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A new and efficient numerical approach is developed for solving nonlinear Lane-Emden type equations via Bernoulli operational
matrix of differentiation.The fundamental structure of the presentedmethod is based on theTaumethod togetherwith theBernoulli
polynomial approximations in which a new operational matrix is introduced. After implementation of our scheme, the main
problem would be transformed into a system of algebraic equations such that its solutions are the unknown Bernoulli coefficients.
Also, under severalmild conditions the error analysis of the proposedmethod is provided. Several examples are included to illustrate
the efficiency and accuracy of the proposed technique and also the results are compared with the differentmethods. All calculations
are done in Maple 13.

1. Introduction

In recent years, the researches on the singular initial value
problems (SIVPs) in several special second-order ordinary
differential equations (ODEs) have received considerable
attention among mathematicians and physicists. One of the
most well-known classes of such equations are the Lane-
Emden type equations which model many phenomena in
mathematical physics and astrophysics. They are nonlinear
ordinary differential equations which describe the equi-
librium density distribution in self-gravitating sphere of
polytrophic isothermal gas and have a singularity at the
origin [1]. It must be noted that these equations have
fundamental importance in the field of radiative cooling
and modeling of clusters of galaxies. Moreover, it has been
recently observed that the density profiles of dark matter
halos are often modeled by the isothermal Lane-Emden
equation with suitable boundary conditions at the origin
[2]. Since getting the analytic solution of these equations
is a difficult task in many cases, robust numerical schemes
must be constructed for obtaining the approximated solu-
tions. In this paper, we will present an efficient method for

computing the numerical solution of the Lane-Emden type
equations [3, 4]

𝑦
󸀠󸀠

(𝑥) +
𝛼

𝑥
𝑦
󸀠

(𝑥) + 𝑓 (𝑥, 𝑦 (𝑥)) = 𝑔 (𝑥) , 𝑥 ∈ [0, 1] , 𝛼 > 0,

(1)

with the initial conditions

𝑦 (0) = 𝑎, 𝑦
󸀠

(0) = 0, (2)

where the prime denotes the differentiation with respect to 𝑥,
𝑎 is a constant, 𝑓 and 𝑔 are nonlinear continuous functions.
Selecting 𝛼 = 2, 𝑓(𝑥, 𝑦(𝑥)) = (𝑦(𝑥))

𝑛, 𝑔(𝑥) = 0 and 𝑎 = 1

yields [5, 6]

𝑦
󸀠󸀠

(𝑥) +
2

𝑥
𝑦
󸀠

(𝑥) + 𝑦
𝑛

(𝑥) = 0, 𝑥 ∈ [0, 1] , (3)

which has another form

1

𝑥2

𝑑

𝑑𝑥
(𝑥
2
𝑑𝑦

𝑑𝑥
) + 𝑦
𝑛

(𝑥) = 0, 𝑥 ∈ [0, 1] , (4)
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subject to the initial conditions

𝑦 (0) = 1, 𝑦
󸀠

(0) = 0. (5)

Similarly, isothermal gas spheres equation (in the case of
𝑓(𝑥, 𝑦(𝑥)) = 𝑒

𝑦(𝑥)) is modeled by [5]

𝑦
󸀠󸀠

(𝑥) +
2

𝑥
𝑦
󸀠

(𝑥) + 𝑒
𝑦(𝑥)

= 0, 𝑥 ∈ [0, 1] , (6)

with the zero values of 𝑦(0) and 𝑦󸀠(0).
Recently, many analytical and numerical methods have

been used to solve Lane-Emden type equations (1), (3) and
(6).Wenote that themain difficulty arises in the singularity of
the equations at 𝑥 = 0. In [7, 8], Wazwaz employed the Ado-
mian decomposition method with an alternate framework
designed to overcome the difficulty of the singular point.
The authors of [9] also applied pseudospectral method based
on rational Legendre functions. Ramos [10–13] and Yousefi
[14] solved Lane-Emden equation through several powerful
numerical methods. Also, Yıldırım and Öziş [15] presented
approximate exact solutions of a class of Lane-Emden type
singular IVPs problems, by the VIM.

Since the beginning of 1994, the Bernoulli, Bernstein,
Legendre, Taylor, Fourier, and Bessel matrix methods have
been used in the works [2, 14, 16–26] to solve high-order
linear and nonlinear differential (including hyperbolic partial
differential equations) FredholmVolterra integro-differential
difference delay equations and their systems. The main
characteristic of these approaches is based on the operational
matrices of differentiation instead of integration. However,
we can use high order Gauss quadrature rules such as [27,
28] for problems in different integration forms. To the best
of our knowledge, this is the first work concerning the
Bernoulli matrix method for solving nonlinear SIVPs such
as Lane-Emden type equations (1), (3), and (6). This partially
motivated our interest in such method. Therefore, in the
light of the above-mentioned methods and by means of the
matrix relations between the Bernoulli polynomials and their
derivatives together with the idea of the Tau scheme, we
develop a new method for solving nonlinear Lane-Emden
type equations.

