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We propose a class of new double projection algorithms for solving variational inequality problem, which can be viewed as a
framework of the method of Solodov and Svaiter by adopting a class of new hyperplanes. By the separation property of hyperplane,
our method is proved to be globally convergent under very mild assumptions. In addition, we propose a modified version of our
algorithm that finds a solution of variational inequality which is also a fixed point of a given nonexpansive mapping. If, in addition,
a certain local error bound holds, we analyze the convergence rate of the iterative sequence. Numerical experiments prove that our
algorithms are efficient.

1. Introduction

We consider the following variational inequality problem,
denoted by VI(𝐶, 𝑓), to find a vector 𝑥∗ ∈ 𝐶 such that

⟨𝑓 (𝑥
∗

) , 𝑦 − 𝑥
∗

⟩ ≥ 0, ∀𝑦 ∈ 𝐶, (1)

where 𝐶 is a nonempty closed convex set in R𝑛, 𝑓 is a
continuous mapping from R𝑛 into itself, and ⟨⋅, ⋅⟩ denotes
the usual inner product in R𝑛. Let SOL(𝐶, 𝑓) denote the
solution set of VI(𝐶, 𝑓), and let Π

𝐶
denote the projection

onto 𝐶. Throughout this paper, we assume that SOL(𝐶, 𝑓) is
nonempty and 𝑓 has the property that

⟨𝑓 (𝑦) , 𝑦 − 𝑥
∗

⟩ ≥ 0, ∀𝑦 ∈ 𝐶 and all 𝑥∗ ∈ SOL (𝐶, 𝑓) .

(2)

The property (2) holds if 𝑓 is monotone or more generally
pseudomonotone on 𝐶 in the sense of Karamardian [1].

The variational inequality problems have wide applica-
tions in reality. In recent years, many numerical algorithms
for VI(𝐶, 𝑓) have been proposed. These methods include
Newton method, proximal algorithm, projection algorithm,
and their variants; see [2, 3]. Among these methods,
projection-type method is a simple and an efficient one; the
oldest algorithm of this class is the extragradient projection

method introduced in [4] and later refined and extended in
[5–7].

In 1999, Solodov and Svaiter [8] proposed a hyperplane
projection algorithm for solving the VI(𝐶, 𝑓) in Euclidean
space, known also as the double projection algorithm due to
the fact that one needs to implement double projections in
each iteration. One is onto the feasible set 𝐶, and the other is
onto the intersection of the feasible set 𝐶 and the half-space.
More precisely, they presented the following algorithm.

Algorithm 1. Choose an intial point 𝑥0, parameters 𝜇 > 0,
𝜎, 𝛾 ∈ (0, 1) and set 𝑘 = 0.

Step 1. Having 𝑥𝑘, compute

𝑧
𝑘

= Π
𝐶
[𝑥
𝑘

− 𝜇𝑓 (𝑥
𝑘

)] . (3)

Stop if 𝑥𝑘 = 𝑧𝑘; otherwise, go to Step 2.

Step 2. Compute 𝑦𝑘 = 𝑥𝑘 − 𝜂
𝑘
(𝑥𝑘 − 𝑧𝑘), where 𝜂

𝑘
= 𝛾𝑚𝑘 with

𝑚
𝑘
being the smallest nonnegative integer𝑚 such that

⟨𝑓 (𝑥
𝑘

− 𝛾
𝑚

(𝑥
𝑘

− 𝑧
𝑘

)) , 𝑥
𝑘

− 𝑧
𝑘

⟩ ≥ 𝜎

𝑥
𝑘

− 𝑧
𝑘


2

. (4)

Step 3. Compute

𝑥
𝑘+1

= Π
𝐶∩𝐻𝑘

(𝑥
𝑘

) , (5)
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where

𝐻
𝑘
= {𝑥 ∈ R

𝑛

| ⟨𝑓 (𝑦
𝑘

) , 𝑥 − 𝑦
𝑘

⟩ ≤ 0} . (6)

Let 𝑘 := 𝑘 + 1, and return to Step 1.
Wang et al. [9] shows that Algorithm 1 can get a longer

step size, and hence it is a better algorithm than the extra-
gradient method proposed by Korpelevich [7] in theory.
The convergence rate of the iterative sequence generated
by the hyperplane projection method depends mainly on
the choice of hyperplane and projection way. We note that
the hyperplane of Algorithm 1 is constructed by 𝑓(𝑦

𝑘). In
2006, He [10] constructed a new hyperplane by a linear
combination of 𝑓(𝑦𝑘) and 𝑥𝑘 − 𝑧𝑘 and hence modified the
Algorithm 1.

Inspired by the above, in this paper, we construct a class
of new hyperplanes by a linear combination of 𝑓(𝑦𝑘), 𝑥𝑘 − 𝑧𝑘

and 𝑓(𝑥𝑘) and hence present a class of new double projection
algorithms. Using the proof method proposed by He in [10],
our algorithms are proved to be globally convergent under
continuous and pseudomonotone. Numerical experiments
show that constructing hyperplane by 𝑓(𝑥

𝑘) has a certain
significance to change the convergence rate of the iterative
sequence. In addition, we propose a modified version of our
algorithm that find a solution of variational inequality which
is also a fixed point of a given nonexpansive mapping.

The organization of this paper is as follows. In the
next section, we give some preliminaries. The details of the
double projection algorithm are presented, and its global
convergence analysis is proved in Section 3. The modified
double projection algorithm and its convergence analysis are
in Section 4. Numerical results are reported in Section 5.
Finally, conclusions together with some further studies are
summarized in the last section.

