝐷(𝐺)

= (−1)
|𝑉(𝐺

)|−1

𝑎 × (−1)
|𝑉(𝐺𝑖)|−1

𝑉 (𝐺𝑖)


+ (−1)
|𝑉(𝐺𝑖)|−1𝑏 × (−1)

|𝑉(𝐺

)|−1

𝑠−1

∏

𝑗=1


𝑉 (𝐺
𝑗
)


= (−1)
𝑛−1

(𝑎
𝑉 (𝐺𝑖)

 + 𝑏

𝑠−1

∏

𝑗=1


𝑉 (𝐺
𝑗
)

) ,

(25)

where 𝑏 = 𝑛2/4, if 𝑛 is even and 𝑏 = (𝑛2 − 1)/4, if 𝑛 is odd.
In this case, similar to Corollary 6, we can easily get

𝑛
+
(𝐷(𝑊

𝑛
− 𝐸
𝑘
)) = 1, 𝑛

0
(𝐷(𝑊

𝑛
− 𝐸
𝑘
)) = 0, and 𝑛

−
(𝐷(𝑊

𝑛
−

𝐸
𝑘
)) = 𝑛 − 1.
Up to now, we have proved the result.

Let𝐺𝑢
𝑖
⋅V
𝑗
𝐻 denote the graph formed by only identifying

the vertex 𝑢
𝑖
of 𝐺 with the vertex V

𝑗
of𝐻, where 𝑢

𝑖
and V
𝑗
are

arbitrary vertices of 𝐺 and𝐻, respectively.

Lemma 10 (see [13]). Let 𝐺×𝐻 denote the Cartesian product
of connected graphs 𝐺 and𝐻, where 𝑉(𝐺) = {𝑢

1
, . . . , 𝑢

𝑚
} and

𝑉(𝐻) = {V
1
, . . . , V

𝑛
}. Then we have

(i) 𝑛
+
(𝐺 × 𝐻) = 𝑛

+
(𝐺𝑢
𝑖
⋅ V
𝑗
𝐻);

(ii) 𝑛
0
(𝐺 × 𝐻) = (𝑚 − 1)(𝑛 − 1) + 𝑛

0
(𝐺𝑢
𝑖
⋅ V
𝑗
𝐻);

(iii) 𝑛
−
(𝐺 × 𝐻) = 𝑛

−
(𝐺𝑢
𝑖
⋅ V
𝑗
𝐻).

Theorem 11. Let 𝑢
0
and V

0
be the hubs of 𝑊

𝑛
and 𝑊

𝑚
,

respectively. Suppose𝐸
𝑝
(0 ⩽ 𝑝 ⩽ 𝑛−1) and𝐸

𝑞
(0 ⩽ 𝑞 ⩽ 𝑚−1)

are any subsets of 𝐸(𝑊
𝑛
− 𝑢
0
) and 𝐸(𝑊

𝑚
− V
0
) with |𝐸

𝑝
| = 𝑝,

|𝐸
𝑞
| = 𝑞, respectively. Then, the distance matrix of the graph

(𝑊
𝑛
− 𝐸
𝑝
) × (𝑊

𝑚
− 𝐸
𝑞
) has exactly one positive eigenvalue.

Proof. Since 𝑢
0
and V

0
are the hubs of 𝑊

𝑛
and 𝑊

𝑚
, respec-

tively, (𝑊
𝑛
−𝐸
𝑝
)𝑢
0
⋅V
0
(𝑊
𝑚
−𝐸
𝑞
)must be isomorphism to some

𝑊
𝑛+𝑚−1

−𝐸
𝑝+𝑞

, where𝑤
0
is the hub of𝑊

𝑛+𝑚−1
and 𝐸

𝑝+𝑞
is any

subset of 𝐸(𝑊
𝑛+𝑚−1

− 𝑤
0
) with |𝐸

𝑝+𝑞
| = 𝑝 + 𝑞. By Theorem 9

and Lemma 10, we get the result.

