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We consider the Cauchy problem for the damped nonlinear hyperbolic equation in n-dimensional space. Under small condition
on the initial value, the global existence and asymptotic behavior of the solution in the corresponding Sobolev spaces are obtained
by the contraction mapping principle.

1. Introduction

We investigate the Cauchy problem for the following damped
nonlinear hyperbolic equation:

𝑢
𝑡𝑡
+ 𝑘
1
Δ
2
𝑢 + 𝑘
2
Δ
2
𝑢
𝑡
= Δ𝑓 (Δ𝑢) (1)

with the initial value

𝑡 = 0 : 𝑢 = 𝑢
0
(𝑥) , 𝑢

𝑡
= 𝑢
1
(𝑥) . (2)

Here 𝑢 = 𝑢(𝑥, 𝑡) is the unknown function of 𝑥 =

(𝑥
1
, . . . , 𝑥

𝑛
) ∈ R𝑛 and 𝑡 > 0, 𝑘

1
> 0 and 𝑘

2
> 0 are constants.

The nonlinear term𝑓(𝑢) = 𝑂(𝑢
1+𝜃

) and 𝜃 is a positive integer.
Equation (1) is a model in variational form for the neo-

Hookean elastomer rod and describes the motion of a neo-
Hookean elastomer rod with internal damping; for more
detailed physical background, we refer to [1]. In [1], the
authors have studied a general class of abstract evolution
equations

𝑤
𝑡𝑡
+ 𝐴
1
𝑤 + 𝐴

2
𝑤
𝑡
+ 𝑁
∗
𝑔 (𝑁𝑤) = 𝑓, (3)

where 𝐴
1
, 𝐴
2
, 𝑁, and 𝑓 satisfy certain assumptions. For

quite general conditions on the nonlinear term, global exis-
tence, uniqueness, regularity, and continuous dependence
on the initial value of a generalized solution to (3) in a

bounded domain of R𝑛 were obtained. Equation (1) fits the
abstract framework of [1]. The local well-posedness for the
Cauchy problem for (1), (2) in three-dimensional space was
obtained by Chen and Da [2]. More precisely, they proved
local existence and uniqueness of weak solutions to (1), (2)
under the assumption that 𝑢

0
∈ 𝐻
6
(R3), 𝑢

1
∈ 𝐻
4
(R3).

Local existence and uniqueness of classical solutions to (1),
(2) were also established, provided that 𝑢

0
∈ 𝐻

12
(R3),

𝑢
1

∈ 𝐻
10
(R3). Their method is to first establish local-in-

time well-posedness of a periodic version of (1), (2) and
then construc a solution to (1), (2) as a limit of periodic
solutions with divergent periods. This paper also arrived at
some sufficient conditions for blow-up of the solution in
finite time, and an example was given. Song and Yang [3]
studied the existence and nonexistence of global solutions
to the Cauchy problem for (1) in one-dimensional space.
The boundary value problems for (1) are investigated (see
[4, 5]). Equation (1) is a fifth-order wave equation. For more
higher order wave equations, we refer to [6–8] and references
therein.

The main purpose of this paper is to establish global
existence and asymptotic behavior of solutions to (1), (2) by
using the contraction mapping principle. Firstly, we consider
the decay property of the following linear equation:

𝑢
𝑡𝑡
+ 𝑘
1
Δ
2
𝑢 + 𝑘
2
Δ
2
𝑢
𝑡
= 0. (4)
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We obtain the following decay estimate of solutions to (4), (2)





𝜕
𝑘

𝑥
𝑢 (𝑡)





𝐿
2
≤ 𝐶(1 + 𝑡)

−(𝑛/8+𝑘/4)

× (




𝑢
0




𝐿
1 +





𝑢
1




�̇�
−2

1

+




𝑢
0




𝐻
𝑠+4 +





𝑢
1




𝐻
𝑠)

for (𝑘 ≤ 𝑠 + 4) ,






𝜕
𝑙

𝑥
𝑢
𝑡
(𝑡)





𝐿
2
≤ 𝐶(1 + 𝑡)

−(𝑛/8+𝑙/4+1/2)

× (




𝑢
0




𝐿
1 +





𝑢
1




�̇�
−2

1

+




𝑢
0




𝐻
𝑠+4 +





𝑢
1




𝐻
𝑠)

for (𝑙 ≤ 𝑠) .

(5)

Based on the above estimates, we define a solution space
with time weighted norms, and then global existence and
asymptotic behavior of solutions to (1), (2) are obtained by
using the contraction mapping principle. More precisely, we
prove global existence and the following decay estimate of
solution to (1), (2):






𝜕
𝑘

𝑥
𝑢 (𝑡)





𝐿
2
≤ 𝐶𝐸
0
(1 + 𝑡)

−(𝑛/8+𝑘/4)
,






𝜕
𝑙

𝑥
𝑢
𝑡
(𝑡)





𝐿
2
≤ 𝐶𝐸
0
(1 + 𝑡)

−(𝑛/8+𝑙/4+1/2)

(6)

for 𝑘 ≤ 𝑠 + 4, 𝑙 ≤ 𝑠, and 𝑠 ≥ [𝑛/2] + 1. Here 𝑢
0

∈

𝐻
𝑠+4

(R𝑛)⋂𝐿
1
(R𝑛), 𝑢

1
∈ 𝐻
𝑠
(R𝑛)⋂ �̇�

−2

1
(R𝑛), and 𝐸

0
=

‖𝑢
0
‖
𝐿
1 + ‖𝑢
1
‖
�̇�
−2

1

+ ‖𝑢
0
‖
𝐻
𝑠+4 + ‖𝑢

1
‖
𝐻
𝑠 is assumed to be suitably

small. When 𝑛 = 3, our result allows for the initial data
𝑢
0
∈ 𝐻
6
(R3), 𝑢

1
∈ 𝐻
2
(R3). But in [2], the authors proved

local existence and uniqueness of weak solutions to (1), (2)
under the assumption that 𝑢

0
∈ 𝐻
6
(R3), 𝑢

1
∈ 𝐻
4
(R3),

so our result improves the regularity of the initial condition
for the time derivative. This improvement is due to the
strong damping term Δ

2
𝑢
𝑡
since the strong damping term

Δ
2
𝑢
𝑡
has stronger dissipative effect than the damping 𝑢

𝑡
. The

stronger dissipative effect has been exhibited in the study of
the strongly dampedwave equation and related problems; see,
for instance, [9].

The global existence and asymptotic behavior of solutions
to hyperbolic-type equations have been investigated by many
authors. We refer to [10–15] for hyperbolic equations, [16–21]
for damped wave equation, and [22, 23] for various aspects of
dissipation of the plate equation.