2. Preliminaries

Let 𝜇 > 0 be a parameter. The natural residual function 𝑟
𝜇
(⋅)

is defined by

𝑟
𝜇
(𝑥) := 𝑥 − Π

𝐶
(𝑥 − 𝜇𝑓 (𝑥)) . (7)

A well-known fact is that 𝑥∗ is a solution of VI(𝐶, 𝑓) if
and only if 𝑥∗ is a root of 𝑟

𝜇
(⋅).

Lemma 2. Let 𝐶 ⊂ R𝑛 be a closed convex set. Then, it holds
that

(1) ⟨𝑦 − Π
𝐶
(𝑦), 𝑥 − Π

𝐶
(𝑦)⟩ ≤ 0, ∀𝑥 ∈ 𝐶, 𝑦 ∈ R𝑛,

(2) ‖𝑥 − Π
𝐶
(𝑦)‖
2

≤ ‖𝑥 − 𝑦‖
2

− ‖𝑦 − Π
𝐶
(𝑦)‖
2

, ∀𝑥 ∈ 𝐶,

𝑦 ∈ R𝑛.
By Lemma 2(1), it is easy to prove that

⟨𝑓 (𝑥) , 𝑟
𝜇
(𝑥)⟩ ≥ 𝜇

−1

𝑟
𝜇
(𝑥)



2

. (8)

Lemma 3. For every 𝑥 ∈ 𝐶, 𝑥∗ ∈ SOL (𝐶, 𝑓), and 𝜂 ∈ [0, 1],
one has

⟨𝑥 − 𝑥
∗

, 𝑓 (𝑥 − 𝜂𝑟
𝜇
(𝑥))⟩ ≥ 𝜂 ⟨𝑟

𝜇
(𝑥) , 𝑓 (𝑥 − 𝜂𝑟

𝜇
(𝑥))⟩ .

(9)

Proof. Since 𝑥∗ ∈ SOL(𝐶, 𝑓), by property (2),

⟨𝑓 (𝑦) , 𝑦 − 𝑥
∗

⟩ ≥ 0, ∀𝑦 ∈ 𝐶. (10)

In inequality (10), substitute 𝑦with 𝑥−𝜂𝑟
𝜇
(𝑥), and we obtain

the desired result.

Lemma 4. Let 𝐶 be a closed convex set in R𝑛, ℎ be a real-
valued function onR𝑛, and𝐾 be the set {𝑥 ∈ 𝐶 : ℎ(𝑥) ≤ 0}. If𝐾
is nonempty and ℎ is Lipschitz continuous on 𝐶 with modulus
𝜃 > 0, then

dist (𝑥, 𝐾) ≥ 𝜃
−1max {ℎ (𝑥) , 0} , ∀𝑥 ∈ 𝐶, (11)

where dist(𝑥, 𝐾) denotes the distance from 𝑥 to 𝐾.

Proof. See [10, Lemma 2.3].

Lemma 5. Let {𝛼
𝑘
} be a real sequence satisfying 0 < 𝑎 ≤ 𝛼

𝑘
≤

𝑏 < 1 for all 𝑘, and let {]𝑘} and {𝜔𝑘} be two sequences in 𝑅𝑛

such that for some 𝜃 ≥ 0,

lim sup
𝑘→∞


]
𝑘

≤ 𝜃, lim sup

𝑘→∞


𝜔
𝑘

≤ 𝜃,

lim
𝑘→∞


𝛼
𝑘
]
𝑘

+ (1 − 𝛼
𝑘
) 𝜔
𝑘

= 𝜃.

(12)

Then,

lim
𝑘→∞


]
𝑘

− 𝜔
𝑘

= 0. (13)

Proof. See [11, Lemma 3.1].

3. The Double Projection Algorithm and
Convergence Analysis

Algorithm 6. Select 𝑥0 ∈ 𝐶, 𝛼, 𝛽 ≥ 0, 𝜎 > 0, 𝜇 ∈ (0, 𝜎−1),
𝛾 ∈ (0, 1), 𝜔 ≥ 𝛼. Set 𝑘 = 0.

Step 1. For 𝑥𝑘 ∈ 𝐶, define

𝑧
𝑘

= Π
𝐶
(𝑥
𝑘

− 𝜇𝑓 (𝑥
𝑘

)) . (14)

Compute 𝑟
𝜇
(𝑥𝑘). If 𝑟

𝜇
(𝑥𝑘) = 0, stop; else go to Step 2.

Step 2. Compute 𝑦𝑘 = 𝑥𝑘 − 𝜂
𝑘
𝑟
𝜇
(𝑥𝑘), where 𝜂

𝑘
= 𝛾𝑚𝑘 with𝑚

𝑘

being the smallest nonnegative integer𝑚 satisfying

⟨𝑓 (𝑥
𝑘

) − 𝑓 (𝑥
𝑘

− 𝛾
𝑚

𝑟
𝜇
(𝑥
𝑘

)) , 𝑟
𝜇
(𝑥
𝑘

)⟩ ≤ 𝜎

𝑟
𝜇
(𝑥
𝑘

)


2

.