The Bernoulli polynomials play an important role in
several branches of mathematical analysis, such as the theory
of distributions in p-adic analysis [29], the theory of modular
forms [30], the study of polynomial expansions of analytic
functions [31], and so forth. Recently, new applications of the
Bernoulli polynomials have also been found in mathematical
physics, in connection with the theory of the Korteweg-de
Vries equation [32] and Lamé equation [33], and in the study
of vertex algebras [34].

In this paper, we are concerned with the direct solution
technique for solving (1), (3), and (6) (with the associated
initial conditions) using the Tau method based on Bernoulli
operational matrix, such that it can be implemented effi-
ciently and at the same time has a good convergence property.
It should be noted that, the Tau method originate from
vanishing the inner product of the residual and each of the
test functions. By the aid of Tau scheme, the mentioned

equations would be transformed into the systems of algebraic
equations.

The remainder of the paper is organized as follows. In
Section 2 we introduce some mathematical preliminaries
of Bernoulli polynomials and also their operational matrix
of differentiation. Section 3 is devoted to applying the Tau
method for solving Lane-Emden type equations using the
Bernoulli operational matrix. In Section 4 we provide the
error analysis of the proposed method. In Section 5 the
proposedmethod is applied to several examples togetherwith
a full comparison to other recent methods. Also conclusions
are given in Section 6.

2. Bernoulli Polynomials and Their
Operational Matrix of Differentiation

Bernoulli polynomils and their applications can be found
in number theory and classical analysis initially. They also
appear in the integral representation of the differentiable
periodic functions, since they are employed for approximat-
ing such functions in terms of polynomials.They are also used
for representing the remainder term of the composite Euler-
Maclaurin quadrature rule [16].

In this section, we recall some properties of the Bernoulli
polynomials which will be of fundamental importance in the
sequel.

Property 1 (differentiation: see [16]). 𝐵󸀠
𝑛
(𝑥) = 𝑛𝐵

𝑛−1
(𝑥), 𝑛 =

1, 2, . . ..

Property 2 (integral means conditions: see [16]).
∫
1

0
𝐵
𝑛
(𝑥)𝑑𝑥= 0, 𝑛 = 1, 2, . . ..

Property 3 (differences: see [16]). 𝐵
𝑛
(𝑥 + 1) − 𝐵

𝑛
(𝑥) =

𝑛𝑥
𝑛−1, 𝑛 = 1, 2, . . ..

Property 4 (monomials representation: see [16]). 𝐵
𝑛
(𝑥) =

∑
𝑛

𝑘=0
(
𝑛

𝑘
) 𝐵
𝑘
(0)𝑥
𝑛−𝑘, 𝑛 = 1, 2, . . ..

If we introduce the Bernoulli vector 𝐵(𝑥) in the form
𝐵(𝑥) = [𝐵

0
(𝑥), 𝐵

1
(𝑥), . . . , 𝐵

𝑁
(𝑥)], then the derivative of the

𝐵(𝑥), with the aid of the first property, can be expressed in
the matrix form by

[
[
[
[
[
[
[
[
[
[
[

[

𝐵
󸀠

0
(𝑥)

𝐵
󸀠

1
(𝑥)

𝐵
󸀠

2
(𝑥)

...
𝐵
󸀠

𝑁−1
(𝑥)

𝐵
󸀠

𝑁
(𝑥)

]
]
]
]
]
]
]
]
]
]
]

]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐵
󸀠
(𝑥)
𝑇

=

[
[
[
[
[
[
[
[
[
[
[

[

0 0 0 . . . 0 0 0

1 0 0 . . . 0 0 0

0 2 0 . . . 0 0 0

...
...

... d
...

...
...

0 0 0 . . . 𝑁 − 1 0 0

0 0 0 . . . 0 𝑁 0

]
]
]
]
]
]
]
]
]
]
]

]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑀

[
[
[
[
[
[
[
[
[
[
[

[

𝐵
0
(𝑥)

𝐵
1
(𝑥)

𝐵
2
(𝑥)

...
𝐵
𝑁−1

(𝑥)

𝐵
𝑁
(𝑥)

]
]
]
]
]
]
]
]
]
]
]

]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐵
𝑇
(𝑥)

,

(7)

where 𝑀 is the (𝑁 + 1) × (𝑁 + 1) operational matrix of
differentiation.
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Accordingly, the 𝑘th derivative of 𝐵(𝑥) can be given by

𝐵
󸀠

(𝑥)
𝑇
= 𝑀𝐵(𝑥)

𝑇
󳨐⇒ 𝐵

(1)

(𝑥) = 𝐵 (𝑥)𝑀
𝑇
,

𝐵
(2)

(𝑥) = 𝐵
(1)

(𝑥)𝑀
𝑇
= 𝐵 (𝑥) (𝑀

𝑇
)
2

,

𝐵
(3)

(𝑥) = 𝐵
(1)

(𝑥) (𝑀
𝑇
)
2

= 𝐵 (𝑥) (𝑀
𝑇
)
3

,

...