We give some notations which are used in this paper. Let
F[𝑢] denote the Fourier transform of 𝑢 defined by

�̂� (𝜉) = F [𝑢] = ∫

R𝑛
𝑒
−𝑖𝜉⋅𝑥

𝑢 (𝑥) 𝑑𝑥, (7)

and we denote its inverse transform byF−1.
For 1 ≤ 𝑝 ≤ ∞, 𝐿𝑝 = 𝐿

𝑝
(R𝑛) denotes the usual Leb-

esgue space with the norm ‖ ⋅ ‖
𝐿
𝑝 . The usual Sobolev space of

𝑠 is defined by 𝐻
𝑠

𝑝
= (𝐼 − Δ)

−𝑠/2
𝐿
𝑝 with the norm ‖𝑓‖

𝐻
𝑠

𝑝

=

‖(𝐼 − Δ)
𝑠/2

𝑓‖
𝐿
𝑝 ; the homogeneous Sobolev space of 𝑠 is

defined by �̇�
𝑠

𝑝
= (−Δ)

−𝑠/2
𝐿
𝑝 with the norm ‖𝑓‖

𝐻
𝑠

𝑝

=

‖(−Δ)
𝑠/2

𝑓‖
𝐿
𝑝 ; especially 𝐻

𝑠
= 𝐻
𝑠

2
, �̇�𝑠 = �̇�

𝑠

2
. Moreover, we

know that𝐻𝑠
𝑝
= 𝐿
𝑝
⋂�̇�
𝑠

𝑝
for 𝑠 ≥ 0.

Finally, in this paper, we denote every positive constant
by the same symbol 𝐶 or 𝑐 without confusion. [⋅] is the Gauss
symbol.

The paper is organized as follows. In Section 2 we derive
the solution formula of our semilinear problem. We study
the decay property of the solution operators appearing in the
solution formula in Section 3. Then, in Section 4, we discuss
the linear problem and show the decay estimates. Finally, we
prove global existence and asymptotic behavior of solutions
for the Cauchy problem (1), (2) in Section 5.

2. Solution Formula

Theaimof this section is to derive the solution formula for the
problem (1), (2). We first investigate (4). Taking the Fourier
transform, we have

�̂�
𝑡𝑡
+ 𝑘
2





𝜉





4

�̂�
𝑡
+ 𝑘
1





𝜉





4

�̂� = 0. (8)

The corresponding initial value is given as

𝑡 = 0 : �̂� = �̂�
0
(𝜉) , �̂�

𝑡
= �̂�
1
(𝜉) . (9)

The characteristic equation of (8) is

𝜆
2
+ 𝑘
2





𝜉





4

𝜆 + 𝑘
1





𝜉





4

= 0. (10)

Let 𝜆 = 𝜆
±
(𝜉) be the corresponding eigenvalues of (10), and

we obtain

𝜆
±
(𝜉) =

−𝑘
2





𝜉





4

±




𝜉





2
√𝑘
2

2





𝜉





4

− 4𝑘
1

2

.
(11)

The solution to the problem (8)-(9) is given in the form

�̂� (𝜉, 𝑡) = 𝐺 (𝜉, 𝑡) �̂�
1
(𝜉) + �̂� (𝜉, 𝑡) �̂�

0
(𝜉) , (12)

where

𝐺 (𝜉, 𝑡) =

1

𝜆
+
(𝜉) − 𝜆

−
(𝜉)

(𝑒
𝜆
+
(𝜉)𝑡

− 𝑒
𝜆
−
(𝜉)𝑡

) , (13)

�̂� (𝜉, 𝑡) =

1

𝜆
+
(𝜉) − 𝜆

−
(𝜉)

(𝜆
+
(𝜉) 𝑒
𝜆
−
(𝜉)𝑡

− 𝜆
−
(𝜉) 𝑒
𝜆
+
(𝜉)𝑡

) .

(14)

We define 𝐺(𝑥, 𝑡) and 𝐻(𝑥, 𝑡) by 𝐺(𝑥, 𝑡) = F−1[𝐺(𝜉, 𝑡)](𝑥)

and 𝐻(𝑥, 𝑡) = F−1[�̂�(𝜉, 𝑡)](𝑥), respectively, where F−1

denotes the inverse Fourier transform. Then, applying F−1

to (12), we obtain

𝑢 (𝑡) = 𝐺 (𝑡) ∗ 𝑢
1
+ 𝐻 (𝑡) ∗ 𝑢

0
. (15)

By the Duhamel principle, we obtain the solution formula to
(1), (2)

𝑢 (𝑡) = 𝐺 (𝑡) ∗ 𝑢
1
+ 𝐻 (𝑡) ∗ 𝑢

0

+ ∫

𝑡

0

𝐺 (𝑡 − 𝜏) ∗ Δ𝑓 (Δ𝑢) (𝜏) 𝑑𝜏.

(16)
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3. Decay Property

The aim of this section is to establish decay estimates of the
solution operators 𝐺(𝑡) and 𝐻(𝑡) appearing in the solution
formula (15).

Lemma 1. The solution of the problem (8), (9) satisfies

(




𝜉





4

+




𝜉





8

)




�̂� (𝜉, 𝑡)






2

+




�̂�
𝑡
(𝜉, 𝑡)






2

≤ 𝐶𝑒
−𝑐𝜔(𝜉)𝑡

((




𝜉





4

+




𝜉





8

)




�̂�
0
(𝜉)






2

+




�̂�
1
(𝜉)






2

)

(17)

for 𝜉 ∈ R𝑛 and 𝑡 ≥ 0, where

𝜔 (𝜉) = {





𝜉





4

,




𝜉




≤ 𝑅
0

1,




𝜉




≥ 𝑅
0
.

(18)

Proof. Multiplying (8) by �̂�
𝑡
and taking the real part yield

1

2

𝑑

𝑑𝑡

{




�̂�
𝑡






2

+ 𝑘
2





𝜉





4

|�̂�|
2
} + 𝑘
1





𝜉





4



�̂�
𝑡






2

= 0. (19)

Multiplying (8) by �̂� and taking the real part, we obtain
1

2

𝑑

𝑑𝑡

{𝑘
1





𝜉





4

|�̂�|
2
+ 2Re (�̂�

𝑡
�̂�)} + 𝑘

2





𝜉





4

|�̂�|
2
−




�̂�
𝑡






2

= 0.