(15)

Step 3. Compute 𝑥𝑘+1 = Π
𝐶𝑘
(𝑥𝑘), where 𝐶

𝑘
= 𝐶 ∩ 𝐻

𝑘
with

𝐻
𝑘
= {V ∈ R𝑛 : ℎ

𝑘
(V) ≤ 0} being a halfspace defined by the

function

ℎ
𝑘
(V) = ⟨𝑑

𝑘

, V − 𝑥
𝑘

⟩ + 𝜔𝜂
𝑘
(1 − 𝜇𝜎)


𝑟
𝜇
(𝑥
𝑘

)


2

, (16)

where normal vector 𝑑𝑘 = 𝛼𝜂
𝑘
𝑟
𝜇
(𝑥𝑘) + 𝛽𝑓(𝑥𝑘) + 𝜔𝜇𝑓(𝑦𝑘).

Let 𝑘 = 𝑘 + 1, and return to Step 1.
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Remark 7. In Algorithm 6, the searching direction is taken as

−𝑑
𝑘

= − (𝛼𝜂
𝑘
𝑟
𝜇
(𝑥
𝑘

) + 𝛽𝑓 (𝑥
𝑘

) + 𝜔𝜇𝑓 (𝑦
𝑘

)) , (17)

which is a linear combination set of 𝑟
𝜇
(𝑥𝑘), 𝑓(𝑥𝑘)with 𝑓(𝑦𝑘).

When taking 𝛼 = 1, 𝛽 = 0, 𝜔 = 𝜇−1, −𝑑𝑘 degrade into the
direction introduced by He [10]; when taking 𝛼 = 𝛽 = 1,
𝜔 = 𝜇

−1, −𝑑𝑘 degrade into the direction introduced by Noor
et al. [12]; when taking 𝛼 = 1/𝜂

𝑘
, 𝛽 = 0, 𝜔 = 1/𝜇𝜂

𝑘
, −𝑑𝑘

degrade into the direction introduced by Wang et al. [13];
when taking 𝛼 = 𝛽 = 0, 𝜔 = 𝜇−1, −𝑑𝑘 degrade into the
direction introduced by Iusem and Svaiter [7], Solodov and
Svaiter [8], andwang et al. [9], which shows that our direction
is a framework of the ones of the above projection methods.

Lemma 8. Let 𝑥∗ ∈ SOL(𝐶, 𝑓), and let the function ℎ
𝑘
be

defined by (16). Then,

ℎ
𝑘
(𝑥
𝑘

) ≥ 𝜔𝜂
𝑘
(1 − 𝜇𝜎)


𝑟
𝜇
(𝑥
𝑘

)


2

, ℎ
𝑘
(𝑥
∗

) ≤ 0. (18)

In particular, if 𝑟
𝜇
(𝑥𝑘) ̸= 0, then ℎ

𝑘
(𝑥𝑘) > 0.

Proof. Consider that

ℎ
𝑘
(𝑥
𝑘

) = ⟨𝑑
𝑘

, 𝑥
𝑘

− 𝑥
𝑘

⟩ + 𝜔𝜂
𝑘
(1 − 𝜇𝜎)


𝑟
𝜇
(𝑥
𝑘

)


2

= 𝜔𝜂
𝑘
(1 − 𝜇𝜎)


𝑟
𝜇
(𝑥
𝑘

)


2

.

(19)

If 𝑟
𝜇
(𝑥𝑘) ̸= 0, then ℎ

𝑘
(𝑥𝑘) > 0 because 𝜇𝜎 < 1. Next, we prove

that ℎ
𝑘
(𝑥∗) ≤ 0. Since

𝑧
𝑘

= Π
𝐶
(𝑥
𝑘

− 𝜇𝑓 (𝑥
𝑘

)) , (20)

by (1) of Lemma 2, we have

⟨𝑥
𝑘

− 𝑧
𝑘

− 𝜇𝑓 (𝑥
𝑘

) , 𝑧
𝑘

− 𝑥
∗

⟩ ≥ 0. (21)

By property (2),

⟨𝜇𝑓 (𝑥
𝑘

) , 𝑥
𝑘

− 𝑥
∗

⟩ ≥ 0. (22)

Adding inequalities (21) and (22), we obtain

⟨𝑥
𝑘

− 𝑧
𝑘

− 𝜇𝑓 (𝑥
𝑘

) , 𝑧
𝑘

− 𝑥
𝑘

⟩ + ⟨𝑥
𝑘

− 𝑧
𝑘

, 𝑥
𝑘

− 𝑥
∗

⟩ ≥ 0.

(23)

We have

⟨𝑥
𝑘

− 𝑥
∗

, 𝑑
𝑘

⟩

= ⟨𝑥
𝑘

− 𝑥
∗

, 𝛼𝜂
𝑘
𝑟
𝜇
(𝑥
𝑘

) + 𝛽𝑓 (𝑥
𝑘

) + 𝜔𝜇𝑓 (𝑦
𝑘

)⟩

= 𝛼𝜂
𝑘
⟨𝑥
𝑘

− 𝑥
∗

, 𝑥
𝑘

− 𝑧
𝑘

⟩ + 𝛽⟨𝑓 (𝑥
𝑘

) , 𝑥
𝑘

− 𝑥
∗

⟩

+ 𝜔𝜇⟨𝑓 (𝑦
𝑘

) , 𝑥
𝑘

− 𝑥
∗

⟩

≥ 𝛼𝜂
𝑘
⟨𝑟
𝜇
(𝑥
𝑘

) − 𝜇𝑓 (𝑥
𝑘

) , 𝑟
𝜇
(𝑥
𝑘

)⟩

+ 𝜔𝜇𝜂
𝑘
⟨𝑓 (𝑦

𝑘

) , 𝑟
𝜇
(𝑥
𝑘

)⟩

= 𝛼𝜂
𝑘


𝑟
𝜇
(𝑥
𝑘

)


