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The aim of this paper is to present the point of coincidence and common fixed point for three mappings in cone metric spaces
over normal cone which satisfy a different contractive condition. Our result generalizes the recent related results proved by Stojan
Radenović (2009) and Rangamma and Prudhvi (2012).

1. Introduction and Preliminaries

It is well known that the classical contraction mapping prin-
ciple of Banach is a fundamental result in fixed point theory.
Several authors have obtained various extensions and gen-
eralizations of Banach’s theorems by considering contractive
mappings on different metric spaces. Huang and Zhang [1]
have replaced real numbers by ordering Banach space and
have defined a cone metric space. They have proved some
fixed point theorems of contractive mappings on cone metric
spaces. Further generalizations of Huang and Zhang were
obtained by Abbas and Jungck [2]. In 2009 Radenović [3]
has obtained coincidence point result for two mappings in
cone metric spaces which satisfy new contractive conditions.
Recently, in this paper we generalized the coincidence point
results of Radenović [3] for threemapswith different contrac-
tive condition.

We recall some definitions and results that will be needed
in what follows.

Definition 1. Let 𝐸 be a real Banach space and 𝑃 be a subset
of 𝐸. Then 𝑃 is called a cone if

(1) 𝑃 is closed, nonempty and satisfies 𝑃 ̸= {0},
(2) 𝑎, 𝑏 ∈ 𝑅, 𝑎, 𝑏 ≥ 0, and 𝑥, 𝑦 ∈ 𝑃 imply 𝑎𝑥 + 𝑏𝑦 ∈ 𝑃,
(3) 𝑥 ∈ 𝑃 and −𝑥 ∈ 𝑃 imply 𝑥 = 0.

Given a cone 𝑃 ⊆ 𝐸, we define a partial ordering ≤ with
respect to 𝑃 by 𝑥 ≤ 𝑦 if and only if 𝑦 − 𝑥 ∈ 𝑃. We shall write
𝑥 < 𝑦 if 𝑥 ≤ 𝑦 and 𝑥 ̸= 𝑦, while 𝑥 ≪ 𝑦 if and only if 𝑦 − 𝑥 ∈

int𝑃, where int𝑃 is the interior of𝑃. A cone𝑃 is called normal
if there is a number𝐾 > 0 such that, for all𝑥, 𝑦 ∈ 𝐸, 0 ≤ 𝑥 ≤ 𝑦

implies ‖𝑥‖ ≤ 𝐾‖𝑦‖. The least positive number satisfying the
above inequality is called the normal constant of 𝑃.

In the following we suppose that 𝐸 is a real Banach space
and 𝑃 is a cone in 𝐸 with int𝑃 ̸= 𝜙 and ≤ is a partial ordering
with respect to 𝑃.

Definition 2. Let 𝑋 be a nonempty set. Suppose that the
mapping 𝑑 : 𝑋 × 𝑋 → 𝐸 satisfies

(i) 0 ≤ 𝑑(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋 and 𝑑(𝑥, 𝑦) = 0 if and only
if 𝑥 = 𝑦,

(ii) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ 𝑋,
(iii) 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋.

Then 𝑑 is called a conemetric on𝑋, and (𝑋, 𝑑) is called a cone
metric space.

Example 3. Let 𝐸 = 𝑅
2, 𝑃 = {(𝑥, 𝑦) ∈ 𝐸 : 𝑥, 𝑦 ≥ 0} ⊆ 𝑅

2,
𝑋 = 𝑅

2, and 𝑑 : 𝑋 × 𝑋 → 𝐸 be defined by 𝑑(𝑥, 𝑦) = 𝑑((𝑥
1
,

𝑥
2
), (𝑦
1
, 𝑦
2
)) = [max(|𝑥

1
−𝑦
1
|, |𝑥
2
−𝑦
2
|), 𝛼max(|𝑥

1
−𝑦
1
|, |𝑥
2
−

𝑦
2
|)], where 𝛼 ≥ 0 is a constant; then (𝑋, 𝑑) is a cone metric

space.
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Definition 4. Let (𝑋, 𝑑) be a cone metric space, {𝑥
𝑛
} be a

sequence in𝑋 and𝑥 ∈ 𝑋.Then {𝑥
𝑛
} converges to𝑥 if for every

𝑐 lies in 𝐸 with 0 ≪ 𝑐 there is an 𝑁 such that for all 𝑛 > 𝑁,
𝑑(𝑥
𝑛
, 𝑥) ≪ 𝑐. One denotes this by 𝑥

𝑛
→ 𝑥 as 𝑛 → ∞.

Definition 5. Let (𝑋, 𝑑) be a cone metric space, {𝑥
𝑛
} be a

sequence in 𝑋. If for every 𝑐 lies in 𝐸 with 0 ≪ 𝑐 there is
an 𝑁 such that for all 𝑛,𝑚 > 𝑁, 𝑑(𝑥

𝑛
, 𝑥
𝑚
) ≪ 𝑐, then {𝑥

𝑛
} is

called a Cauchy sequence in𝑋.