(20)

Multiplying both sides of (19) and (20) by 2 and 𝑘
1
|𝜉|
4 and

summing up the resulting equation yield
𝑑

𝑑𝑡

𝐸 + 𝐹 = 0, (21)

where

𝐸 =




�̂�
𝑡






2

+ 𝑘
2





𝜉





4

|�̂�|
2
+

1

2





𝜉





8

|�̂�|
2
+ 𝑘
1





𝜉





4 Re (�̂�
𝑡
�̂�) ,

𝐹 = 𝑘
1
𝑘
2





𝜉





8

|�̂�|
2
+ 𝑘
1





𝜉





4



�̂�
𝑡






2

.

(22)

A simple computation implies that

𝐶𝐸
0
≤ 𝐸 ≤ 𝐶𝐸

0
, (23)

where

𝐸
0
= (





𝜉





4

+




𝜉





8

) |�̂�|
2
+




�̂�
𝑡






2

. (24)

Note that

𝐹 ≥

{

{

{

𝑐




𝜉





4

((




𝜉





4

+




𝜉





8

) |�̂�|
2
+




�̂�
𝑡






2

) ,




𝜉




≤ 𝑅
0

𝑐 ((




𝜉





4

+




𝜉





8

) |�̂�|
2
+




�̂�
𝑡






2

) ,




𝜉




≥ 𝑅
0
.

(25)

It follows from (23) that

𝐹 ≥ 𝑐𝜔 (𝜉) 𝐸. (26)

Using (21) and (26), we get
𝑑

𝑑𝑡

𝐸 + 𝑐𝜔 (𝜉) 𝐸 ≤ 0. (27)

Thus

𝐸 (𝜉, 𝑡) ≤ 𝑒
−𝑐𝜔(𝜉)𝑡

𝐸 (𝜉, 0) , (28)

which together with (23) proves the desired estimates (17).
Then we have completed the proof of the lemma.

Lemma 2. Let𝐺(𝜉, 𝑡) and �̂�(𝜉, 𝑡) be the fundamental solution
of (4) in the Fourier space, which are given in (13) and (14),
respectively. Then one has the estimates

(




𝜉





4

+




𝜉





8

)






𝐺 (𝜉, 𝑡)







2

+






𝐺
𝑡
(𝜉, 𝑡)







2

≤ 𝐶𝑒
−𝑐𝜔(𝜉)𝑡

, (29)

(




𝜉





4

+




𝜉





8

)






�̂� (𝜉, 𝑡)







2

+






�̂�
𝑡
(𝜉, 𝑡)







2

≤ 𝐶 (




𝜉





4

+




𝜉





8

) 𝑒
−𝑐𝜔(𝜉)𝑡

(30)

for 𝜉 ∈ R𝑛 and 𝑡 ≥ 0, where

𝜔 (𝜉) = {





𝜉





4

,




𝜉




≤ 𝑅
0

1,




𝜉




≥ 𝑅
0
.

(31)

Proof. If �̂�
0
(𝜉) = 0, from (12), we obtain

�̂� (𝜉, 𝑡) = 𝐺 (𝜉, 𝑡) �̂�
1
(𝜉) ,

�̂�
𝑡
(𝜉, 𝑡) = 𝐺

𝑡
(𝜉, 𝑡) �̂�

1
(𝜉) .

(32)

Substituting the equalities into (17) with �̂�
0
(𝜉) = 0, we get

(29).
Inwhat follows,we consider �̂�

1
(𝜉) = 0, and it follows from

(12) that

�̂� (𝜉, 𝑡) = �̂� (𝜉, 𝑡) �̂�
0
(𝜉) ,

�̂�
𝑡
(𝜉, 𝑡) = �̂�

𝑡
(𝜉, 𝑡) �̂�

0
(𝜉) .

(33)

Substituting the equalities into (17) with �̂�
1
(𝜉) = 0, we get the

desired estimate (30). The lemma is proved.

Lemma 3. Let 𝑘 and 𝑗 be nonnegative integer. Then one has





𝜕
𝑘

𝑥
𝐺 (𝑡) ∗ 𝜙





𝐿
2
≤ 𝐶(1 + 𝑡)

−(𝑛/8+𝑘/4+𝑗/4−1/2)

×




𝜙



�̇�
−𝑗

1

+ 𝐶𝑒
−𝑐𝑡




𝜕
(𝑘−4)

+

𝑥
𝜙





𝐿
2
,

(34)






𝜕
𝑘

𝑥
𝐻(𝑡) ∗ 𝜙





𝐿
2
≤ 𝐶(1 + 𝑡)

−(𝑛/8+𝑘/4+𝑗/4)

×




𝜙



�̇�
−𝑗

1

+ 𝐶𝑒
−𝑐𝑡




𝜕
𝑘

𝑥
𝜙





𝐿
2
,

(35)






𝜕
𝑘

𝑥
𝐺
𝑡
(𝑡) ∗ 𝜙





𝐿
2
≤ 𝐶(1 + 𝑡)

−(𝑛/8+𝑘/4+𝑗/4)

×




𝜙



�̇�
−𝑗

1

+ 𝐶𝑒
−𝑐𝑡




𝜕
𝑘

𝑥
𝜙





𝐿
2
,

(36)






𝜕
𝑘

𝑥
𝐻
𝑡
(𝑡) ∗ 𝜙





𝐿
2
≤ 𝐶(1 + 𝑡)

−(𝑛/8+𝑘/4+𝑗/4+1/2)

×




𝜙



�̇�
−𝑗

1

+ 𝐶𝑒
−𝑐𝑡




𝜕
(𝑘+4)

𝑥
𝜙





𝐿
2
,

(37)






𝜕
𝑘

𝑥
𝐺 (𝑡) ∗ Δ𝑔





𝐿
2
≤ 𝐶(1 + 𝑡)

−(𝑛/8+𝑘/4)

×




𝑔



𝐿
1 + 𝐶𝑒

−𝑐𝑡



𝜕
(𝑘−2)

+

𝑥
𝑔





𝐿
2
,

(38)






𝜕
𝑘

𝑥
𝐺
𝑡
(𝑡) ∗ Δ𝑔





𝐿
2
≤ 𝐶(1 + 𝑡)

−(𝑛/8+𝑘/4+1/2)

×




𝑔



𝐿
1 + 𝐶𝑒

−𝑐𝑡



𝜕
(𝑘+2)

𝑥
𝑔





𝐿
2
.