𝐵
(𝑘)

(𝑥) = 𝐵 (𝑥) (𝑀
𝑇
)
𝑘

,

(8)

where𝑀 is defined in (7).

3. Implementation of the Tau Scheme Using
Bernoulli Operational Matrix

In this section, we apply the Tau method for solving the
Lane-Emden type equations numerically. Therefore, we first
assume that the solution of the Lane-Emden type equations
can be written in terms of linear combination of Bernoulli
polynomials (with unknown coefficients). Then, inner prod-
uct of the residual with each of the test functions should
be assumed to zero. Thus, the considered problem would be
transformed into a system of nonlinear algebraic equations in
which its solutions are the associated Bernoulli coefficients.
Again consider the Lane-Emden equation

𝑦
󸀠󸀠

(𝑥) +
𝛼

𝑥
𝑦
󸀠

(𝑥) + 𝑓 (𝑥, 𝑦) = 𝑔 (𝑥) , 𝛼, 𝑥 ≥ 0 (9)

with the initial conditions

𝑦 (0) = 𝑎, 𝑦
󸀠

(0) = 0. (10)

Now we approximate 𝑦(𝑥), 𝑓(𝑥, 𝑦(𝑥)) and 𝑔(𝑥) by Bernoulli
polynomials in the following forms

𝑦 (𝑥) ≈ 𝑦
𝑁
(𝑥) =

𝑁

∑

𝑖=0

𝑐
𝑖
𝐵
𝑖
(𝑥) = 𝐶𝐵

𝑇

(𝑥) ,

𝑓 (𝑥, 𝑦) ≈ 𝑓 (𝑥, 𝑦
𝑁
(𝑥)) = 𝑓 (𝑥, 𝐶𝐵

𝑇

(𝑥)) ,

𝑔 (𝑥) ≈ 𝑔
𝑁
(𝑥) =

𝑁

∑

𝑖=0

𝑔
𝑖
𝐵
𝑖
(𝑥) = 𝐺𝐵

𝑇

(𝑥) ,

(11)

where the unknowns are 𝐶 = [𝑐
0
𝑐
1
⋅ ⋅ ⋅ 𝑐
𝑁
] mean-

while 𝐺 = [𝑔
0
𝑔
1
⋅ ⋅ ⋅ 𝑔

𝑁
] are known and 𝐵(𝑥) =

[𝐵
0
(𝑥) 𝐵

1
(𝑥) ⋅ ⋅ ⋅ 𝐵

𝑁
(𝑥)] are the Bernoulli polynomials.

Using operational matrix of differentiation of Bernoulli
polynomials, (1) can be written approximately as follows:

𝐶𝑀
2
𝐵
𝑇

(𝑥) +
𝛼

𝑥
𝐶𝑀
1
𝐵
𝑇

(𝑥) + 𝑓 (𝑥, 𝐶𝐵
𝑇

(𝑥)) ≈ 𝐺𝐵
𝑇

(𝑥) .

(12)

The residual 𝑅
𝑁
(𝑥) for (12) can be written as

𝑅
𝑁
(𝑥) = 𝐶𝑀

2
𝐵
𝑇

(𝑥) +
𝛼

𝑥
𝐶𝑀
1
𝐵
𝑇

(𝑥)

+ 𝑓 (𝑥, 𝐶𝐵
𝑇

(𝑥)) − 𝐺𝐵
𝑇

(𝑥) .

(13)

Applying the typical Tau method, which is used in the sense
of a particular form of the Petrov-Galerkin method [4], (12)
can be converted in𝑁 − 1 nonlinear equations by applying

⟨𝑅
𝑁
(𝑥) , 𝐵

𝑖
(𝑥)⟩ = ∫

1

0

(𝑅
𝑁
(𝑥) 𝐵
𝑖
(𝑥)) 𝑑𝑥 = 0,

𝑖 = 0, 1, . . . , 𝑁 − 2.

(14)

The initial conditions are given by

𝑦 (0) = 𝐶
𝑇
𝐵 (0) = 𝑎, 𝑦

(1)

(0) = 𝐶
𝑇
𝑀𝐵(0) = 0. (15)

Equations (14) and (15) generate 𝑁 + 1 sets of nonlinear
equations in terms of𝑁+1 unknownBernoulli coefficients 𝑐

𝑖
,

𝑖 = 0, 1, . . . , 𝑁.These nonlinear equations can be solved using
Newton’s iterative method that was implemented in 𝑓 𝑠𝑜𝑙V𝑒
command of MAPLE software for obtaining the unknown
coefficients of the row vector 𝐶 and hence the solution 𝑦(𝑥)
can be approximated easily by 𝑦

𝑁
(𝑥).

4. Error Analysis and Accuracy of the Solution

In this section, we will illustrate convergence of the pro-
posed method assuming the known functions and also the
unknown solution are in the space 𝐶𝑚[0, 1] (where 𝑚 is
the degree of smoothness of the problem) with bounded
derivatives. But some lemmas should be recalled from the
literature and then the main theorem of this section would
be provided.