Definition 6. Aconemetric space (𝑋, 𝑑) is said to be complete
if every Cauchy sequence in𝑋 is convergent in𝑋.

Lemma7. Let (𝑋, 𝑑) be a conemetric space and𝑃 be a normal
cone. Let {𝑥

𝑛
} be a sequence in 𝑋. One has the following.

(i) {𝑥
𝑛
} converges to 𝑥 ∈ 𝑋 if and only if 𝑑(𝑥

𝑛
, 𝑥) → 0 as

𝑛 → ∞.

(ii) {𝑥
𝑛
} is a Cauchy sequence if and only if 𝑑(𝑥

𝑛
, 𝑥
𝑚
) → 0

as 𝑛,𝑚 → ∞.

(iii) {𝑥
𝑛
} converges to 𝑥 ∈ 𝑋 and {𝑥

𝑛
} converges to 𝑦 ∈ 𝑋.

Then 𝑥 = 𝑦.

Definition 8. Let 𝑓 and 𝑔 be self-maps on set𝑋. If 𝑓𝑥 = 𝑔𝑥 =

𝑤 for some 𝑥 in 𝑋, then 𝑥 is called a coincidence point of 𝑓
and 𝑔, and 𝑤 is called a point of coincidence of 𝑓 and 𝑔.

Definition 9. Two self-mappings 𝑓 and 𝑔 of a cone metric
space𝑋 are said to beweakly compatible if𝑓𝑔𝑥 = 𝑔𝑓𝑥wheth-
er 𝑓𝑥 = 𝑔𝑥.

2. Main Result

In this section, we give fixed point theorems for mappings
defined on cone metric space with generalized contractive
condition.

Theorem 10. Let (𝑋, 𝑑) be a cone metric space and 𝑃 be a nor-
mal cone with normal constant K. Suppose that the mappings
𝑓, 𝑔, and ℎ : 𝑋 → 𝑋 satisfy the condition

𝑑 (𝑓𝑥, 𝑔𝑦)
 ≤ 𝑎

𝑑 (ℎ𝑥, ℎ𝑦)
 + 𝑏

𝑑 (𝑓𝑥, ℎ𝑥)


+ 𝑐
𝑑 (𝑔𝑦, ℎ𝑦)

 + 𝜆 {
𝑑 (ℎ𝑥, 𝑔𝑦)



+
𝑑 (𝑓𝑥, ℎ𝑦)

}

(1)

for all 𝑥, 𝑦 ∈ 𝑋, where 𝑎, 𝑏, 𝑐, and 𝜆 are nonnegative real num-
bers satisfying 𝑎 + 𝑏 + 𝑐 + 2𝜆 < 1. If the range of ℎ contains
range of 𝑓 and also range of 𝑔 and ℎ(𝑋) is a complete subspace
of𝑋, then 𝑓, 𝑔, and ℎ have a unique point of coincidence in𝑋.
Moreover, if (𝑓, ℎ) and (𝑔, ℎ) are weakly compatible, then 𝑓, 𝑔,
and ℎ have a unique common fixed point.

Proof. Let 𝑥
0
∈ 𝑋 be an arbitrary point. Since𝑓(𝑋) and 𝑔(𝑋)

are contained in ℎ(𝑋), there exists 𝑥
1

∈ 𝑋 such that 𝑦
0

=

𝑓𝑥
0
= ℎ𝑥
1
, and also there exists 𝑥

2
∈ 𝑋 such that 𝑦

1
= 𝑔𝑥
1
=

ℎ𝑥
2
. Continuing this process, a sequence {𝑦

𝑛
} can be chosen

such that 𝑦
2𝑛

= 𝑓𝑥
2𝑛

= ℎ𝑥
2𝑛+1

and 𝑦
2𝑛+1

= 𝑔𝑥
2𝑛+1

= ℎ𝑥
2𝑛+2

,
for 𝑛 = 0, 1, 2, . . .; then

𝑑 (𝑦
2𝑛
, 𝑦
2𝑛+1

)
 =

𝑑 (𝑓𝑥
2𝑛
, 𝑔𝑥
2𝑛+1

)


≤ 𝑎
𝑑 (ℎ𝑥

2𝑛
, ℎ𝑥
2𝑛+1

)


+ 𝑏
𝑑 (𝑓𝑥

2𝑛
, ℎ𝑥
2𝑛
)


+ 𝑐
𝑑 (𝑔𝑥

2𝑛+1
, ℎ𝑥
2𝑛+1

)


+ 𝜆 {
𝑑 (ℎ𝑥

2𝑛
, 𝑔𝑥
2𝑛+1

)