2

− 𝛼𝜇𝜂
𝑘
⟨𝑓 (𝑥

𝑘

) − 𝑓 (𝑦
𝑘

) , 𝑟
𝜇
(𝑥
𝑘

)⟩

+ (𝜔 − 𝛼) 𝜇𝜂
𝑘
⟨𝑓 (𝑦

𝑘

) , 𝑟
𝜇
(𝑥
𝑘

)⟩

≥ 𝛼𝜂
𝑘


𝑟
𝜇
(𝑥
𝑘

)


2

− 𝛼𝜇𝜎𝜂
𝑘


𝑟
𝜇
(𝑥
𝑘

)


2

+ (𝜔 − 𝛼) 𝜇𝜂
𝑘
(𝜇
−1

− 𝜎)

𝑟
𝜇
(𝑥
𝑘

)


2

= 𝜂
𝑘
𝜔 (1 − 𝜇𝜎)


𝑟
𝜇
(𝑥
𝑘

)


2

,

(24)

where the first inequality follows from (2), (9), and (23) and
the last one follows (8) and (15).

It follows that

ℎ
𝑘
(𝑥
∗

)

= ⟨𝑑
𝑘

, 𝑥
∗

− 𝑥
𝑘

⟩ + 𝜂
𝑘
𝜔 (1 − 𝜇𝜎)


𝑟
𝜇
(𝑥
𝑘

)


2

= −⟨𝑑
𝑘

, 𝑥
𝑘

− 𝑥
∗

⟩ + 𝜂
𝑘
𝜔 (1 − 𝜇𝜎)


𝑟
𝜇
(𝑥
𝑘

)


2

≤ −𝜂
𝑘
𝜔 (1 − 𝜇𝜎)


𝑟
𝜇
(𝑥
𝑘

)


2

+ 𝜂
𝑘
𝜔 (1 − 𝜇𝜎)


𝑟
𝜇
(𝑥
𝑘

)


2

= 0.

(25)

The proof is completed.

Now, we turn to consider the convergence of Algorithm6.
Certainly, if Algorithm 6 terminates at Step 𝑘, then 𝑥𝑘 is
a solution of VI(𝐶, 𝑓). Therefore, in the following analysis,
we assume that Algorithm 6 always generates an infinite
sequence.

Theorem9. If𝐶 is a nonempty closed and convex set inR𝑛 and
the property (2) holds, then the sequence {𝑥𝑘} ⊂ R𝑛 generated
by Algorithm 6 is bounded and lim

𝑘→∞
dist (𝑥𝑘, 𝐶

𝑘
) = 0.

Proof. Let 𝑥∗ ∈ SOL(𝐶, 𝑓). Since

𝑥
𝑘+1

= Π
𝐶𝑘

(𝑥
𝑘

) , (26)
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it follows from Lemma 2(2) that

𝑥
𝑘+1

− 𝑥
∗


2

≤

𝑥
𝑘

− 𝑥
∗


2

−

𝑥
𝑘+1

− 𝑥
𝑘


2

=

𝑥
𝑘

− 𝑥
∗


2

− dist2 (𝑥𝑘, 𝐶
𝑘
) .

(27)

It follows that the sequence {‖𝑥𝑘+1 − 𝑥∗‖
2

} is nonincreasing,
and hence it is a convergent sequence. Therefore, {𝑥𝑘} is
bounded and lim

𝑘→∞
dist(𝑥𝑘, 𝐶

𝑘
) = 0. The proof is com-

pleted.

Theorem 10. If 𝐶 is a nonempty closed and convex set in R𝑛,
𝑓 is a continuous mapping fromR𝑛 into itself, and the property
(2) holds, then Algorithm 6 generates an infinite sequence {𝑥𝑘}
converging to a solution of VI(𝐶, 𝑓).

Proof. By Theorem 9, the sequence {𝑥𝑘} is bounded. Since 𝑓

and projection operator are continuous, we have the sequence
{𝑧
𝑘

}, and hence the sequence {𝑦𝑘} is bounded. Thus, {𝑓(𝑥𝑘)},
{𝑓(𝑧𝑘)}, and {𝑟

𝜇
(𝑥𝑘)} are bounded sequences; that is, there

exists some𝑀 > 0, such that

𝑑
𝑘

=

𝛼𝜂
𝑘
𝑟
𝜇
(𝑥
𝑘

) + 𝛽𝑓 (𝑥
𝑘

) + 𝜔𝜇𝑓 (𝑦
𝑘

)

≤ 𝑀, ∀𝑘.

(28)

Clearly each function ℎ
𝑘
is Lipschitz continuous on 𝐶 with

modulus𝑀. By Lemmas 8 and 4, we obtain that

dist (𝑥𝑘, 𝐶
𝑘
) ≥ 𝑀

−1

ℎ
𝑘
(𝑥
𝑘

) ≥ 𝑀
−1

𝜔𝜂
𝑘
(1 − 𝜇𝜎)


𝑟
𝜇
(𝑥
𝑘

)


2

.