Lemma 1. Assume that 𝑔 ∈ 𝐿
2
[0, 1] is an enough smooth

function and also is approximated by the Bernoulli series
∑
∞

𝑛=0
𝑔
𝑛
𝐵
𝑛
(𝑥), then the coefficients 𝑔

𝑛
for all 𝑛 = 0, 1, . . . ,∞

can be calculated from the following relation:

𝑔
𝑛
=
1

𝑛!
∫

1

0

𝑔
(𝑛)

(𝑥) 𝑑𝑥. (16)

Proof. See [20].

Lemma 2. Assume that one approximates the function 𝑔(𝑥)
on the interval [0, 1] by Bernoulli polynomials as argued in
Lemma 1. Then the coefficients 𝑔

𝑛
decays as follows:

𝑔
𝑛
≤
𝐺
𝑛

𝑛!
, (17)

where 𝐺
𝑛
= sup

𝑥∈[0,1]
|𝑔
(𝑛)
(𝑥)|.

Proof. Since it is trivial we omit the proof.

The previous lemma implies that Bernoulli coefficients
are decayed rapidly as increasing of 𝑛 under the condition
of boundedness of all derivatives of 𝑔(𝑥) with respect to 𝑛!.
We will illustrate this fact experimentally in our numerical
examples. It should be noted that, there are some examples
such as 𝑔(𝑥) = 1/(2𝑥 + 5)

5 which has bounded derivatives,
but 𝐺
𝑛
/𝑛! does not go to zero rapidly.
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Figure 1: (a) Comparison of the exact and approximated solutions and (b) history of the errors.

Theorem 3 (see [37]). Suppose that 𝑔(𝑥) is in the space
𝐶
𝑚
[0, 1] and is approximated by Bernoulli polynomials as

done in Lemma 1. With more details assume that 𝑃
𝑁
[𝑔](𝑥)

is the approximate polynomial of 𝑔(𝑥) in terms of Bernoulli
polynomials and 𝑅

𝑁
[𝑔](𝑥) is the remainder term. Then, the

associated formulas are stated as follows:

𝑔 (𝑥) = 𝑃
𝑁
[𝑔] (𝑥) + 𝑅

𝑁
[𝑔] (𝑥) , 𝑥 ∈ [0, 1] ,

𝑃
𝑁
[𝑔] (𝑥) = ∫

1

0

𝑔 (𝑥) 𝑑𝑥

+

𝑁

∑

𝑗=1

𝐵
𝑗
(𝑥)

𝑗!
(𝑔
(𝑗−1)

(1) − 𝑔
(𝑗−1)

(0)) ,

𝑅
𝑁
[𝑔] (𝑥) = −

1

𝑁!
∫

1

0

𝐵
∗

𝑁
(𝑥 − 𝑡) 𝑔

(𝑁)

(𝑡) 𝑑𝑡,

(18)

where 𝐵∗
𝑁
(𝑥) = 𝐵

𝑁
(𝑥 − [𝑥]) and [𝑥] denotes the largest integer

not greater than 𝑥.

Proof. See [37].

Lemma 4. Suppose 𝑔(𝑥) ∈ 𝐶
∞
[0, 1] (with bounded deriva-

tives) and 𝑔
𝑁
(𝑥) is the approximated polynomial using

Bernoulli polynomials.Then the error boundwould be obtained
as follows:

󵄩󵄩󵄩󵄩𝐸 (𝑔𝑁 (𝑥))
󵄩󵄩󵄩󵄩∞ ≤ 𝐶𝐺(2𝜋)

−𝑁
, 𝑥 ∈ [0, 1] , (19)

where𝐺 denotes a bound for all the derivatives of function 𝑔(𝑥)
(i.e., ‖𝑔(𝑖)(𝑥)‖

∞
≤ 𝐺, for 𝑖 = 0, 1, . . .) and 𝐶 is a positive

constant.

Proof. See [25].

Next, we will provide the main theorem of this section.
We show that, if both of the 𝑦(𝑥) and 𝑔(𝑥) are approximated
by the Bernoulli polynomials in the Lane-Emden equation
(1), then the error of the approximation of 𝑦(𝑥) depends
directly on the approximation of 𝑔(𝑥). Therefore, using
enough values of 𝑁 may gives us high order approximation
of the desired solutions.

Theorem 5. Assume that 𝐹(𝑥, 𝑦(𝑥)) = 𝑥
−𝛼
∫
𝑥

0
𝑡
𝛼
𝑓(𝑡, 𝑦(𝑡))𝑑𝑡

and 𝐺(𝑥) = 𝑎 + 𝐿
𝛼
(𝑔(𝑥)), where 𝐿

𝛼
(⋅) = ∫

𝑥

0
𝑥
−𝛼
∫
𝑥

0
𝑡
𝛼
(⋅)𝑑𝑡𝑑𝑥

is a linear integral operator. If we approximate 𝑦(𝑥) and 𝐺(𝑥)
by 𝑦
𝑁
(𝑥) and𝐺

𝑁
(𝑥), respectively, using Bernoulli polynomials,

then

󵄩󵄩󵄩󵄩𝑦 (𝑥) − 𝑦𝑁 (𝑥)
󵄩󵄩󵄩󵄩∞ ≤

1

1 − 𝐿
𝐹

󵄩󵄩󵄩󵄩𝐺 (𝑥) − 𝐺𝑁 (𝑥)
󵄩󵄩󵄩󵄩∞, (20)

where 𝐿
𝐹
is the Lipschitz constant of the function 𝐹(𝑥, 𝑦(𝑥))

with respect to its second variable 𝑦(𝑥) and also 𝐿
𝐹
≪ 1.