+
𝑑 (𝑓𝑥

2𝑛
, ℎ𝑥
2𝑛+1

)
}

= 𝑎
𝑑 (𝑦
2𝑛−1

, 𝑦
2𝑛
)


+ 𝑏
𝑑 (𝑦
2𝑛
, 𝑦
2𝑛−1

)
 + 𝑐

𝑑 (𝑦
2𝑛+1

, 𝑦
2𝑛
)


+ 𝜆 {
𝑑 (𝑦
2𝑛−1

, 𝑦
2𝑛+1

)
 +

𝑑 (𝑦
2𝑛
, 𝑦
2𝑛
)
}

≤ 𝑎
𝑑 (𝑦
2𝑛−1

, 𝑦
2𝑛
)
 + 𝑏

𝑑 (𝑦
2𝑛
, 𝑦
2𝑛−1

)


+ 𝑐
𝑑 (𝑦
2𝑛+1

, 𝑦
2𝑛
)
 + 𝜆 {

𝑑 (𝑦
2𝑛−1

, 𝑦
2𝑛
)


+
𝑑 (𝑦
2𝑛
, 𝑦
2𝑛+1

)
}

= (𝑎 + 𝑏 + 𝜆)
𝑑 (𝑦
2𝑛−1

, 𝑦
2𝑛
)


+ (𝑐 + 𝜆)
𝑑 (𝑦
2𝑛
, 𝑦
2𝑛+1

)
 .

(2)

This implies that ‖𝑑(𝑦
2𝑛
, 𝑦
2𝑛+1

)‖ ≤ ((𝑎 + 𝑏 + 𝜆)/(1 − (𝑐 +

𝜆)))‖𝑑(𝑦
2𝑛−1

, 𝑦
2𝑛
)‖.

Thus

𝑑 (𝑦
2𝑛
, 𝑦
2𝑛+1

)
 ≤ 𝜂

𝑑 (𝑦
2𝑛−1

, 𝑦
2𝑛
)
 , (3)

where 𝜂 = (𝑎+𝑏+𝜆)/(1−(𝑐+𝜆) ) ∈ [0, 1), as 𝑎+𝑏+𝑐+2𝜆 < 1.
Writing 𝑑

𝑛
= ‖𝑑(𝑦

𝑛
, 𝑦
𝑛+1

)‖, we obtain

𝑑
2𝑛

≤ 𝜂𝑑
2𝑛−1

. (4)

Again

𝑑 (𝑦
2𝑛+2

, 𝑦
2𝑛+1

)
 =

𝑑 (𝑓𝑥
2𝑛+2

, 𝑔𝑥
2𝑛+1

)


≤ 𝑎
𝑑 (ℎ𝑥

2𝑛+2
, ℎ𝑥
2𝑛+1

)


+ 𝑏
𝑑 (𝑓𝑥

2𝑛+2
, ℎ𝑥
2𝑛+2

)


+ 𝑐
𝑑 (𝑔𝑥

2𝑛+1
, ℎ𝑥
2𝑛+1

)


+ 𝜆 {
𝑑 (ℎ𝑥

2𝑛+2
, 𝑔𝑥
2𝑛+1

)


+
𝑑 (𝑓𝑥

2𝑛+2
, ℎ𝑥
2𝑛+1

)
}
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= 𝑎
𝑑 (𝑦
2𝑛+1

, 𝑦
2𝑛
)


+ 𝑏
𝑑 (𝑦
2𝑛+2

, 𝑦
2𝑛+1

)


+ 𝑐
𝑑 (𝑦
2𝑛+1

, 𝑦
2𝑛
)


+ 𝜆 {
𝑑 (𝑦
2𝑛+1

, 𝑦
2𝑛+1

)


+
𝑑 (𝑦
2𝑛+2

, 𝑦
2𝑛
)
}

≤ 𝑎
𝑑 (𝑦
2𝑛+1

, 𝑦
2𝑛
)


+ 𝑏
𝑑 (𝑦
2𝑛+2

, 𝑦
2𝑛+1

)


+ 𝑐
𝑑 (𝑦
2𝑛+1

, 𝑦
2𝑛
)


+ 𝜆 {
𝑑 (𝑦
2𝑛+2

, 𝑦
2𝑛+1

)


+
𝑑 (𝑦
2𝑛+1

, 𝑦
2𝑛
)
}

= (𝑎 + 𝑐 + 𝜆)
𝑑 (𝑦
2𝑛+1

, 𝑦
2𝑛
)


+ (𝑏 + 𝜆)
𝑑 (𝑦
2𝑛+2

, 𝑦
2𝑛+1

)
 .

(5)

This implies that ‖𝑑(𝑦
2𝑛+2

, 𝑦
2𝑛+1

)‖ ≤ ((𝑎 + 𝑐 + 𝜆)/(1 − (𝑏 +

𝜆)))‖𝑑(𝑦
2𝑛+1

, 𝑦
2𝑛
)‖.