(39)

Here (𝑘−4)
+
= max{0, 𝑘−4} in (34) and (𝑘−2)

+
= max{0, 𝑘−2}

in (38).
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Proof. By the Plancherel theorem and (29),Hausdorff-Young
inequality, we obtain






𝜕
𝑘

𝑥
𝐺 (𝑡) ∗ 𝜙







2

𝐿
2

= ∫

|𝜉|≤𝑅
0





𝜉





2|𝑘|



𝐺 (𝜉, 𝑡)







2





̂
𝜙 (𝜉)







2

𝑑𝜉

+ ∫

|𝜉|≥𝑅
0





𝜉





2|𝑘|



𝐺 (𝜉, 𝑡)







2





̂
𝜙 (𝜉)







2

𝑑𝜉

≤ ∫

|𝜉|≤𝑅
0





𝜉





2|𝑘|−4

𝑒
−𝑐|𝜉|
4
𝑡




̂
𝜙 (𝜉)







2

𝑑𝜉

+ 𝐶𝑒
−𝑐𝑡

∫

|𝜉|≥𝑅
0





𝜉





2𝑘

(




𝜉





8

+




𝜉





4

)

−1





̂
𝜙 (𝜉)







2

𝑑𝜉

≤ ∫

|𝜉|≤𝑅
0





𝜉





2𝑘−4+2𝑗

𝑒
−𝑐|𝜉|
4
𝑡



𝜉





−2𝑗




̂
𝜙 (𝜉)







2

𝑑𝜉

+ 𝐶𝑒
−𝑐𝑡




𝜕
(𝑘−4)

+

𝑥
𝜙







2

𝐿
2

≤ 𝐶











𝜉





−𝑗
̂
𝜙 (𝜉)







2

𝐿
∞
∫

|𝜉|≤𝑅
0





𝜉





2𝑘−4+2𝑗

𝑒
−𝑐|𝜉|
4
𝑡
𝑑𝜉

+ 𝐶𝑒
−𝑐𝑡




𝜕
(𝑘−4)

+

𝑥
𝜙







2

𝐿
2

≤ 𝐶(1 + 𝑡)
−(𝑛/4+𝑘/2+𝑗/2−1)




(−Δ)
−𝑗/2

𝜙







2

𝐿
1

+ 𝐶𝑒
−𝑐𝑡




𝜕
(𝑘−4)

+

𝑥
𝜙







2

𝐿
2
.

(40)

Here (𝑘 − 4)
+
= max{0, 𝑘 − 4} and 𝑅

0
is a small positive con-

stant in Lemma 1. Thus (34) follows.
Similarly, using (29) and (30), respectively, we can prove

(35)–(37).
Inwhat follows, we prove (38). By the Plancherel theorem,

(29), and Hausdorff-Young inequality, we have






𝜕
𝑘

𝑥
𝐺 (𝑡) ∗ Δ𝑔







2

𝐿
2

= ∫

|𝜉|≤𝑅
0





𝜉





2|𝑘|



𝐺 (𝜉, 𝑡)







2



𝜉





4



𝑔 (𝜉)






2

𝑑𝜉

+ ∫

|𝜉|≥𝑅
0





𝜉





2𝑘



𝐺 (𝜉, 𝑡)







2



𝜉





4



𝑔 (𝜉)






2

𝑑𝜉

≤ ∫

|𝜉|≤𝑅
0





𝜉





2𝑘

𝑒
−𝑐|𝜉|
4
𝑡



𝑔 (𝜉)






2

𝑑𝜉

+ 𝐶𝑒
−𝑐𝑡

∫

|𝜉|≥𝑅
0





𝜉





2𝑘

(1 +




𝜉





4

)

−1




𝑔 (𝜉)






2

𝑑𝜉

≤ 𝐶




𝑔 (𝜉)






2

𝐿
∞ ∫

|𝜉|≤𝑅
0





𝜉





2𝑘

𝑒
−𝑐|𝜉|
4
𝑡
𝑑𝜉

+ 𝐶𝑒
−𝑐𝑡




𝜕
(𝑘−2)

+

𝑥
𝑔







2

𝐿
2

≤ 𝐶(1 + 𝑡)
−(𝑛/4+𝑘/2)




𝑔





2

𝐿
1 + 𝐶𝑒

−𝑐𝑡



𝜕
(𝑘−2)

+

𝑥
𝑔







2

𝐿
2
,

(41)

where 𝑅
0
is a small positive constant in Lemma 1. Thus (38)

follows. Similarly, we can prove (39).Thus we have completed
the proof of the lemma.

4. Decay Estimate of Solutions to (4), (2)

Theorem 4. Assume that 𝑢
0

∈ 𝐻
𝑠+4

(R𝑛)⋂𝐿
1
(R𝑛), 𝑢

1
∈

𝐻
𝑠
(R𝑛)⋂ �̇�

−2

1
(R𝑛)(𝑠 ≥ [𝑛/2] + 1). Then the classical solution

𝑢(𝑥, 𝑡) to (4), (2), which is given by the formula (15), satisfies
the decay estimate






𝜕
𝑘

𝑥
𝑢 (𝑡)





𝐿
2
≤ 𝐶(1 + 𝑡)

−(𝑛/8+𝑘/4)

× (




𝑢
0




𝐿
1 +





𝑢
1




�̇�
−2

1

+




𝑢
0




𝐻
𝑠+4 +





𝑢
1




𝐻
𝑠)

for (𝑘 ≤ 𝑠 + 4) ,

(42)





𝜕
𝑙

𝑥
𝑢
𝑡
(𝑡)





𝐿
2
≤ 𝐶(1 + 𝑡)

−(𝑛/8+𝑙/4+1/2)

× (




𝑢
0




𝐿
1 +





𝑢
1




�̇�
−2

1

+




𝑢
0




𝐻
𝑠+4 +





𝑢
1




𝐻
𝑠)

for (𝑙 ≤ 𝑠) ,

(43)





𝜕
ℎ

𝑥
𝑢 (𝑡)





𝐿
∞

≤ 𝐶(1 + 𝑡)
−(𝑛/4+ℎ/4)

× (




𝑢
0




𝐿
1 +





𝑢
1




�̇�
−2

1

+




𝑢
0




𝐻
𝑠+4 +





𝑢
1




𝐻
𝑠)

for(ℎ ≤ 𝑠 − [

𝑛

2

] + 3) .

(44)

Proof. Firstly, we prove (42). Using (34) and (35), for 𝑘 ≤ 𝑠+4,
we obtain






𝜕
𝑘

𝑥
𝑢 (𝑡)





𝐿
2

≤






𝜕
𝑘

𝑥
𝐺 (𝑡) ∗ 𝑢

1





𝐿
2
+ 𝐶






𝜕
𝑘

𝑥
𝐻(𝑡) ∗ 𝑢

0





𝐿
2

≤ 𝐶(1 + 𝑡)
−(𝑛/8+𝑘/4)

(




𝑢
0




𝐿
1 +





𝑢
1




�̇�
−2

1

)

+ 𝐶𝑒
−𝑐𝑡

(




𝑢
0




𝐻
𝑠+4 +





𝑢
1




𝐻
𝑠)

≤ 𝐶(1 + 𝑡)
−(𝑛/8+𝑘/4)

× (




𝑢
0




𝐿
1 +





𝑢
1




�̇�
−2

1

+




𝑢
0




𝐻
𝑠+4 +





𝑢
1




𝐻
𝑠) .