Proof. Consider the integral operator 𝐿
𝛼
(⋅) =

∫
𝑥

0
𝑥
−𝛼
∫
𝑥

0
𝑡
𝛼
(⋅)𝑑𝑡𝑑𝑥. Applying 𝐿

𝛼
to both sides of (1)

yields

𝑦 (𝑥) = 𝑎 + 𝐿
𝛼
(𝑔 (𝑥)) + 𝐿

𝛼
(𝑓 (𝑥, 𝑦 (𝑥))) . (21)

Considering the following assumptions:

𝐺 (𝑥) = 𝑎 + 𝐿
𝛼
(𝑔 (𝑥)) ,

𝐹 (𝑥, 𝑦 (𝑥)) = 𝑥
−𝛼
∫

𝑥

0

𝑡
𝛼
𝑓 (𝑡, 𝑦 (𝑡)) 𝑑𝑡,

(22)
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Table 1: The exact and approximated solution of Example 3 together with the error comparisons for𝑁 = 10.

𝑥 Solution of PM Exact Solution [7] Error of PM Error of [4] Error of [1]
0.0 +3.01060𝑒 − 31 +0.0000000000 3.01𝑒 − 31 9.24𝑒 − 18 0.00𝑒 + 00

0.1 −0.0016658339 −0.0016658338 6.21𝑒 − 11 5.28𝑒 − 10 5.85𝑒 − 07

0.2 −0.0066533671 −0.0066533671 9.22𝑒 − 13 3.37𝑒 − 08 6.04𝑒 − 07

0.5 −0.0411539573 −0.0411539567 5.95𝑒 − 10 8.12𝑒 − 06 5.58𝑒 − 07

1.0 −0.1588276831 −0.1588272857 3.97𝑒 − 07 4.93𝑒 − 04 8.20𝑒 − 07

Table 2: The exact and approximated solution of Example 4 together with the error comparisons for𝑁 = 10.

𝑥 Solution of PM Exact Solution [7] Error of PM Error of [4] Error of [1]
0.0 0.9999999999 1.0000000000 1.11𝑒 − 16 1.11𝑒 − 16 0.00𝑒 + 00

0.1 0.9985976023 0.9985979273 3.25𝑒 − 07 3.25𝑒 − 07 7.21𝑒 − 06

0.2 0.9943949769 0.9943962648 1.28𝑒 − 06 1.28𝑒 − 06 1.00𝑒 − 05

0.5 0.9651702487 0.9651777797 7.53𝑒 − 06 7.53𝑒 − 06 1.04𝑒 − 05

1.0 0.8636571676 0.8636807315 2.35𝑒 − 05 2.35𝑒 − 05 7.03𝑒 − 06

transforms (21) into the followingVolterra integral equations:

𝑦 (𝑥) = 𝐺 (𝑥) + ∫

𝑥

0

𝐹 (𝑡, 𝑦 (𝑡)) 𝑑𝑡, 𝑥 ∈ [0, 1] . (23)

Nowapproximate both functions𝑦(𝑥) and𝐺(𝑥) by𝑦
𝑁
(𝑥) and

𝐺
𝑁
(𝑥) using Bernoulli polynomials. Therefore

𝑦
𝑁
(𝑥) = 𝐺

𝑁
(𝑥) + ∫

𝑥

0

𝐹 (𝑡, 𝑦
𝑁
(𝑡)) 𝑑𝑡, 𝑥 ∈ [0, 1] . (24)

Thus
󵄩󵄩󵄩󵄩𝑦 (𝑥) − 𝑦𝑁 (𝑥)

󵄩󵄩󵄩󵄩∞

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝐺 (𝑥) − 𝐺

𝑁
(𝑥) + ∫

𝑥

0

(𝐹 (𝑡, 𝑦 (𝑡)) − 𝐹 (𝑡, 𝑦
𝑁
(𝑡))) 𝑑𝑡

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∞

≤
󵄩󵄩󵄩󵄩𝐺 (𝑥) − 𝐺𝑁 (𝑥)

󵄩󵄩󵄩󵄩∞ + 𝐿𝐹
󵄩󵄩󵄩󵄩𝑦 (𝑥) − 𝑦𝑁 (𝑥)

󵄩󵄩󵄩󵄩∞.