(29)

Thus, byTheorem 9, we have

lim
𝑘→∞

𝜂
𝑘


𝑟
𝜇
(𝑥
𝑘

)


2

= 0, (30)

which implies that there exist subsequences {𝑥𝑘𝑖} and {𝑥𝑘𝑗} of
{𝑥𝑘}, respectively, such that

lim
𝑖→∞


𝑟
𝜇
(𝑥
𝑘𝑖)


= 0, or lim

𝑗→∞

𝜂
𝑘𝑗

= 0. (31)

Suppose that lim
𝑖→∞

‖𝑟
𝜇
(𝑥𝑘𝑖)‖ = 0. Since 𝑟

𝜇
(⋅) is con-

tinuous and {𝑥𝑘𝑖} is a bounded sequence, there exists an
accumulation point 𝑥 of {𝑥𝑘𝑖} such that 𝑟

𝜇
(𝑥) = 0, which

implies that 𝑥 solves the VI(𝐶, 𝑓). Replacing 𝑥
∗ by 𝑥 in (27),

we obtain that the sequence {‖𝑥𝑘 − 𝑥‖} is also nonincreasing
and hence converges. Since 𝑥 is an accumulation point of
{𝑥𝑘𝑖}, some subsequence of {‖𝑥𝑘𝑖 −𝑥‖} converges to zero.This
shows that the whole sequence {‖𝑥𝑘 − 𝑥‖} converges to zero,
and hence lim

𝑘→∞
𝑥𝑘 = 𝑥.

If lim
𝑗→∞

𝜂
𝑘𝑗

= 0, by the search procedure (15), we have

⟨𝑓 (𝑥
𝑘𝑗) − 𝑓 (𝑥

𝑘𝑗 − 𝜂
𝑘𝑗
𝛾
−1

𝑟
𝜇
(𝑥
𝑘𝑗)) , 𝑟

𝜇
(𝑥
𝑘𝑗)⟩

> 𝜎

𝑟
𝜇
(𝑥
𝑘𝑗)



2

.

(32)

Since 𝑓 and ⟨⋅, ⋅⟩ are continuous, we obtain by letting 𝑗 →

∞ that lim
𝑗→∞

‖𝑟
𝜇
(𝑥𝑘𝑗)‖ = 0. Similar discussion obtains the

desired result.

4. The Modified Double Projection Algorithm
and Convergence Analysis

In this section, we present the modified double projection
algorithmwhich finds a solution of the VI(𝐶, 𝑓)which is also
a fixed point of a given nonexpansive mapping. Let 𝑆 : 𝑅

𝑛 →

𝑅𝑛 be a nonexpansive mapping, and denote by Fix(𝑆) its fixed
point set; that is,

Fix (𝑆) = {𝑥 ∈ 𝑅
𝑛

| 𝑆 (𝑥) = 𝑥} . (33)

Let {𝛼
𝑘
}
∞

𝑘=0
⊂ [𝑐, 𝑑] for some 𝑐, 𝑑 ∈ (0, 1).

Algorithm 11. Select 𝑥
0
∈ 𝐶, 𝛼, 𝛽 ≥ 0, 𝜎 > 0, 𝜇 ∈ (0, 𝜎−1),

𝛾 ∈ (0, 1), 𝜔 ≥ 𝛼. Set 𝑘 = 0.

Step 1. Compute 𝑟
𝜇
(𝑥𝑘) and 𝑦𝑘 = 𝑥𝑘 − 𝜂

𝑘
𝑟
𝜇
(𝑥𝑘), where

𝜂
𝑘
= 𝛾𝑚𝑘 with 𝑚

𝑘
being the smallest nonnegative integer 𝑚

satisfying the line search (15).
Step 2. Compute

𝑥
𝑘+1

= 𝛼
𝑘
𝑥
𝑘

+ (1 − 𝛼
𝑘
) 𝑆Π
𝐶𝑘

(𝑥
𝑘

) , (34)

where 𝐶
𝑘
= 𝐶 ∩ 𝐻

𝑘
with 𝐻

𝑘
= {V ∈ R𝑛 : ℎ

𝑘
(V) ≤ 0} being a

halfspace defined by the function (16).
Let 𝑘 := 𝑘 + 1, and return to Step 1.
We, next, establish a convergence theorem for Algo-

rithm 11. We assume that the following condition holds.

Fix (𝑆) ∩ SOL (𝐶, 𝑓) ̸= 0. (35)

We also recall that in 𝑅
𝑛,

𝜆𝑥 + (1 − 𝜆) 𝑦

2

= 𝜆‖𝑥‖
2

+ (1 − 𝜆)
𝑦


2

− 𝜆 (1 − 𝜆)
𝑥 − 𝑦


2

,

(36)

for all 𝑥, 𝑦 ∈ 𝑅𝑛 and 𝜆 ∈ [0, 1].

Theorem 12. Suppose that the assumptions of Theorem 10
hold, then any sequence {𝑥𝑘} generalized by Algorithm 11
converges to some point of Fix(𝑆) ∩ SOL(𝐶, 𝑓).
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Proof. Denote 𝑡𝑘 = Π
𝐶𝑘
(𝑥𝑘) for all 𝑘 ≥ 0. Let 𝑢 ∈ Fix(S) ∩

SOL(𝐶, 𝑓). By the definition of 𝑥𝑘+1, we obtain


𝑥
𝑘+1

− 𝑢


2

=

𝛼
𝑘
𝑥
𝑘

+ (1 − 𝛼
𝑘
) 𝑆 (𝑡
𝑘

) − 𝑢


2

=

𝛼
𝑘
(𝑥
𝑘

− 𝑢) + (1 − 𝛼
𝑘
) (𝑆 (𝑡

𝑘

) − 𝑢)


2

(37)

= 𝛼
𝑘


𝑥
𝑘

− 𝑢


2

+ (1 − 𝛼
𝑘
)

𝑆 (𝑡
𝑘

) − 𝑢


2

− 𝛼
𝑘
(1 − 𝛼

𝑘
)