Thus
𝑑 (𝑦
2𝑛+2

, 𝑦
2𝑛+1

)
 ≤ 𝜇

𝑑 (𝑦
2𝑛+1

, 𝑦
2𝑛
)
 , (6)

where 𝜇 = (𝑎+𝑐+𝜆)/(1−(𝑏+𝜆) ) ∈ [0, 1), as 𝑎+𝑏+𝑐+2𝜆 < 1.
Therefore

𝑑
2𝑛+1

≤ 𝜇 𝑑
2𝑛
. (7)

From (4) and (7) we get

𝑑
2𝑛

≤ 𝜂𝑑
2𝑛−1

≤ 𝜂𝜇𝑑
2𝑛−2

≤ ⋅ ⋅ ⋅ ≤ 𝜂
𝑛
𝜇
𝑛
𝑑
0,

𝑑
2𝑛+1

≤ 𝜇𝑑
2𝑛

≤ 𝜂𝜇𝑑
2𝑛−1

≤ ⋅ ⋅ ⋅ ≤ 𝜂
𝑛
𝜇
𝑛+1

𝑑
0
.

(8)

Therefore

𝑑
2𝑛

+ 𝑑
2𝑛+1

≤ 𝜂
𝑛
𝜇
𝑛
(1 + 𝜇) 𝑑

0
, (9)

𝑑
2𝑛+1

+ 𝑑
2𝑛+2

≤ 𝜂
𝑛
𝜇
𝑛+1

(1 + 𝜂) 𝑑
0
. (10)

Now we will show that {𝑦
𝑛
} is a Cauchy sequence. By triangle

inequality for𝑚 > 𝑛, we have

𝑑 (𝑦
𝑛
, 𝑦
𝑚
) ≤ 𝑑 (𝑦

𝑛
, 𝑦
𝑛+1

) + 𝑑 (𝑦
𝑛+1

, 𝑦
𝑛+2

)

+ ⋅ ⋅ ⋅ + 𝑑 (𝑦
𝑚−1

, 𝑦
𝑚
) .

(11)

Hence, as 𝑃 is normal cone with normal constant𝐾,
𝑑 (𝑦
𝑛
, 𝑦
𝑚
)
 ≤ 𝐾

𝑑 (𝑦
𝑛
, 𝑦
𝑛+1

) + 𝑑 (𝑦
𝑛+1

, 𝑦
𝑛+2

)

+ ⋅ ⋅ ⋅ + 𝑑 (𝑦
𝑚−1

, 𝑦
𝑚
)


≤ 𝐾 {
𝑑 (𝑦
𝑛
, 𝑦
𝑛+1

)
 +

𝑑 (𝑦
𝑛+1

, 𝑦
𝑛+2

)


+ ⋅ ⋅ ⋅ +
𝑑 (𝑦
𝑚−1

, 𝑦
𝑚
)
} .

(12)

If 𝑛 is even, then from (9) and (12) we have
𝑑 (𝑦
𝑛
, 𝑦
𝑚
)
 ≤ 𝐾 {𝑑

𝑛
+ 𝑑
𝑛+1

+ 𝑑
𝑛+2

+ 𝑑
𝑛+3

+ ⋅ ⋅ ⋅ }

≤ 𝐾 {𝜂
𝑛/2

𝜇
𝑛/2

(1 + 𝜇) 𝑑
0

+𝜂
(𝑛+2)/2

𝜇
(𝑛+2)/2

(1 + 𝜇) 𝑑
0
+ ⋅ ⋅ ⋅ }

= 𝐾
(𝜂𝜇)
𝑛/2

(1 + 𝜇)

1 − 𝜂𝜇
𝑑
0
.

(13)

If 𝑛 is odd, then from (10) and (12) we have
𝑑 (𝑦
𝑛
, 𝑦
𝑚
)
 ≤ 𝐾 {𝑑

𝑛
+ 𝑑
𝑛+1

+ 𝑑
𝑛+2

+ 𝑑
𝑛+3

+ ⋅ ⋅ ⋅ }

≤ 𝐾 {𝜂
(𝑛−1)/2

𝜇
(𝑛−1)/2+1

(1 + 𝜂)𝑑
0
+ 𝜂
(𝑛+1)/2

×𝜇
(𝑛+1)/2+1

(1 + 𝜂) 𝑑
0
+ ⋅ ⋅ ⋅ }

= 𝐾
(𝜂𝜇)
(𝑛−1)/2

(1 + 𝜂) 𝜇

1 − 𝜂𝜇
𝑑
0
.

(14)

Since 𝜂 < 1, 𝜇 < 1, therefore 𝜂𝜇 < 1, so in both cases,
‖𝑑(𝑦
𝑛
, 𝑦
𝑚
)‖ → 0 as 𝑛 → ∞.