(25)

In other words

󵄩󵄩󵄩󵄩𝑦(𝑥) − 𝑦𝑁 (𝑥)
󵄩󵄩󵄩󵄩∞ ≤

1

1 − 𝐿
𝐹

󵄩󵄩󵄩󵄩𝐺(𝑥) − 𝐺𝑁(𝑥)
󵄩󵄩󵄩󵄩∞ (26)

and this completes the proof.

5. Numerical Illustrations

In this section, several numerical examples are given to
illustrate the accuracy and effectiveness of the proposed
method. All calculations are done on a 64 bits PC laptop. As
we claimed in Section 2, our method which is based on the
Bernoulli polynomials has more efficiency with respect to the
Legendremethod [4] in isothermal gas spheres equation (i.e.,
Example 3) and also has the same accuracy with respect to
methods which use high-order Gauss quadrature rules [36].
Wemust recall that, the results of ourmethod and themethod
of [36] are the same in Examples 5 and 6, but our results
were obtained in less CPU time; meanwhile the results of [36]
were obtained in more CPU time by using the same PC and

equipment.Moreover in Table 5, we show the vanishing of the
Bernoulli coefficients (as shown theoretically in Lemma 2) for
all the examples of this section experimentally.

Example 1 (see [4]). At first we consider the equation 𝑦󸀠󸀠(𝑥)+
(2/𝑥)𝑦

󸀠
(𝑥)+1 = 0with the initial conditions𝑦(0) = 1,𝑦󸀠(0) =

0. Trivially the exact solution of this equation is 𝑦(𝑥) = 1 −

(𝑥
2
/6).
Note that 𝑛 = 0, 𝑓(𝑥, 𝑦) = 𝑦

0
(𝑥) = 1 and 𝑔(𝑥) = 0. We

apply the method that was explained in Section 3 for𝑁 = 2.
Thus assume that

𝑦 (𝑥) ≈ 𝑦
2
(𝑥) = 𝐶𝐵

𝑇

(𝑥) = [𝑐
0
𝑐
1
𝑐
2
]
[
[

[

𝐵
0
(𝑥)

𝐵
1
(𝑥)

𝐵
2
(𝑥)

]
]

]

= 𝑐
0
𝐵
0
(𝑥) + 𝑐

1
𝐵
1
(𝑥) + 𝑐

2
𝐵
2
(𝑥) .

(27)

Our aim is to determine the unknown Bernoulli coeffi-
cients 𝑐

0
, 𝑐
1
, and 𝑐

2
by using Taumethod. Also the operational

matrix of Bernoulli polynomials and its square are as follows:

𝑀
1
= [

[

0 0 0

1 0 0

0 2 0

]

]

, 𝑀
2
= [

[

0 0 0

0 0 0

2 0 0

]

]

.
(28)

By using (14) we have

⟨𝑅
2
(𝑥) , 𝐵

0
(𝑥)⟩ = ∫

1

0

(𝑅
2
(𝑥) 𝐵
0
(𝑥)) 𝑑𝑥 = 0,

(29)

where

𝑅
2
(𝑥) = 𝑥𝑦

󸀠󸀠

2
(𝑥) + 2𝑦

󸀠

2
(𝑥) + 𝑥

= 𝑥 [𝑐
0
𝑐
1
𝑐
2
]𝑀
2
𝐵
𝑇

(𝑥)

+ 2 [𝑐
0
𝑐
1
𝑐
2
]𝑀𝐵
𝑇

(𝑥) + 𝑥
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Table 3: The exact and approximated solution of Example 5 together with the error comparisons.

𝑥 Solution of PM Exact Solution [35] Error of PM𝑁 = 10 Error of [1] Error of [36]𝑁 = 25

0.0 1.0000000 1.0000000 0.0𝑒 + 0.0 0.0𝑒 + 0.0 0.0𝑒 + 0.0

0.1 0.9983358 0.9983358 2.95𝑒 − 08 1.40𝑒 − 06 2.95𝑒 − 08

0.5 0.9598390 0.9598391 3.00𝑒 − 08 2.99𝑒 − 06 3.00𝑒 − 08

1.0 0.8550575 0.8550576 3.14𝑒 − 08 1.99𝑒 − 06 3.14𝑒 − 08

Table 4: The exact and approximated solution of Example 6 together with the error comparisons.

𝑥 Solution of PM Exact Solution [35] Error at𝑁 = 10 Error of [1] Error [36]𝑁 = 25

0.0 1.0000000000 1.0000000000 0.0𝑒 + 0.0 0.0𝑒 + 0.0 0.0𝑒 + 0.0

0.1 0.9983366595 0.9983367000 4.05𝑒 − 08 2.50𝑒 − 04 4.04𝑒 − 08

0.2 0.9933862135 0.9933862000 1.35𝑒 − 08 2.48𝑒 − 04 1.35𝑒 − 08

0.5 0.9603109023 0.9603109000 2.33𝑒 − 09 2.05𝑒 − 04 2.34𝑒 − 09

1.0 0.8608138122 0.8608138000 1.22𝑒 − 08 1.93𝑒 − 04 1.22𝑒 − 08

= 𝑥 [𝑐
0
𝑐
1
𝑐
2
]
[
[

[

0 0 0

0 0 0

2 0 0

]
]

]

[
[

[

𝐵
0
(𝑥)

𝐵
1
(𝑥)

𝐵
2
(𝑥)

]
]

]

+ 2 [𝑐
0

𝑐
1
𝑐
2
]
[
[

[

0 0 0

1 0 0

0 2 0

]
]

]

[
[

[

𝐵
0
(𝑥)

𝐵
1
(𝑥)

𝐵
2
(𝑥)

]
]

]

+ 𝑥

= 2𝑐
2
𝑥 + 2𝑐

1
+ 4𝑐
2
(𝑥 −

1

2
) + 𝑥.