𝑥
𝑘

− 𝑆 (𝑡
𝑘

)


2

≤ 𝛼
𝑘


𝑥
𝑘

− 𝑢


2

+ (1 − 𝛼
𝑘
)

𝑆 (𝑡
𝑘

) − 𝑆 (𝑢)


2

≤ 𝛼
𝑘


𝑥
𝑘

− 𝑢


2

+ (1 − 𝛼
𝑘
)

𝑡
𝑘

− 𝑢


2

≤ 𝛼
𝑘


𝑥
𝑘

− 𝑢


2

+ (1 − 𝛼
𝑘
)

× (

𝑥
𝑘

− 𝑢


2

−

𝑡
𝑘

− 𝑥
𝑘


2

)

=

𝑥
𝑘

− 𝑢


2

− (1 − 𝛼
𝑘
)

𝑡
𝑘

− 𝑥
𝑘


2

(38)

=

𝑥
𝑘

− 𝑢


2

− (1 − 𝛼
𝑘
) dist2 (𝑥𝑘, 𝐶

𝑘
) , (39)

where the third equality follows from (36), the second
inequality follows from the nonexpansion of 𝑆, and the third
inequality follows from Lemma 2(2). In (39), using the proof
similar to those ofTheorem 10, we obtain that {𝑥𝑘} converges
to some solution 𝑥 of VI(𝐶, 𝑓). It is now left to show that
𝑥 ∈ Fix(𝑆). By (38), we obtain that {‖𝑥𝑘 − 𝑢‖} is a convergent
sequence; that is, there exists some 𝜃 > 0, such that

lim
𝑘→∞


𝑥
𝑘

− 𝑢

= 𝜃, (40)

lim
𝑘→∞


𝑥
𝑘

− 𝑡
𝑘

= 0. (41)

Since 𝑆 is nonexpansive, we obtain

𝑆 (𝑡
𝑘

) − 𝑢

=

𝑆 (𝑡
𝑘

) − 𝑆 (𝑢)

≤

𝑡
𝑘

− 𝑢

≤

𝑥
𝑘

− 𝑢

, (42)

which, together with (40), means that

lim sup
𝑘→∞


𝑆 (𝑡
𝑘

) − 𝑢

≤ 𝜃. (43)

Furthermore,

lim
𝑘→∞


𝛼
𝑘
(𝑥
𝑘

− 𝑢) + (1 − 𝛼
𝑘
) (𝑆 (𝑡

𝑘

) − 𝑢)


= lim
𝑘→∞


𝛼
𝑘
𝑥
𝑘

+ (1 − 𝛼
𝑘
) 𝑆 (𝑡
𝑘

) − 𝑢


= lim
𝑘→∞


𝑥
𝑘+1

− 𝑢

= 𝜃.

(44)

So applying Lemma 5, we obtain

lim
𝑘→∞


𝑆 (𝑡
𝑘

) − 𝑥
𝑘

= 0. (45)

Since


𝑆 (𝑥
𝑘

) − 𝑥
𝑘

=


𝑆 (𝑥
𝑘

) − 𝑆 (𝑡
𝑘

) + 𝑆 (𝑡
𝑘

) − 𝑥
𝑘


≤

𝑆 (𝑥
𝑘

) − 𝑆 (𝑡
𝑘

)

+

𝑆 (𝑡
𝑘

) − 𝑥
𝑘


≤

𝑥
𝑘

− 𝑡
𝑘

+

𝑆 (𝑡
𝑘

) − 𝑥
𝑘

,

(46)

it follows from (41) and (45) that

lim
𝑘→∞


𝑆 (𝑥
𝑘

) − 𝑥
𝑘

= 0. (47)

Since 𝑆 is nonexpansive on R𝑛 and 𝑥𝑘 converges to 𝑥, we
obtain that 𝑥 − 𝑆(𝑥) = 0, which means that 𝑥 ∈ Fix(𝑆).
Therefore, the sequence {𝑥𝑘} converges to 𝑥 ∈ Fix(𝑆) ∩

SOL(𝐶, 𝑓).

Next, we provide a result on the convergence rate of the
iterative sequence generated byAlgorithm 11. To establish this
result, we need the following local error bound condition to
hold.

There exist two positive constants 𝑐 and 𝛿 such that

dist (𝑥, Fix (𝑆) ∩ SOL (𝐶, 𝑓)) ≤ 𝑐

𝑟
𝜇
(𝑥
𝑘

)

,

∀𝑥 satisfying 
𝑟
𝜇
(𝑥)


≤ 𝛿.

(48)

Theorem 13. In addition to the assumptions of Theorem 10,
if 𝑓 is Lipschitz continuous with modulus 𝐿 > 0 and the local
error bound condition (48) holds, then there is a constant 𝜏 > 0

such that for sufficiently large 𝑘,

dist (𝑥𝑘, Fix (𝑆) ∩ SOL (𝐶, 𝑓))

≤
1

√𝜏𝑘 + dist−2(𝑥0, Fix (𝑆) ∩ SOL (𝐶, 𝑓))

.
(49)

Proof. Set 𝜂 := min{1/3, 𝐿−1𝛾𝜎}.We first prove that 𝜂
𝑘
> 𝜂 for

all 𝑘. By the definition of 𝜂
𝑘
, we obtain 𝜂

𝑘
∈ (0, 1]. If 𝜂

𝑘
= 1,

then 𝜂
𝑘

> 𝜂 holds. Now, we assume that 𝜂
𝑘

< 1. It follows
from 𝜂

𝑘
= 𝛾𝑚𝑘 that 𝑚

𝑘
≥ 1. By the construction of 𝜂

𝑘
, we

have

⟨𝑓 (𝑥
𝑘

) − 𝑓 (𝑥
𝑘

− 𝜂
𝑘
𝛾
−1

𝑟
𝜇
(𝑥
𝑘

)) , 𝑟
𝜇
(𝑥
𝑘

)⟩ > 𝜎

𝑟
𝜇
(𝑥
𝑘

)


2

.