From Lemma 7, it follows that {𝑦
𝑛
} = {ℎ𝑥

𝑛+1
} is a Cauchy

sequence. Since ℎ(𝑋) is a complete subspace of𝑋, there exists
𝑞 in ℎ(𝑋) such that {ℎ𝑥

𝑛+1
} → 𝑞 as 𝑛 → ∞; consequently

we can find 𝑝 in𝑋 such that ℎ𝑝 = 𝑞. We shall show that ℎ𝑝 =

𝑓𝑝 = 𝑔𝑝.
Now using contractive condition (1), we can write

𝑑 (𝑓𝑝, 𝑔𝑥
2𝑛+1

)
 ≤ 𝑎

𝑑 (ℎ𝑝, ℎ𝑥
2𝑛+1

)


+ 𝑏
𝑑 (𝑓𝑝, ℎ𝑝)



+ 𝑐
𝑑 (𝑔𝑥

2𝑛+1
, ℎ𝑥
2𝑛+1

)


+ 𝜆 {
𝑑 (ℎ𝑝, 𝑔𝑥

2𝑛+1
)


+
𝑑 (𝑓𝑝, ℎ𝑥

2𝑛+1
)
} .

(15)

Taking 𝑛 → ∞, we have
𝑑 (𝑓𝑝, 𝑞)

 ≤ 𝑎
𝑑 (ℎ𝑝, 𝑞)

 + 𝑏
𝑑 (𝑓𝑝, ℎ𝑝)



+ 𝑐
𝑑 (𝑞, 𝑞)

 + 𝜆 {
𝑑 (ℎ𝑝, 𝑞)

 +
𝑑 (𝑓𝑝, 𝑞)

}

= (𝑏 + 𝜆)
𝑑 (𝑓𝑝, 𝑞)

 , since ℎ𝑝 = 𝑞.

(16)

Hence, 𝑓𝑝 = 𝑞, since 𝑎 + 𝑏 + 𝑐 + 2𝜆 < 1 and 𝑎, 𝑏, 𝑐, 𝜆 ≥ 0.
Again from (1), we can write
𝑑 (𝑓𝑥

2𝑛
, 𝑔𝑝)

 ≤ 𝑎
𝑑 (ℎ𝑥

2𝑛
, ℎ𝑝)



+ 𝑏
𝑑 (𝑓𝑥

2𝑛
, ℎ𝑥
2𝑛
)
 + 𝑐

𝑑 (𝑔𝑝, ℎ𝑝)


+ 𝜆 {
𝑑 (ℎ𝑥

2𝑛
, 𝑔𝑝)

 +
𝑑 (𝑓𝑥

2𝑛
, ℎ𝑝)

} .

(17)
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Taking 𝑛 → ∞, we have
𝑑 (𝑞, 𝑔𝑝)

 ≤ 𝑎
𝑑 (𝑞, ℎ𝑝)

 + 𝑏
𝑑 (𝑞, 𝑞)



+ 𝑐
𝑑 (𝑔𝑝, ℎ𝑝)



+ 𝜆 {
𝑑 (𝑞, 𝑔𝑝)

 +
𝑑 (𝑞, ℎ𝑝)

}

= (𝑐 + 𝜆)
𝑑 (𝑔𝑝, 𝑞)

 , since ℎ𝑝 = 𝑞.

(18)

Hence, 𝑔𝑝 = 𝑞, since 𝑎 + 𝑏 + 𝑐 + 2𝜆 < 1 and 𝑎, 𝑏, 𝑐, 𝜆 ≥ 0.
So we get

ℎ𝑝 = 𝑔𝑝 = 𝑓𝑝 = 𝑞. (19)
Therefore 𝑝 is a coincidence point of 𝑓, 𝑔, and ℎ.

Now we show that 𝑓, 𝑔, and ℎ have a unique point of
coincidence. For this, assume that there exists another point
of coincidence 𝑟 in𝑋 such that 𝑓𝑝

1
= 𝑔𝑝
1
= ℎ𝑝
1
= 𝑟.

Consider
𝑑 (𝑔𝑝, 𝑔𝑝

1
)
 =

𝑑 (𝑓𝑝, 𝑔𝑝
1
)
 ≤ 𝑎

𝑑 (ℎ𝑝, ℎ𝑝
1
)


+ 𝑏
𝑑 (𝑓𝑝, ℎ𝑝)

 + 𝑐
𝑑 (𝑔𝑝

1
, ℎ𝑝
1
)


+ 𝜆 {
𝑑 (ℎ𝑝, 𝑔𝑝

1
)
 +

𝑑 (𝑓𝑝, ℎ𝑝
1
)
}

= (𝑎 + 2𝜆)
𝑑 (𝑔𝑝, 𝑔𝑝

1
)
 .