(30)

Therefore

∫

1

0

(2𝑐
2
𝑥 + 2𝑐

1
+ 4𝑐
2
(𝑥 −

1

2
) + 𝑥) 𝑑𝑥

= 2𝑐
1
+ 𝑐
2
+
1

2
= 0.

(31)

By applying the initial conditions we have

𝑐
0
−
1

2
𝑐
1
+
1

6
𝑐
2
= 1,

𝑐
1
− 𝑐
2
= 0.

(32)

Solving (31)–(32) yields 𝑐
0
= 17/18, 𝑐

1
= −1/6, 𝑐

2
= −1/6.

Thus
𝑦
2
(𝑥) = 𝑐

0
𝐵
0
(𝑥) + 𝑐

1
𝐵
1
(𝑥) + 𝑐

2
𝐵
2
(𝑥)

= (
17

18

−1

6

−1

6
)(

1

𝑥 −
1

2

𝑥
2
− 𝑥 +

1

6

)

= 1 −
𝑥
2

6
,

(33)

which is the exact solution.

Example 2 (see [4]). We now consider the following Lane-
Emden equation:

𝑦
󸀠󸀠

(𝑥) +
2

𝑥
𝑦
󸀠

(𝑥) + 𝑦 (𝑥) = 0, (34)

with initial conditions𝑦(0) = 1,𝑦󸀠(0) = 0which has the exact
solution 𝑦(𝑥) = sin(𝑥)/𝑥.

Again, we apply our proposed method for solving the
above equation for different values of 𝑁 such as 𝑁 = 8 and
𝑁 = 10. In other words we assume that 𝑦(𝑥) ≈ 𝑦

𝑁
(𝑥) =

𝐶𝐵
𝑇
(𝑥) and 𝑓(𝑥, 𝑦) = 𝑦(𝑥) ≈ 𝑦

𝑁
(𝑥) = 𝐶𝐵

𝑇
(𝑥). The

numerical results of our method are depicted in Figure 1.
In the Figure 1(a), the exact solution 𝑦(𝑥) together with the
numerical solutions 𝑦

8
(𝑥) and 𝑦

10
(𝑥) is illustrated in a larger

computational interval. Moreover the error history of these
approximated solutions is shown in the Figure 1(b). From this
figure one can conclude that our method obtained highly
accurate solutions even in large computational intervals.

Example 3 (see [1, 4, 7]). As the third example we consider
the isothermal gas spheres equation as follows:

𝑦
󸀠󸀠

(𝑥) +
2

𝑥
𝑦
󸀠

(𝑥) + 𝑒
𝑦(𝑥)

= 0, 𝑥 ≥ 0 (35)

with the initial conditions 𝑦(0) = 0 and 𝑦󸀠(0) = 0.
In this case we have 𝑓(𝑥, 𝑦) = 𝑒

𝑦 and 𝑔(𝑥) = 0.
We approximate 𝑓 by using the five terms of its Maclaurin
expansion (i.e.,𝑓(𝑥, 𝑦) ≈ 1+𝑦+𝑦2/2+𝑦3/6+𝑦4/24). Againwe
use 𝑦
𝑁
(𝑥) instead of 𝑦(𝑥) in the procedure of approximation.

In other words

𝑓 (𝑥, 𝑦) ≈ 1 + 𝐶𝐵
𝑇

(𝑥)

+
(𝐶𝐵
𝑇
(𝑥))
2

2
+
(𝐶𝐵
𝑇
(𝑥))
3

6
+
(𝐶𝐵
𝑇
(𝑥))
4

24
.

(36)

We apply our method for solving this problem by using
several values of𝑁.We provide the numerical solutions at the
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Table 5: Vanishing of the Bernoulli coefficients as the number of index is increased.