Given an arbitrary integer 𝑚, for 1 ⩽ 𝑖 ⩽ 𝑚, let V
𝑖0
be

the hub of 𝑊
𝑛𝑖
and 𝐸

𝑝𝑖
any subset of 𝐸(𝑊

𝑛𝑖
− V
𝑖0
). Suppose

𝑉(𝑊
𝑛𝑖
) = {V

𝑖0
, V
𝑖1
, . . . , V

𝑖(𝑛𝑖−1)
}.

Theorem 12. For an arbitrary integer 𝑚, the distance matrix
of the graph 𝐺 = (𝑊

𝑛1
− 𝐸
𝑝1
)V
1𝑘
⋅ V
2𝑗
(𝑊
𝑛2
− 𝐸
𝑝2
)V
2ℎ
⋅ ⋅ ⋅

V
(𝑚−1)𝑟

(𝑊
𝑛𝑚−1

− 𝐸
𝑝𝑚−1

)V
(𝑚−1)𝑡

⋅ V
𝑚𝑠
(𝑊
𝑛𝑚
− 𝐸
𝑝𝑚
) has exactly one

positive eigenvalue.

Proof. We will prove the conclusion by induction on𝑚.
If𝑚 = 1, by Theorem 9, the conclusion is true.
Suppose the conclusion is true for𝑚−1. For convenience,

let𝐻 = (𝑊
𝑛1
− 𝐸
𝑝1
)V
1𝑘
⋅ V
2𝑗
(𝑊
𝑛2
− 𝐸
𝑝2
)V
2ℎ
⋅ ⋅ ⋅ V
(𝑚−2)𝑖

(𝑊
𝑛𝑚−2

−

𝐸
𝑝𝑚−2

). Then 𝐺 = 𝐻V
(𝑚−2)𝑔

⋅ V
(𝑚−1)𝑟

(𝑊
𝑛𝑚−1

− 𝐸
𝑝𝑚−1

)V
(𝑚−1)𝑡

⋅

V
𝑚𝑠
(𝑊
𝑛𝑚
− 𝐸
𝑝𝑚
). By Lemma 10, we have the following:

𝑛
+
(𝐺) = 𝑛

+
(𝐻 (𝑊

𝑛𝑚−1
− 𝐸
𝑝𝑚−1

) V
(𝑚−1)𝑡

⋅ V
𝑚𝑠
(𝑊
𝑛𝑚
− 𝐸
𝑝𝑚
))

= 𝑛
+
(𝐻 (𝑊

𝑛𝑚−1
− 𝐸
𝑝𝑚−1

) V
(𝑚−1)0

⋅ V
𝑚0
(𝑊
𝑛𝑚
− 𝐸
𝑝𝑚
)) .

(26)

Since (𝑊
𝑛𝑚−1

− 𝐸
𝑝𝑚−1

)V
(𝑚−1)0

⋅ V
𝑚0
(𝑊
𝑛𝑚
− 𝐸
𝑝𝑚
) = 𝑊

𝑛𝑚−1+𝑛𝑚−1
−

𝐸
𝑝𝑚−1

−𝐸
𝑝𝑚
, we get 𝑛

+
(𝐺) = 𝑛

+
(𝐻V
(𝑚−2)𝑔

⋅V
(𝑚−1)𝑟

(𝑊
𝑛𝑚−1+𝑛𝑚−1

−

𝐸
𝑝𝑚−1

−𝐸
𝑝𝑚
)). By the induction hypothesis, we get 𝑛

+
(𝐺) = 1.

This completes the proof.

Remark 13. Let 𝐺
1
and 𝐺

2
be any two graphs with the same

form as𝐺 inTheorem 12.MakingCartesian product of graphs
𝐺
1
and 𝐺

2
, by Lemma 10 and Theorem 12, we get a series

of graphs whose distance matrices have exactly one positive
eigenvalue.
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Results in the Theory of Graph Spectra, vol. 36, North-Holland
Publishing, Amsterdam, The Netherlands, 1988.

[12] H. S. Ramane, D. S. Revankar, I. Gutman, and H. B. Walikar,
“Distance spectra anddistance energies of iterated line graphs of
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