(20)
Since 𝑎 + 𝑏 + 𝑐 + 2𝜆 < 1 and 𝑎, 𝑏, 𝑐, 𝜆 ≥ 0, so from (20), 𝑔𝑝 =

𝑔𝑝
1
.
Therefore, 𝑞 = 𝑓𝑝 = ℎ𝑝 = 𝑝 = 𝑔𝑝

1
= 𝑓𝑝
1
= ℎ𝑝
1
= 𝑟, and

hence 𝑓, 𝑔, and ℎ have unique point of coincidence in𝑋.
Now from (1) we have
𝑑 (𝑓𝑓𝑝, 𝑓𝑝)

 =
𝑑 (𝑓𝑓𝑝, 𝑔𝑝)



≤ 𝑎
𝑑 (ℎ𝑓𝑝, ℎ𝑝)

 + 𝑏
𝑑 (𝑓𝑓𝑝, ℎ𝑓𝑝)



+ 𝑐
𝑑 (𝑔𝑝, ℎ𝑝)



+ 𝜆 {
𝑑 (ℎ𝑓𝑝, 𝑔𝑝)

 +
𝑑 (𝑓𝑓𝑝, ℎ𝑝)

} .

(21)
As (𝑓, ℎ) is weakly compatible, therefore from (19) and

(21) we can write
𝑑 (𝑓𝑓𝑝, 𝑓𝑝)

 ≤ (𝑎 + 2𝜆)
𝑑 (𝑓𝑓𝑝, 𝑓𝑝)

 . (22)
As 𝑎+𝑏+𝑐+2𝜆 < 1 and 𝑎, 𝑏, 𝑐, 𝜆 ≥ 0, so from (22), 𝑓𝑓𝑝 =

𝑓𝑝.
Therefore,

𝑓𝑞 = 𝑞. (23)
Also,

𝑞 = 𝑓𝑝 = 𝑓𝑓𝑝 = 𝑓ℎ𝑝 = ℎ𝑓𝑝 = ℎ𝑞. (24)
Again from (1) we have

𝑑 (𝑔𝑝, 𝑔𝑔𝑝)
 =

𝑑 (𝑓𝑝, 𝑔𝑔𝑝)


≤ 𝑎
𝑑 (ℎ𝑝, ℎ𝑔𝑝)

 + 𝑏
𝑑 (𝑓𝑝, ℎ𝑝)



+ 𝑐
𝑑 (𝑔𝑔𝑝, ℎ𝑔𝑝)



+ 𝜆 {
𝑑 (ℎ𝑝, 𝑔𝑔𝑝)

 +
𝑑 (𝑓𝑝, ℎ𝑔𝑝)

} .

(25)

As (𝑔, ℎ) is weakly compatible, therefore from (19) and
(25) we can write

𝑑 (𝑔𝑝, 𝑔𝑔𝑝)
 ≤ (𝑎 + 2𝜆)

𝑑 (𝑔𝑝, 𝑔𝑔𝑝)
 . (26)

As 𝑎+𝑏+𝑐+2𝜆 < 1 and 𝑎, 𝑏, 𝑐, 𝜆 ≥ 0, so from (26), 𝑔𝑔𝑝 = 𝑔𝑝.
Hence,

𝑔𝑞 = 𝑞. (27)

From (23), (24), and (27), it follows that 𝑞 is common fixed
point for 𝑓, 𝑔, and ℎ.

Now we shall prove the uniqueness of common fixed
point for 𝑓, 𝑔, and ℎ. Suppose 𝑟 is another common fixed
point for 𝑓, 𝑔, and ℎ.

Consider
𝑑 (𝑞, 𝑟)

 ≤ 𝑎
𝑑 (ℎ𝑞, ℎ𝑟)

 + 𝑏
𝑑 (𝑓𝑞, ℎ𝑞)



+ 𝑐
𝑑 (𝑔𝑟, ℎ𝑟)



+ 𝜆 {
𝑑 (ℎ𝑞, 𝑔𝑟)

 +
𝑑 (𝑓𝑞, ℎ𝑟)

}

= (𝑎 + 2𝜆)
𝑑 (𝑞, 𝑟)

 .

(28)

Therefore, 𝑞 = 𝑟, since 𝑎 + 𝑏 + 𝑐 + 2𝜆 < 1 and 𝑎, 𝑏, 𝑐, 𝜆 ≥ 0.
Thus 𝑓, 𝑔, and ℎ have unique common fixed point in𝑋.

Remark 11. (i) If we take 𝑏 = 𝑐 = 𝜆 = 0, 𝑎 = 𝑘 in Theorem 10,
then

𝑑 (𝑓𝑥, 𝑔𝑦)
 ≤ 𝑘

𝑑 (ℎ𝑥, ℎ𝑦)
 , where 𝑘 ∈ [0, 1) .