(45)

For 𝑙 ≤ 𝑠, it follows from (36) and (37) that






𝜕
𝑙

𝑥
𝑢
𝑡
(𝑡)





𝐿
2

≤






𝜕
𝑙

𝑥
𝐺
𝑡
(𝑡) ∗ 𝑢

1





𝐿
2
+ 𝐶






𝜕
𝑙

𝑥
𝐻
𝑡
(𝑡) ∗ 𝑢

0





𝐿
2
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≤ 𝐶(1 + 𝑡)
−(𝑛/8+𝑙/4+1/2)

(




𝑢
0




𝐿
1 +





𝑢
1




�̇�
−2

1

)

+ 𝐶𝑒
−𝑐𝑡

(




𝑢
0




𝐻
𝑠+4 +





𝑢
1




𝐻
𝑠)

≤ 𝐶(1 + 𝑡)
−(𝑛/8+𝑙/4+1/2)

× (




𝑢
0




𝐿
1 +





𝑢
1




�̇�
−2

1

+




𝑢
0




𝐻
𝑠+4 +





𝑢
1




𝐻
𝑠) .

(46)

Equation (44) follows from (42) and Gagliardo-Nirenberg
inequality. The lemma is proved.

5. Global Existence and Asymptotic Behavior

The purpose of this section is to prove global existence and
asymptotic behavior of solutions to the Cauchy problem (1),
(2). We need the following lemma, which comes from [24]
(see also [25]).

Lemma 5. Let 𝑠 and 𝜃 be positive integers, 𝛿 > 0, 𝑝, 𝑞, 𝑟 ∈

[1,∞] satisfy 1/𝑟 = 1/𝑝 + 1/𝑟, and let 𝑘 ∈ {0, 1, 2, . . . , 𝑠}.
Assume that 𝐹(V) is class of 𝐶𝑠 and satisfies






𝜕
𝑙

V𝐹 (V)





≤ 𝐶
𝑙,𝛿
|V|
𝜃+1−𝑙

, |V| ≤ 𝛿, 0 ≤ 𝑙 ≤ 𝑠, 𝑙 < 𝜃 + 1,






𝜕
𝑙

V𝐹 (V)





≤ 𝐶
𝑙,𝛿
, |V| ≤ 𝛿, 𝑙 ≤ 𝑠, 𝜃 + 1 ≤ 𝑙.

(47)

If V ∈ 𝐿
𝑝
⋂𝑊
𝑘,𝑞

⋂𝐿
∞ and ‖V‖

𝐿
∞ ≤ 𝛿, then for |𝛼| ≤ 𝑘 one has

‖𝐹 (V)‖
𝑊
𝑘,𝑟 ≤ 𝐶

𝑘,𝛿
‖V‖
𝑊
𝑘,𝑞‖V‖
𝐿
𝑝‖V‖
𝜃−1

𝐿
∞ ,





𝜕
𝛼

𝑥
𝐹 (V)




𝐿
𝑟 ≤ 𝐶
𝑘,𝛿





𝜕
𝛼

𝑥
V



𝐿
𝑞‖V‖𝐿𝑝‖V‖

𝜃−1

𝐿
∞ .

(48)

Lemma 6. Let 𝑠 and 𝜃 be positive integers, let 𝛿 > 0, 𝑝, 𝑞, 𝑟 ∈

[1,∞] satisfy 1/𝑟 = 1/𝑝 + 1/𝑟, and let 𝑘 ∈ {0, 1, 2, . . . , 𝑠}. Let
𝐹(V) be a function that satisfies the assumptions of Lemma 5.
Moreover, assume that





𝜕
𝑠

V𝐹 (V
1
) − 𝜕
𝑠

V𝐹 (V
2
)





≤ 𝐶
𝛿
(




V
1





+




V
2





)
max{𝜃−𝑠,𝜃} 




V
1
− V
2





,





V
1





≤ 𝛿,





V
2





≤ 𝛿.

(49)

If V
1
, V
2
∈ 𝐿
𝑝
⋂𝑊
𝑘,𝑞

⋂𝐿
∞ and ‖V

1
‖
𝐿
∞ ≤ 𝛿, ‖V

2
‖
𝐿
∞ ≤ 𝛿, then

for |𝛼| ≤ 𝑘, one has




𝜕
𝛼

𝑥
(𝐹 (V
1
) − 𝐹 (V

2
))



𝐿
𝑟

≤ 𝐶
𝑘,𝛿

{(




𝜕
𝛼

𝑥
V
1




𝐿
𝑞 +





𝜕
𝛼

𝑥
V
2




𝐿
𝑞)





V
1
− V
2




𝐿
𝑝

+ (




V
1




𝐿
𝑝 +





V
2




𝐿
𝑝)





𝜕
𝛼

𝑥
(V
1
− V
2
)



𝐿
𝑞}

× (




V
1




𝐿
∞ +





V
2




𝐿
∞)
𝜃−1

.

(50)

Based on the estimates (42)–(44) of solutions to the linear
problem (4), (2), one defines the following solution space:

𝑋 = {𝑢 ∈ 𝐶 ([0,∞) ;𝐻
𝑠+4

(R
𝑛
))

⋂𝐶
1
([0,∞) ;𝐻

𝑠
(R
𝑛
)) : ‖𝑢‖

𝑋
< ∞} ,

(51)

where

‖𝑢‖
𝑋
= sup
𝑡≥0

{ ∑

𝑘≤𝑠+4

(1 + 𝑡)
𝑛/8+𝑘/4




𝜕
𝑘

𝑥
𝑢 (𝑡)





𝐿
2

+∑

𝑙≤𝑠

(1 + 𝑡)
𝑛/8+𝑙/4+1/2




𝜕
𝑙

𝑥
𝑢
𝑡
(𝑡)





𝐿
2
} .

(52)

For 𝑅 > 0, one defines

𝑋
𝑅
= {𝑢 ∈ 𝑋 : ‖𝑢‖

𝑋
≤ 𝑅} , (53)

where 𝑅 depends on the initial value, which is chosen in the
proof of main result.