(50)

From the Lipschitz continuity of 𝑓, we have

𝜎

𝑟
𝜇
(𝑥
𝑘

)


2

< ⟨𝑓 (𝑥
𝑘

) − 𝑓 (𝑥
𝑘

− 𝜂
𝑘
𝛾
−1

𝑟
𝜇
(𝑥
𝑘

)) , 𝑟
𝜇
(𝑥
𝑘

)⟩

≤ 𝐿𝛾
−1

𝜂
𝑘


𝑟
𝜇
(𝑥
𝑘

)


2

.

(51)

Thus, 𝜂
𝑘
> 𝐿−1𝛾𝜎 ≥ 𝜂.



6 Journal of Applied Mathematics

Table 1: Example 14: Numerical results for initial point 𝑥
0

=

(1, 1, . . . , 1)
𝑇 and 𝜀 = 10

−4.

Dim (𝑛) Algorithm 6 [10, Algorithm 2.1] [8, Algorithm 2.2]
iter CPU iter CPU iter CPU

100 10 0.530 11 0.577 15 0.624

200 10 1.279 12 1.529 15 1.778

500 11 10.905 13 11.497 15 13.99

1000 12 66.63 13 75.04 17 104.08

2000 12 340.9 14 441.05 17 610.3

Table 2: Example 14: Numerical results for initial point 𝑥
0

=

(0, 0, . . . , 0)
𝑇 and 𝜀 = 10−4.

Dim (𝑛) Algorithm 6 [10, Algorithm 2.1] [8, Algorithm 2.2]
iter CPU iter CPU iter CPU

100 10 0.530 11 0.577 15 0.593

200 10 1.185 12 1.451 15 1.809

500 11 10.78 13 11.06 15 13.41

1000 12 65.69 13 74.16 17 101.4

2000 12 341.6 14 431.4 17 593.1

Let 𝑢∗ ∈ ΠFix(𝑆) ∩ SOL(𝐶,𝑓)(𝑥
𝑘). By (29), (39), and (48), we

obtain that for sufficiently large 𝑘,

dist2 (𝑥𝑘+1, Fix (𝑆) ∩ SOL (𝐶, 𝑓))

≤

𝑥
𝑘+1

− 𝑢
∗


2

≤

𝑥
𝑘

− 𝑢
∗


2

− (1 − 𝛼
𝑘
) dist2 (𝑥𝑘, 𝐶

𝑘
)

≤

𝑥
𝑘

− 𝑢
∗


2

− 𝑀
−2

𝜔
2

𝜂
2

𝑘
(1 − 𝜇𝜎)

2
𝑟
𝜇
(𝑥
𝑘

)


4

≤ dist2 (𝑥𝑘, Fix (𝑆) ∩ SOL (𝐶, 𝑓)) − 𝑀
−2

𝜔
2

𝜂
2

× (1 − 𝜇𝜎)
2

𝑐
−4dist4 (𝑥𝑘, Fix (𝑆) ∩ SOL (𝐶, 𝑓)) .

(52)

Denote 𝜏 = 𝑀−2𝜔2𝜂2(1 − 𝜇𝜎)
2

𝑐−4. Applying Lemma 6 in
[14, Chapter 2], we have

dist (𝑥𝑘, Fix (𝑆) ∩ SOL (𝐶, 𝑓))

≤
1

√𝜏𝑘 + dist−2 (𝑥0, Fix (𝑆) ∩ SOL (𝐶, 𝑓))

.
(53)

5. Numerical Experiments

In this section, we present some numerical experiments’
results to show the effectiveness of the proposed algorithm.
The MATLAB codes are run on a notebook computer with
Intel Core 2 CPU 2.10GHZ and RAM 2.00GM under
MATLAB Version 7.0. We compare the performance of our
Algorithm 6, [10, Algorithm 2.1] and [8, Algorithm 2.2].

In all tables, we use Dim to mean the dimension of the
problem, CPU to represent the CPU total runtime of the
computer in seconds, and iter to mean the total iterative
number of times. The tolerance 𝜀 means when ‖𝑟

𝜇
(𝑥
𝑘
)‖ ≤ 𝜀,

the procedure stops. We choose 𝜎 = 2.4, 𝛾 = 0.9, 𝜇 = 0.26, 𝛼
= 0.04, 𝛽 = 0.01, and 𝜔 = 5 for our Algorithm 6 in Tables 1
and 2, 𝜎 = 2.4, 𝛾 = 0.9, 𝜇 = 0.32, 𝛼 = 0.04, 𝛽 = 0.001, and
𝜔 = 5.3 as Algorithm 6 in Table 3; 𝛾 = 0.5, 𝜎 = 4, and 𝜇 = 0.2

for Algorithm 2.1 in [10]; 𝜎 = 0.3, 𝜃 = 4, and 𝛾 = 0.5 for
Algorithm 2.2 in [8]. The choices of the parameters for the
latter two algorithms are what the corresponding references
proposed.