(29)

(ii) If we take 𝑎 = 𝜆 = 0, 𝑏 = 𝑐 = 𝑘 in Theorem 10, then
𝑑 (𝑓𝑥, 𝑔𝑦)

 ≤ 𝑘 {
𝑑 (𝑓𝑥, ℎ𝑥)

 +
𝑑 (𝑔𝑦, ℎ𝑦)

} ,

where 𝑘 ∈ [0,
1

2
) .

(30)

(iii) If we take 𝑎 = 𝑏 = 𝑐 = 0, 𝜆 = 𝑘 in Theorem 10, then
𝑑 (𝑓𝑥, 𝑔𝑦)

 ≤ 𝑘 {
𝑑 (ℎ𝑥, 𝑔𝑦)

 +
𝑑 (𝑓𝑥, ℎ𝑦)

} ,

where 𝑘 ∈ [0,
1

2
) .

(31)

From Remark 11, it is clear that Theorem 2.1 in [4] is a
special case of Theorem 10 with 𝑎 = 𝑘 and 𝑏 = 𝑐 = 𝜆 = 0,
where 𝑘 ∈ [0, 1), and Theorem 2.3 in [4] is a special case of
Theorem 10 with 𝑎 = 𝜆 = 0 and 𝑏 = 𝑐 = 𝑘, where 𝑘 ∈ [0, 1/2).
Therefore, we can say that Theorem 10 has generalized and
unified the main results in [4].

In Theorem 10 if we take 𝑔 = 𝑓, then as immediate con-
sequence of Theorem 10 we obtain the following corollary.

Corollary 12. Let (𝑋, 𝑑) be a cone metric space and 𝑃 be a
normal cone with normal constant 𝐾. Suppose that the map-
pings 𝑓, ℎ : 𝑋 → 𝑋 satisfy the condition

𝑑 (𝑓𝑥, 𝑓𝑦)
 ≤ 𝑎

𝑑 (ℎ𝑥, ℎ𝑦)
 + 𝑏

𝑑 (𝑓𝑥, ℎ𝑥)


+ 𝑐
𝑑 (𝑓𝑦, ℎ𝑦)



+ 𝜆 {
𝑑 (ℎ𝑥, 𝑓𝑦)

 +
𝑑 (𝑓𝑥, ℎ𝑦)

} ,

(32)
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for all 𝑥, 𝑦 ∈ 𝑋, where 𝑎, 𝑏, 𝑐, and 𝜆 are nonnegative real
numbers satisfying 𝑎+ 𝑏+ 𝑐+ 2𝜆 < 1. If the range of ℎ contains
the range of𝑓 and ℎ(𝑋) is a complete subspace of𝑋, then𝑓 and
ℎ have a unique point of coincidence in𝑋. Moreover, if (𝑓, ℎ) is
weakly compatible, then 𝑓 and ℎ have a unique common fixed
point.

Remark 13. (i) If we take 𝑏 = 𝑐 = 𝜆 = 0, 𝑎 = 𝑘 in Corollary 12,
then

𝑑 (𝑓𝑥, 𝑓𝑦)
 ≤ 𝑘

𝑑 (ℎ𝑥, ℎ𝑦)
 , where 𝑘 ∈ [0, 1) .

(33)

(ii) If we take 𝑎 = 𝜆 = 0, 𝑏 = 𝑐 = 𝑘 in Corollary 12, then
𝑑 (𝑓𝑥, 𝑓𝑦)

 ≤ 𝑘 {
𝑑 (𝑓𝑥, ℎ𝑥)

 +
𝑑 (𝑓𝑦, ℎ𝑦)

} ,

where 𝑘 ∈ [0,
1

2
) .

(34)

(iii) If we take 𝑎 = 𝑏 = 𝑐 = 0, 𝜆 = 𝑘 in Corollary 12, then
𝑑 (𝑓𝑥, 𝑓𝑦)

 ≤ 𝑘 {
𝑑 (ℎ𝑥, 𝑓𝑦)

 +
𝑑 (𝑓𝑥, ℎ𝑦)

} ,

where 𝑘 ∈ [0,
1

2
) .

(35)

FromRemark 13 it is clear thatTheorem 2.3 [3] is a special
case ofCorollary 12.Thereforewe can say thatTheorem 10 has
generalized and unified the main result of Radenović in [3].

We present now some nontrivial examples that illustrate
how general and important is the result given byTheorem 10.