For ℎ ≤ 𝑠−[𝑛/2]+3, using Gagliardo-Nirenberg inequality,
one obtains






𝜕
ℎ

𝑥
𝑢 (𝑡)





𝐿
∞

≤ 𝐶(1 + 𝑡)
−(𝑛/4+ℎ/4)

‖𝑢‖
𝑋
. (54)

Theorem 7. Assume that 𝑢
0

∈ 𝐻
𝑠+4

(R𝑛)⋂𝐿
1
(R𝑛), 𝑢

1
∈

𝐻
𝑠
(R𝑛)⋂ �̇�

−2

1
(R𝑛) (𝑠 ≥ [

𝑛

2

] + 1), and integer 𝜃 ≥ 1. 𝑓(𝑢)
satisfies the assumptions of Lemmas 5 and 6. Put

𝐸
0
=




𝑢
0




𝐿
1 +





𝑢
1




�̇�
−2

1

+




𝑢
0




𝐻
𝑠+4 +





𝑢
1




𝐻
𝑠 . (55)

If 𝐸
0
is suitably small, the Cauchy problem (1)-(2) has a unique

global classical solution 𝑢(𝑥, 𝑡) satisfying

𝑢 ∈ 𝐶 ([0,∞) ;𝐻
𝑠+4

(R
𝑛
)) ,

𝑢
𝑡
∈ 𝐶 ([0,∞) ;𝐻

𝑠
(R
𝑛
)) .

(56)

Moreover, the solution satisfies the decay estimate






𝜕
𝑘

𝑥
𝑢 (𝑡)





𝐿
2
≤ 𝐶𝐸
0
(1 + 𝑡)

−(𝑛/8+𝑘/4)
,






𝜕
𝑙

𝑥
𝑢
𝑡
(𝑡)





𝐿
2
≤ 𝐶𝐸
0
(1 + 𝑡)

−(𝑛/8+𝑙/4+1/2)

(57)

for 𝑘 ≤ 𝑠 + 4 and 𝑙 ≤ 𝑠.

Proof. Define the mapping

T (𝑢) = 𝐺 (𝑡) ∗ 𝑢
1
+ 𝐻 (𝑡) ∗ 𝑢

0

+ ∫

𝑡

0

𝐺 (𝑡 − 𝜏) ∗ Δ𝑓 (Δ𝑢 (𝜏)) 𝑑𝜏.

(58)

Using (34)-(35), (38), Lemma 5, and (54), for 𝑘 ≤ 𝑠 + 4, we
obtain






𝜕
𝑘

𝑥
T (𝑢)





𝐿
2

≤ 𝐶






𝜕
𝑘

𝑥
𝐺 (𝑡) ∗ 𝑢

1





𝐿
2
+ 𝐶






𝜕
𝑘

𝑥
𝐻(𝑡) ∗ 𝑢

0





𝐿
2

+ 𝐶∫

𝑡

0






𝜕
𝑘

𝑥
𝐺 (𝑡 − 𝜏) ∗ Δ𝑓 (Δ𝑢 (𝜏))





𝐿
2
𝑑𝜏
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≤ 𝐶(1 + 𝑡)
−(𝑛/8+𝑘/4)




𝑢
1




�̇�
−2

1

+ 𝐶𝑒
−𝑐𝑡




𝜕
(𝑘−4)

+

𝑥
𝑢
1





𝐿
2

+ 𝐶(1 + 𝑡)
−(𝑛/8+𝑘/4)




𝑢
0




𝐿
1 + 𝐶𝑒

−𝑐𝑡



𝜕
𝑘

𝑥
𝑢
0





𝐿
2

+ 𝐶∫

𝑡/2

0

(1 + 𝑡 − 𝜏)
−(𝑛/8+𝑘/4)




𝑓 (Δ𝑢)




𝐿
1𝑑𝜏

+ 𝐶∫

𝑡

𝑡/2

(1 + 𝑡 − 𝜏)
−𝑛/8




𝜕
𝑘

𝑥
𝑓 (Δ𝑢)





𝐿
1
𝑑𝜏

+ 𝐶∫

𝑡

0

𝑒
−𝑐(𝑡−𝜏)




𝜕
(𝑘−2)

+

𝑥
𝑓 (Δ𝑢)





𝐿
2
𝑑𝜏

≤ 𝐶(1 + 𝑡)
−(𝑛/8+𝑘/4)

(




𝑢
0




𝐿
1 +





𝑢
1




�̇�
−2

1

)

+ 𝐶𝑒
−𝑐𝑡

(




𝑢
0




𝐻
𝑠+4 +





𝑢
1




𝐻
𝑠)

+ 𝐶∫

𝑡/2

0

(1 + 𝑡 − 𝜏)
−(𝑛/8+𝑘/4)

‖Δ𝑢‖
2

𝐿
2‖Δ𝑢‖

𝜃−1

𝐿
∞ 𝑑𝜏

+ 𝐶∫

𝑡

𝑡/2

(1 + 𝑡 − 𝜏)
−𝑛/8−1/2

‖Δ𝑢‖
𝐿
2

×






𝜕
(𝑘−2)

+

𝑥
Δ𝑢





𝐿
2
‖Δ𝑢‖
𝜃−1

𝐿
∞ 𝑑𝜏

+ 𝐶∫

𝑡

0

𝑒
−𝑐(𝑡−𝜏)




𝜕
(𝑘−2)

+

𝑥
Δ𝑢





𝐿
2
‖Δ𝑢‖
𝜃

𝐿
∞𝑑𝜏

≤ 𝐶(1 + 𝑡)
−(𝑛/8+𝑘/4)

(




𝑢
0




𝐿
1 +





𝑢
1




�̇�
−2

1

)

+ 𝐶𝑒
−𝑐𝑡

(




𝑢
0




𝐻
𝑠+4 +





𝑢
1




𝐻
𝑠)

+ 𝐶𝑅
𝜃+1

∫

𝑡/2

0

(1 + 𝑡 − 𝜏)
−(𝑛/8+𝑘/4)

(1 + 𝜏)
−(𝑛/4+1)

× (1 + 𝜏)
−(𝑛/4+1/2)(𝜃−1)

𝑑𝜏

+ 𝐶𝑅
𝜃+1

∫

𝑡

𝑡/2

(1 + 𝑡 − 𝜏)
−𝑛/8−1/2

(1 + 𝜏)
−(𝑛/4+𝑘/4)

× (1 + 𝜏)
−(𝑛/4+1/2)(𝜃−1)

𝑑𝜏

+ 𝐶𝑅
𝜃+1

∫

𝑡

0

𝑒
−𝑐(𝑡−𝜏)

(1 + 𝜏)
−(𝑛/8+((𝑘−2)

+
+2)/4)

× (1 + 𝜏)
−(𝑛/4+1/2)𝜃

𝑑𝜏

≤ 𝐶(1 + 𝑡)
−(𝑛/8+𝑘/4)

× {(




𝑢
0




𝐿
1 +





𝑢
1




�̇�
−2

1

+




𝑢
0




𝐻
𝑠+4 +





𝑢
1




𝐻
𝑠) + 𝑅

𝜃+1
} .