Example 14. Consider the affine variational inequality with
𝐶 = [0, 1]

𝑛 and 𝑓(𝑥) = 𝑀𝑥 + 𝑑, where

𝑀 =
(
(

(

4 −2 0 ⋅ ⋅ ⋅ 0 0

1 4 −2 ⋅ ⋅ ⋅ 0 0

0 1 4 ⋅ ⋅ ⋅ 0 0
...

0 0 0 ⋅ ⋅ ⋅ 4 −2

0 0 0 ⋅ ⋅ ⋅ 1 4

)
)

)

,

𝑑 = (

−1

−1
...
−1

) .

(54)

This problem was first tested in [15].

From Tables 1 and 2, we can see that our Algorithm 6 is
more efficient than Algorithm 2.2 in [8] and Algorithm 2.1 in
[10]. It can be observed that the number of iterations of our
algorithm ismuch less than those of [8, 10], and the CPU time
in ourmethod is shorter than those of [8, 10]. In addition, for a
set of similar problems, it seems that the number of iterations
and the CPU time of the above three methods are not very
sensitive to starting point. In fact, the initial points of the
methods can be chosen randomly.

Example 15. The Kojima-Shindo nonlinear complementarity
problem (NCP) (with 𝑛 = 4) was considered first in [16],
where the function 𝐹(𝑥) is defined by

𝑓 (𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
) = (

3𝑥2
1
+ 2𝑥
1
𝑥
2
+ 2𝑥2
2
+ 𝑥
3
+ 3𝑥
4
− 6

2𝑥2
1
+ 𝑥
1
+ 𝑥2
2
+ 10𝑥

3
+ 2𝑥
4
− 2

3𝑥2
1
+ 𝑥
1
𝑥
2
+ 2𝑥2
2
+ 2𝑥
3
+ 9𝑥
4
− 9

𝑥2
1
+ 3𝑥2
2
+ 2𝑥
3
+ 3𝑥
4
− 3

).

(55)

Let the feasible set be the simplex 𝐶 = {𝑥 ∈ R𝑛
+
| 𝑥
1
+ 𝑥
2
+

𝑥
3
+ 𝑥
4
= 4}.
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Table 3: Examples 15 and 16.

𝜀
Algorithm 6 [10, Algorithm 2.1] [8, Algorithm 2.2]

iter CPU iter CPU iter CPU
Mathiesen 10−4 22 0.281 37 0.327 28 0.359

Harnash5 10−10 11 0.312 12 0.203 22 0.312

Harnash10 10−10 35 0.528 41 0.312 51 0.468

Example 16. The example comes from the problem of com-
puting the Cournot-Nash equilibria of 𝑁-firm noncoopera-
tive games.The definingmapping𝐹: R𝑛 → R𝑛 is of the form

𝑓
𝑖
(𝑞) = 𝑐

𝑖
(𝑞
𝑖
) − 𝑝(

𝑛

∑
𝑗=1

𝑞
𝑗
) − 𝑞

𝑖
𝑝(

𝑛

∑
𝑗=1

𝑞
𝑗
) ,

𝑖 = 1, 2, . . . , 𝑛,

(56)

where

𝑐
𝑖
(𝑞
𝑖
) = 𝛼
𝑖
𝑞
𝑖
+ [

𝛽
𝑖

1 + 𝛽
𝑖

] 𝐿
−1/𝛽𝑖

𝑖
𝑞
1+1/𝛽𝑖

𝑖
,

𝑝 (𝑄) = 5000
1/𝛾

𝑄
−1/𝛾

,

(57)

with

𝑄 =

𝑛

∑
𝑗=1

𝑞
𝑗
. (58)

The constants 𝛼
𝑖
, 𝐿
𝑖
, 𝛽
𝑖
, and 𝛾 are positive scalars whose data

are taken from [17] with 𝑛 = 5 and 𝑛 = 10.
In Table 3, Mathiesen’s test problem is Example 15. We

use 𝑥
0

= (1, 1, 1, 1)
𝑇 as the initial point. The test problem

of 𝐻𝑎𝑟𝑛𝑎𝑠ℎ5 and 𝐻𝑎𝑟𝑛𝑎𝑠ℎ10 is Example 16 with 𝑛 = 5 and
𝑛 = 10, respectively.

From Table 3, we can see that the number of iterations of
our algorithm is less than the ones of the methods in [8, 10].
In Mathiesen’s test problem, Table 3 shows that the CPU time
in our algorithm is also shorter than those in [8, 10].

Tables 1, 2, and 3 show that constructing hyperplane by
𝑓(𝑥
𝑘), has a certain significance to change the convergence

rate of the iterative sequence.

6. Conclusion

In this paper, a class of double projection algorithms for
solving pseudomonotone variational inequalities are pro-
posed on the basis of the algorithms in [8, 10]. The global
convergence of the proposed algorithms is proved under the
condition that 𝑓 is continuous and pseudomonotone. The
numerical experiments’ results show that our algorithms are
more efficient if the direction is chosen properly. How to
choose a suitable direction for the different kind of variational
inequalities problems would be an interesting topic in further
research.

In addition, in Algorithm 6, the searching direction is
taken as 𝛼𝜂

𝑘
𝑟
𝜇
(𝑥𝑘) + 𝛽𝑓(𝑥𝑘) + 𝜔𝜇𝑓(𝑦𝑘), which is a linear

combination of 𝑟
𝜇
(𝑥𝑘), 𝑓(𝑥𝑘) with 𝑓(𝑦𝑘). I wonder whether

there exists an other combination for searching direction of
projection method. This is also a topic for further research.
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