Example 14. Let 𝐸 = 𝑅
2, with the norm ‖(𝑥, 𝑦)‖ = |𝑥| + |𝑦|,

be a real Banach space and let 𝑃 = {(𝑥, 𝑦) ∈ 𝐸 : 𝑥, 𝑦 ≥ 0}. If
we consider𝑋 = {𝛼, 𝛽, 𝛾, 𝛿} and define 𝑑 : 𝑋 × 𝑋 → 𝐸 by

𝑑 (𝛼, 𝛽) = 𝑑 (𝛽, 𝛼) = (0.9, 0.9) ,

𝑑 (𝛼, 𝛾) = 𝑑 (𝛾, 𝛼) = (0.5, 3) ,

𝑑 (𝛼, 𝛿) = 𝑑 (𝛿, 𝛼) = (1, 2.2) ,

𝑑 (𝛽, 𝛾) = 𝑑 (𝛾, 𝛽) = (0.5, 3) ,

𝑑 (𝛽, 𝛿) = 𝑑 (𝛿, 𝛽) = (1, 2.5) ,

𝑑 (𝛾, 𝛿) = 𝑑 (𝛿, 𝛾) = (1, 3) ,

𝑑 (𝛼, 𝛼) = 𝑑 (𝛽, 𝛽) = 𝑑 (𝛾, 𝛾) = 𝑑 (𝛿, 𝛿) = (0, 0) ,

(36)

then (𝑋, 𝑑) is a cone metric space. Let 𝑓, 𝑔, and ℎ : 𝑋 → 𝑋

be defined, respectively, as follows:

𝑓𝛼 = 𝛽, 𝑓𝛽 = 𝛽, 𝑓𝛾 = 𝛼, 𝑓𝛿 = 𝛽,

𝑔𝛼 = 𝛽, 𝑔𝛽 = 𝛽, 𝑔𝛾 = 𝛿, 𝑔𝛿 = 𝛽,

ℎ𝛼 = 𝛿, ℎ𝛽 = 𝛽, ℎ𝛾 = 𝛾, ℎ𝛿 = 𝛼.

(37)

Then 𝑓, 𝑔, and ℎ have the properties mentioned in
Theorem 10, and also 𝑓, 𝑔, and ℎ satisfy the inequality (1).

Hence the conditions of Theorem 10 are satisfied. There-
fore we conclude that 𝑓, 𝑔, and ℎ have unique point of coin-
cidence and also unique common fixed point.

Here it is seen that 𝛽 is unique point of coincidence and
also the unique common fixed point of 𝑓, 𝑔, and ℎ.

Remark 15. Example 14 does not satisfy the conditions (29)
and (30) at the points 𝑥 = 𝛾, 𝑦 = 𝛾 and 𝑥 = 𝛽, 𝑦 =

𝛾, respectively. Therefore, we can say that inequalities of
Theorems 2.1 and 2.3 of [4] fail at the points 𝑥 = 𝛾, 𝑦 = 𝛾 and
𝑥 = 𝛽, 𝑦 = 𝛾, respectively. Hence, Theorem 2.1 and Theorem
2.3 of [4] cannot apply to Example 14.

Example 16. Let 𝐸 = 𝑅, with the norm ‖𝑥‖ = |𝑥|, be a real
Banach space and let 𝑃 = {𝑥 ∈ 𝐸 : 𝑥 ≥ 0}. Let 𝑋 = {0, 1, 2}

and also define 𝑑 : 𝑋 × 𝑋 → 𝐸 by 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦| for all
𝑥, 𝑦 ∈ 𝑋.

Then (𝑋, 𝑑) is a cone metric space. Let 𝑓, ℎ : 𝑋 → 𝑋 be
defined, respectively, as follows:

𝑓𝑥 = {
2 − 𝑥, if 𝑥 ̸= 0,

0, if 𝑥 = 0.
(38)

Also

ℎ𝑥 = 𝑥, for 𝑥 ∈ 𝑋. (39)

Then 𝑓 and ℎ have the properties mentioned in Corollary 12,
and also 𝑓 and ℎ satisfy the inequality (32).

Hence the conditions of Corollary 12 are satisfied. There-
fore we conclude that 𝑓 and ℎ have unique point of coinci-
dence and also unique common fixed point.

Here it is seen that 0 is unique point of coincidence and
also the unique common fixed point of 𝑓 and ℎ.

Remark 17. Example 16 does not satisfy the conditions ((33),
(35)), and (34) at the points 𝑥 = 1, 𝑦 = 2 and 𝑥 = 2, 𝑦 =

0, respectively. Therefore, we can say that inequalities ((2.4),
(2.6)) and (2.5) of [3] fail at the points 𝑥 = 1, 𝑦 = 2 and 𝑥 = 2,
𝑦 = 0, respectively. Hence, Theorem 2.3 of [3] cannot apply
to Example 16.

Remark 18. Example 14 does not satisfy the inequality 2.8 of
[5] at the point 𝑥 = 𝛼, 𝑦 = 𝛾. Therefore, it is clear that
Corollary 2.10 of [5] cannot apply to Example 14. Hence
Theorem 10 is more general than Corollary 2.10 of [5].
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