(59)

Thus

(1 + 𝑡)
𝑛/8+𝑘/4




𝜕
𝑘

𝑥
T (𝑢)





𝐿
2
≤ 𝐶𝐸
0
+ 𝐶𝑅
𝜃+1

. (60)

It follows from (58) that

T(𝑢)
𝑡
= 𝐺
𝑡
(𝑡) ∗ 𝑢

1
+ 𝐻
𝑡
(𝑡) ∗ 𝑢

0

+ ∫

𝑡

0

𝐺
𝑡
(𝑡 − 𝜏) ∗ Δ𝑓 (Δ𝑢 (𝜏)) 𝑑𝜏.

(61)

Using (36)-(37), (39), Lemma 5, and (54), for 𝑙 ≤ 𝑠, we have






𝜕
𝑙

𝑥
T(𝑢)
𝑡





𝐿
2

≤ 𝐶






𝜕
𝑙

𝑥
𝐺
𝑡
(𝑡) ∗ 𝑢

1





𝐿
2
+ 𝐶






𝜕
𝑙

𝑥
𝐻
𝑡
(𝑡) ∗ 𝑢

0





𝐿
2

+ 𝐶∫

𝑡

0






𝜕
𝑙

𝑥
𝐺
𝑡
(𝑡 − 𝜏) ∗ Δ𝑓 (Δ𝑢 (𝜏))





𝐿
2
𝑑𝜏

≤ 𝐶(1 + 𝑡)
−(𝑛/8+𝑙/4+1/2)




𝑢
1




�̇�
−2

1

+ 𝐶𝑒
−𝑐𝑡




𝜕
𝑙

𝑥
𝑢
1





𝐿
2

+ 𝐶(1 + 𝑡)
−(𝑛/8+𝑙/4+1/2)




𝑢
0




𝐿
1 + 𝐶𝑒

−𝑐𝑡



𝜕
𝑙+4

𝑢
0





𝐿
2

+ 𝐶∫

𝑡/2

0

(1 + 𝑡 − 𝜏)
−(𝑛/8+𝑙/4+1/2)




𝑓 (Δ𝑢)




𝐿
1𝑑𝜏

+ 𝐶∫

𝑡

𝑡/2

(1 + 𝑡 − 𝜏)
−(𝑛/8+1/2)




𝜕
𝑙

𝑥
𝑓 (Δ𝑢)





𝐿
1
𝑑𝜏

+ 𝐶∫

𝑡

0

𝑒
−𝑐(𝑡−𝜏)




𝜕
𝑙+2

𝑥
𝑓 (Δ𝑢)





𝐿
2
𝑑𝜏

≤ 𝐶(1 + 𝑡)
−(𝑛/8+𝑙/4+1/2)

× (




𝑢
0




𝐿
1 +





𝑢
1




�̇�
−2

1

+




𝑢
0




𝐻
𝑠+4 +





𝑢
1




𝐻
𝑠)

+ 𝐶∫

𝑡/2

0

(1 + 𝑡 − 𝜏)
−(𝑛/8+𝑙/4+1/2)

‖Δ𝑢‖
2

𝐿
2‖Δ𝑢‖

𝜃−1

𝐿
∞ 𝑑𝜏

+ 𝐶∫

𝑡

𝑡/2

(1 + 𝑡 − 𝜏)
−(𝑛/8+1/2)




𝜕
𝑙

𝑥
Δ𝑢







2

𝐿
2
‖Δ𝑢‖
𝜃−1

𝐿
∞ 𝑑𝜏

+ 𝐶∫

𝑡

0

𝑒
−𝑐(𝑡−𝜏)




𝜕
𝑙+4

𝑥
𝑢





𝐿
2
‖Δ𝑢‖
𝜃

𝐿
∞𝑑𝜏

≤ 𝐶(1 + 𝑡)
−(𝑛/8+𝑙/4+1/2)

× (




𝑢
0




𝐿
1 +





𝑢
1




�̇�
−2

1

+




𝑢
0




𝐻
𝑠+4 +





𝑢
1




𝐻
𝑠)

+ 𝐶𝑅
𝜃+1

∫

𝑡/2

0

(1 + 𝑡 − 𝜏)
−(𝑛/8+𝑙/4+1/2)

(1 + 𝜏)
−(𝑛/4+1)

× (1 + 𝜏)
−(𝑛/4+1/2)(𝜃−1)

𝑑𝜏

+ 𝐶𝑅
𝜃+1

∫

𝑡

𝑡/2

(1 + 𝑡 − 𝜏)
−(𝑛/8+1/2)

(1 + 𝜏)
−(𝑛/4+𝑙/2+1)

× (1 + 𝜏)
−(𝑛/4+1/2)(𝜃−1)

𝑑𝜏

+ 𝐶𝑅
𝜃+1

∫

𝑡

0

𝑒
−𝑐(𝑡−𝜏)

(1 + 𝜏)
−(𝑛/8+(𝑙+4)/4)
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× (1 + 𝜏)
−(𝑛/4+1/2)𝜃

𝑑𝜏

≤ 𝐶(1 + 𝑡)
−(𝑛/8+𝑙/4+1/2)

× {(




𝑢
0




𝐿
1 +





𝑢
1




�̇�
−2

1

+




𝑢
0




𝐻
𝑠+4 +





𝑢
1




𝐻
𝑠) + 𝑅

𝜃+1
} .

(62)

Thus

(1 + 𝑡)
𝑛/8+𝑙/4+1/2




𝜕
𝑙

𝑥
T(𝑢)
𝑡





𝐿
2
≤ 𝐶𝐸
0
+ 𝐶𝑅
𝜃+1

. (63)

Combining (60), (63) and taking 𝑅 = 2𝐶𝐸
0
and 𝐸

0
suitably

small yield

‖T (𝑢)‖
𝑋
≤ 2𝐶𝐸

0
. (64)

For �̃�, 𝑢 ∈ 𝑋
𝑅
, by using (58), we have

T (�̃�) − T (𝑢) = ∫

𝑡

0

𝐺 (𝑡 − 𝜏) ∗ Δ [𝑓 (Δ�̃�) − 𝑓 (Δ𝑢)] 𝑑𝜏. (65)

Exploiting (65), (38) Lemma 6, and (54), for 𝑘 ≤ 𝑠 + 4, we
obtain






𝜕
𝑘

𝑥
(T (�̃�) − T (𝑢))





𝐿
2

≤ ∫

𝑡

0






𝜕
𝑘

𝑥
𝐺 (𝑡 − 𝜏) ∗ Δ [𝑓 (Δ�̃�) − 𝑓 (Δ𝑢)]