𝑁 = 8 Example 2 Example 3 Example 4 Example 5 Example 6
𝑐
0

+0.946083 +0.948962 +0.951426 +0.954020 −0.053961

𝑐
1

−0.158529 −0.144942 −0.133975 −0.136343 −0.158828

𝑐
2

−0.150584 −0.126065 −0.108253 −0.132283 −0.151451

𝑐
3

+0.015700 +0.035408 +0.046539 +0.008232 +0.014332

𝑐
4

+0.007379 +0.012099 +0.011798 +0.004384 +0.006137

𝑐
5

−0.000558 −0.005891 +0.011145 +0.000293 −0.001159

𝑐
6

−0.000174 −0.000918 −0.001069 +0.000050 −0.000277

𝑐
7

+0.000011 +0.001152 +0.003566 +0.000041 +0.000106

𝑐
8

+0.000002 −0.000076 −0.001424 −0.000010 +0.000010

points 𝑥 = 0.0, 0.1, 0.2, 0.5, and 1.0 in the case of 𝑁 = 10 in
Table 1 together with the exact solution that was reported in
[7]. Moreover we make an interesting comparison with the
methods that are based on Legendre operational matrix of
differentiation [4] and the Hermite collocation method [1]
in the associated values of the errors by the assumption of
𝑁 = 10. From these comparisons we see that the presented
method (PM) has more efficiency with respect to the above-
mentioned methods.

Example 4 (see [1, 4, 7]). As the fourth example we consider
the following Lane-Emden equation:

𝑦
󸀠󸀠

(𝑥) +
2

𝑥
𝑦
󸀠

(𝑥) + sin (𝑦) = 0, (37)

with the initial conditions 𝑦(0) = 1 and 𝑦󸀠(0) = 0.
Similar to the third example we have 𝑓(𝑥, 𝑦) = sin(𝑦)

and 𝑔(𝑥) = 0. Approximating𝑓 by using the three terms of its
Maclaurin expansion yields𝑓(𝑥, 𝑦) = 𝑦 − 𝑦3/6 + 𝑦5/120 and
also by applying the Bernoulli polynomials in the procedure
of approximations we have

𝑓 (𝑥, 𝑦) ≈ 𝐶𝐵
𝑇

(𝑥) −
(𝐶𝐵
𝑇
(𝑥))
3

6
+
(𝐶𝐵
𝑇
(𝑥))
5

120
.

(38)

Again the method that is proposed in Section 3 will be used.
Thenumerical solutions at the points𝑥 = 0.0, 0.1, 0.2, 0.5, and
1.0 in the case of𝑁 = 10 are written in Table 2 together with
the exact solution that was reported in [7].Moreover the error
of the presented method (PM) together with the errors of [1,
4] by the assumption of 𝑁 = 10 is provided. Evidently the
results of our methods are very close to [4] and are superior
with respect to the results that were obtained in [1].

Example 5 (see [1, 35, 36]). Wenowconsider the Lane-Emden
equation 𝑦󸀠󸀠(𝑥) + (2/𝑥)𝑦󸀠(𝑥) + 𝑦3(𝑥) = 0 with the initial
conditions 𝑦(0) = 1, 𝑦󸀠(0) = 0.

The exact solution of this equation was reported in [35].
The numerical results of our scheme together with two other
methods [1, 36] are provided in Table 3. Not only does our
method needs to lower values of Bernoulli polynomials (as
the test functions) with respect to the methods that are based
on Gauss quadrature rules [36] for obtaining high accurate
solutions, but also the CPU time of our method for solving

the associated system of nonlinear algebraic is mush less than
others such as [36]. The basic reason for this claim is based
upon using the operational matrices of differentiation and
this fact leads to sparse equations.

Example 6 (see [1, 35, 36]). As the final example we consider
the Lane-Emden equation 𝑦󸀠󸀠(𝑥) + (2/𝑥)𝑦󸀠(𝑥) + 𝑦4(𝑥) = 0

with initial conditions 𝑦(0) = 1, 𝑦󸀠(0) = 0.
Again we recall that the exact solution of this equation

was reported in [35]. The numerical results of this Example
are given in Table 4. Similar to the previous example we can
see that the results of our approach are the same [36] by
using lower values of Bernoulli polynomials with respect to
the shifted Legendre polynomials and also are superior with
respect to the results of [1].

Hint. As we claimed in Lemma 2 the Bernoulli coefficients
in the procedure of approximating any arbitrary continuous
functionmust tend to zero as the number of the test functions
(i.e., the Bernoulli polynomials) tend to infinity. This fact is
shown experimentally in Table 5.

6. Conclusions

The Lane-Emden type equations describe a variety of phe-
nomena in theoretical physics and astrophysics, including the
aspects of stellar structure, the thermal history of a spherical
cloud of gas, isothermal gas spheres, and thermionic currents.
Lane-Emden type equations have been considered by many
mathematicians as mentioned before [4]. The fundamental
goal of this paper has been to construct an approximation to
the solution of nonlinear Lane-Emden type equations in the
computational interval [0, 1]. A set of Bernoulli polynomials
is proposed to provide an effective but simple way to improve
the convergence of the solution by the Tau method. The
validity of the method is based on the assumption that it
converges by increasing the number of Bernoulli polynomi-
als. A comparison is made among the numerical (and exact)
solutions of [35] and the series solutions of [7], Legendre
operational matrix [4], Hermite collocation method [1] and
high-order Gauss quadrature rule [36], and the current work.
It has been shown that the present work provides acceptable
approach for Lane-Emden type equations.
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