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This paper studies the stability of complex-valued nonlinear differential system. The stability criteria of complex-valued nonlinear
autonomous system are established. For the general complex-valued nonlinear non-autonomous system, the comparison principle
in the context of complex fields is given. Those derived stability criteria not only provide a new method to analyze complex-valued
differential system, but also greatly reduce the complexity of analysis and computation.

1. Introduction

The stability of differential system has been studied by
many researchers, for example, [1–6] and references therein.
However, the common setting adopted in aforementioned
works is always in real number fields; namely, the objects
of study are real-valued differential systems. The object of
study in this paper is complex-valued differential system.
Complex-valued differential system has also many poten-
tial applications in science and engineering. For example,
quantum system and complex-valued neural networks are
classical complex-valued differential system [7–10]. In fact,
equations of many other classical systems, such as Ginzburg-
Landau equation [11], Orr-Sommerfeld equation [12], com-
plex Riccati equation [13], and complex Lorenz equation
[14], are considered in the complex number fields. The usual
method analyzing complex-valued system is to separate it
into real part and imaginary part and then recast it into
an equivalent real-valued system (see [14, 15] and references
therein). But this method encounters two problems. One is
that the dimension of the real-valued system is double that
of complex-valued system, which leads to the difficulties on
the analysis. Another is that this method needs an explicit
separation of complex-valued function 𝑓(𝑡, 𝑧) into its real
part and imaginary part; however, this separation is not

always expressible in an analytical form. An efficient way
to analyze complex-valued system is to retain the complex
nature of system and consider its properties on C𝑛 [16].

To the best of our knowledge, there have been few
reports about the analysis and synthesis of complex-valued
differential system except [9, 17–19], and there is no result
so far about the stability of general complex-valued non-
linear differential system. In this paper, the stability criteria
of complex-valued autonomous system are derived by the
theory of several complex variable functions. Furthermore,
the comparison principle of complex-valued nonautonomous
differential system is given. Those derived stability criteria
not only generalize some known results in literature but also
greatly reduce the complexity of analysis and computation.As
an application, the stability conditions of a class of complex-
valued nonlinear systems are presented. Those problems are
meaningful and challenging.

The remainder of the paper is organized as follows. In
Section 2, the complex-valued system to be dealt with is
formulated and several results about the complex-valued
functions are presented. The stability criteria of complex-
valued autonomous system are established in Section 3.
Moreover, the comparison principle of complex-valued non-
linear system is given in Section 4. Based on the comparison
principle, the stability conditions of a class of complex-valued
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systems are also presented in Section 4. The main points of
the paper are illustrated by some examples in the correspond-
ing sections. Finally, some conclusions are drawn in Section 5.

2. Notations and Preliminaries

In this section, we introduce notations, definitions, and
preliminary facts which are used throughout this paper.

Let Ω ⊆ C𝑛 be a neighbourhood of the origin, 𝐼 =
[𝑡
0
, + ∞), 𝑡

0
≥ 0.𝑊(𝑧) ∈ 𝐶 [Ω,R],𝑊(0) = 0,𝑉(𝑡, 𝑧) ∈ 𝐶 [𝐼×

Ω,R], 𝑉(𝑡, 0) = 0. 𝐻[Ω,C𝑛] denote all holomorphic maps
from Ω to C𝑛. Let 𝑧 and 𝑧∗ be the conjugate and conjugate
transpose of 𝑧 = (𝑧

1
, 𝑧
2
, . . . , 𝑧

𝑛
)𝑇 ∈ C𝑛, respectively, and

‖𝑧‖ = √𝑧∗𝑧, 𝑖 = √−1.

Definition 1. 𝑊(𝑧) is called a complex positive definite
function on Ω, if 𝑊(𝑧) ≥ 0 for any 𝑧 ∈ Ω, and 𝑊(𝑧) = 0
if and only if 𝑧 = 0.

Definition 2. 𝑉(𝑡, 𝑧) is called a positive definite function on
𝐼 × Ω if there exists a complex positive definite function𝑊(𝑧)
such that𝑉(𝑡, 𝑧) ≥ 𝑊(𝑧) for any 𝑧 ∈ Ω, and𝑉(𝑡, 𝑧) = 0 if and
only if 𝑧 = 0.