𝐿
2
𝑑𝜏

≤ 𝐶∫

𝑡/2

0

(1 + 𝑡 − 𝜏)
−(𝑛/8+𝑘/4)




(𝑓 (Δ�̃�) − 𝑓 (Δ𝑢))




𝐿
1𝑑𝜏

+ 𝐶∫

𝑡

𝑡/2

(1 + 𝑡 − 𝜏)
−𝑛/8




𝜕
𝑘

𝑥
(𝑓 (Δ�̃�) − 𝑓 (Δ𝑢))





𝐿
1
𝑑𝜏

+ 𝐶∫

𝑡

0

𝑒
−𝑐(𝑡−𝜏)




𝜕
(𝑘−2)

+

𝑥
(𝑓 (Δ�̃�) − 𝑓 (Δ𝑢))





𝐿
2
𝑑𝜏

≤ 𝐶∫

𝑡/2

0

(1 + 𝑡 − 𝜏)
−(𝑛/8+𝑘/4)

(‖Δ�̃�‖
𝐿
2 + ‖Δ𝑢‖

𝐿
2)

× ‖Δ (�̃� − 𝑢)‖
𝐿
2(‖Δ�̃�‖

𝐿
∞ + ‖Δ𝑢‖

𝐿
∞)
𝜃−1

𝑑𝜏

+ 𝐶∫

𝑡

𝑡/2

(1 + 𝑡 − 𝜏)
−𝑛/8−1/2

× {(






𝜕
(𝑘−2)

+

𝑥
Δ�̃�





𝐿
2
+






𝜕
(𝑘−2)

+

𝑥
Δ�̃�





𝐿
2
) ‖Δ (�̃� − 𝑢)‖

𝐿
2

+ (‖Δ�̃�‖
𝐿
2 + ‖Δ𝑢‖

𝐿
2)






𝜕
(𝑘−2)

+

𝑥
Δ (�̃� − 𝑢)





𝐿
2
}

× (‖Δ�̃�‖
𝐿
∞ + ‖Δ𝑢‖

𝐿
∞)
𝜃−1

𝑑𝜏

+ 𝐶∫

𝑡

0

𝑒
−𝑐(𝑡−𝜏)

× {(






𝜕
(𝑘−2)

+

𝑥
Δ�̃�





𝐿
2
+






𝜕
(𝑘−2)

+

𝑥
Δ�̃�





𝐿
2
)

× ‖Δ (�̃� − 𝑢)‖
𝐿
∞ + (‖Δ�̃�‖

𝐿
∞ + ‖Δ𝑢‖

𝐿
∞)

×






𝜕
(𝑘−2)

+

𝑥
Δ (�̃� − 𝑢)





𝐿
2
}

× (‖Δ�̃�‖
𝐿
∞ + ‖Δ𝑢‖

𝐿
∞)
𝜃−1

𝑑𝜏

≤ 𝐶𝑅
𝜃
‖�̃� − 𝑢‖

𝑋
∫

𝑡/2

0

(1 + 𝑡 − 𝜏)
−(𝑛/8+𝑘/4)

× (1 + 𝜏)
−(𝑛/4+1+(𝑛/4+1/2)(𝜃−1))

𝑑𝜏

+ 𝐶𝑅
𝜃
‖�̃� − 𝑢‖

𝑋
∫

𝑡

𝑡/2

(1 + 𝑡 − 𝜏)
−𝑛/8−1/2

× (1 + 𝜏)
−(𝑛/4+𝑘/4+1/2+(𝑛/4+1/2)(𝜃−1))

𝑑𝜏

+ 𝐶𝑅
𝜃
‖�̃� − 𝑢‖

𝑋
∫

𝑡

0

𝑒
−𝑐(𝑡−𝜏)

× (1 + 𝜏)
−(𝑛/8+((𝑘−2)

+
+2)/4+(𝑛/4+1/2)𝜃)

𝑑𝜏

≤ 𝐶𝑅
𝜃
(1 + 𝑡)

−(𝑛/8+𝑘/4)
‖�̃� − 𝑢‖

𝑋
,

(66)

which implies

(1 + 𝑡)
𝑛/8+𝑘/4




𝜕
𝑘

𝑥
(T (�̃�) − T (𝑢))





𝐿
2
≤ 𝐶𝑅
𝜃
‖�̃� − 𝑢‖

𝑋
. (67)

Similarly for 𝑙 ≤ 𝑠, from (61), (39), and (54), we have






𝜕
𝑙

𝑥
(T (�̃�) − T (𝑢))

𝑡





𝐿
2

≤ ∫

𝑡

0






𝜕
𝑙

𝑥
𝐺
𝑡
(𝑡 − 𝜏) ∗ Δ [𝑓 (Δ�̃�) − 𝑓 (Δ𝑢)]





𝐿
2
𝑑𝜏

≤ 𝐶∫

𝑡/2

0

(1+𝑡 − 𝜏)
−(𝑛/8+𝑙/4+1/2)




(𝑓 (Δ�̃�)−𝑓 (Δ𝑢))




𝐿
1𝑑𝜏

+ 𝐶∫

𝑡

𝑡/2

(1+𝑡 − 𝜏)
−(𝑛/8+1/2)




𝜕
𝑙

𝑥
(𝑓 (Δ�̃�)−𝑓 (Δ𝑢))





𝐿
1
𝑑𝜏

+ 𝐶∫

𝑡

0

𝑒
−𝑐(𝑡−𝜏)




𝜕
𝑙+2

𝑥
(𝑓 (Δ�̃�) − 𝑓 (Δ𝑢))





𝐿
2
𝑑𝜏

≤ 𝐶𝑅
𝜃
(1 + 𝑡)

−(𝑛/8+𝑙/4+1/2)
‖�̃� − 𝑢‖

𝑋
,

(68)

which implies

(1 + 𝑡)
𝑛/8+𝑙/4+1/2




𝜕
𝑙

𝑥
(T (�̃�) − T (𝑢))

𝑡





𝐿
2
≤ 𝐶𝑅
𝜃
‖�̃� − 𝑢‖

𝑋
.

(69)
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Noting 𝑅 = 2𝐶𝐸
0
, by using (67), (69) and taking 𝐸

0
suitably

small, yields

‖T (�̃�) − T (𝑢)‖
𝑋
≤

1

2

‖�̃� − 𝑢‖
𝑋
. (70)

From (64) and (70), we know that T is strictly contracting
mapping. Consequently, we conclude that there exists a fixed
point 𝑢 ∈ 𝑋

𝑅
of the mapping T , which is a classical solution

to (1), (2). We have completed the proof of Theorem 7.
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