In this paper, wewill study the stability of complex-valued
nonlinear differential system described by

𝑑𝑧

𝑑𝑡
= 𝑓 (𝑡, 𝑧 (𝑡)) ,

𝑧 (𝑡
0
) = 𝑧
0
∈ C
𝑛,

(1)

where 𝑡
0

∈ 𝑅+, 𝑓 : 𝐼 × Ω 󳨃→ C𝑛 is a complex-
valued continuous map. 𝑧 : 𝐼 󳨃→ C𝑛 is a complex-valued
differentiable map. Let 𝑧

𝑒
be an equilibrium point satisfying

𝑓(𝑡, 𝑧
𝑒
) = 0; 𝑧(𝑡) = 𝑧(𝑡, 𝑡

0
, 𝑧
0
) satisfies system (1).

Definition 3. System (1) is said to be stable at 𝑧
𝑒
, if for all 𝜀 > 0,

∃𝛿(𝜀, 𝑡
0
) such that ‖𝑧

0
− 𝑧
𝑒
‖ < 𝛿 implies

󵄩󵄩󵄩󵄩𝑧 (𝑡) − 𝑧𝑒
󵄩󵄩󵄩󵄩 < 𝜀, ∀𝑡 ≥ 𝑡

0
. (2)

Definition 4. System (1) is said to be asymptotically stable at
𝑧
𝑒
if it is stable and lim

𝑡→∞
‖𝑧(𝑡) − 𝑧

𝑒
‖ = 0.

Lemma 5 (see [20]). Let 𝑔 ∈ 𝐶 [𝑅+ × 𝑅+, 𝑅],𝑚 ∈ 𝐶 [𝑅+, 𝑅+],
and 𝐷𝑚(𝑡) ≤ 𝑔(𝑡, 𝑚(𝑡)), for all 𝑡 ∈ [𝑡

0
, +∞) \ 𝑆, where 𝑆

is a countable subset of [𝑡
0
,∞) and 𝐷 is any one of the Dini

derivatives. Suppose that the maximal solution 𝑟(𝑡) of

𝑢̇ (𝑡) = 𝑔 (𝑡, 𝑢 (𝑡)) , 𝑢 (𝑡
0
) = 𝑢
0
≥ 0, 𝑡

0
∈ 𝑅+ (3)

exists on [𝑡
0
,∞) and𝑚(𝑡

0
) ≤ 𝑢
0
. Then𝑚(𝑡) ≤ 𝑟(𝑡), 𝑡 ≥ 𝑡

0
.

Lemma 6. For any positive definite continuous function𝑊(𝑧)
on Ω = {𝑧 ∈ C𝑛 | ‖𝑧‖ ≤ 𝐻}, 𝐻 > 0, there exist two 𝐾 class
functions 𝑎(⋅) and 𝑏(⋅) such that

𝑎 (‖𝑧‖) ≤ 𝑊 (𝑧) ≤ 𝑏 (‖𝑧‖) . (4)

The proof of Lemma 6 is similar to the case of positive
definition functions defined in the real fields [21].

3. Stability Criteria of Complex-Valued
Autonomous System

In this section, we will study the stability of complex-valued
autonomous system described by

𝑑𝑧

𝑑𝑡
= 𝑓 (𝑧) ,

𝑧 (𝑡
0
) = 𝑧
0
∈ C
𝑛,

(5)

where 𝑓(𝑧) = (𝑓
1
(𝑧), . . . , 𝑓

𝑛
(𝑧))𝑇, 𝑧

𝛼
∈ C, 𝑓

𝛼
(𝑧) : Ω 󳨃→ C,

𝑓(𝑧
𝑒
) = 0, 𝛼 = 1, . . . , 𝑛.
By the substitutions of 𝑧

𝛼
= 𝑥
𝛼
+ 𝑖𝑦
𝛼
and 𝑓

𝛼
(𝑧) =

𝑢
𝛼
(𝑥, 𝑦)+𝑖V

𝛼
(𝑥, 𝑦), system (5) can be recast into the following

real-valued system:

𝑥̇ = 𝑢 (𝑥, 𝑦) ,

̇𝑦 = V (𝑥, 𝑦) ,
(6)

where 𝑥 = (𝑥
1
, . . . , 𝑥

𝑛
)𝑇, 𝑦 = (𝑦

1
, . . . , 𝑦

𝑛
)𝑇, 𝑢 = (𝑢

1
, . . . , 𝑢

𝑛
)𝑇,

and V = (V
1
, . . . , V

𝑛
)𝑇. The homomorphism between the

complex-valued system (5) and the real-valued system (6)
allows us to employ the existing methods to analyze the
stability of the complex system (5). We linearize system (6):

(
𝑥̇
̇𝑦
) = 𝐽 (𝑥

𝑒
, 𝑦
𝑒
) (

𝑥
𝑦
) , (7)

where

𝐽 (𝑥
𝑒
, 𝑦
𝑒
) = [

𝜕 (𝑢
1
, . . . , 𝑢

𝑛
, V
1
, . . . , V

𝑛
)

𝜕 (𝑥
1
, . . . , 𝑥

𝑛
, 𝑦
1
, . . . , 𝑦

𝑛
)
]
(𝑥
𝑒
,𝑦
𝑒
)

(8)

is the Jacobi matrix of (𝑢
1
, . . . , 𝑢

𝑛
, V
1
, . . . , V

𝑛
) evaluated at 𝑧

𝑒
=

𝑥
𝑒
+ 𝑖𝑦
𝑒
. Therefore, judging the stability of a nonlinear system

is reduced to the problem of finding the eigenvalues of its
related Jacobi matrix. The evaluation of 𝐽 (𝑥

𝑒
, 𝑦
𝑒
) needs an

explicit separation of the complex functions 𝑓
𝛼
(𝑧) into its

real part and imaginary part. This separation is not always
expressible in an analytical form. We can evaluate 𝐽(𝑥

𝑒
, 𝑦
𝑒
)

bymanipulating𝑓(𝑧) directly without resorting to its real and
imaginary parts. Next we will discuss two cases.

Case 1. 𝑓(𝑧) is holomorphic map, namely, 𝑓(𝑧) ∈ 𝐻 [Ω,C𝑛].
In this case, since 𝑓

𝛼
(𝑧) is analytic function, 𝑓

𝛼
(𝑧) satisfies

Cauchy-Riemann equation, and the following equalities hold
for 𝛼, 𝑗 = 1, 2, . . . , 𝑛:

𝜕𝑢
𝛼

𝜕𝑥
𝑗

=
𝜕V
𝛼

𝜕𝑦
𝑗

,
𝜕𝑢
𝛼

𝜕𝑦
𝑗

= −
𝜕V
𝛼

𝜕𝑥
𝑗

,

𝜕𝑓
𝛼

𝜕𝑧
𝑗

=
𝜕𝑢
𝛼

𝜕𝑥
𝑗

+ 𝑖
𝜕V
𝛼

𝜕𝑥
𝑗

.

(9)
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Denote

𝜕𝑢

𝜕𝑥
≜
𝜕 (𝑢
1
, . . . , 𝑢

𝑛
)

𝜕 (𝑥
1
, . . . , 𝑥

𝑛
)
,

𝜕𝑢

𝜕𝑦
≜
𝜕 (𝑢
1
, . . . , 𝑢

𝑛
)

𝜕 (𝑦
1
, . . . , 𝑦

𝑛
)
,

𝜕V

𝜕𝑥
≜
𝜕 (V
1
, . . . , V

𝑛
)

𝜕 (𝑥
1
, . . . , 𝑥

𝑛
)
,

𝜕V

𝜕𝑦
≜
𝜕 (V
1
, . . . , V

𝑛
)

𝜕 (𝑦
1
, . . . , 𝑦

𝑛
)
,

𝜕𝑓

𝜕𝑧
≜
𝜕 (𝑓
1
, . . . , 𝑓

𝑛
)

𝜕 (𝑧
1
, . . . , 𝑧

𝑛
)
.

(10)

It follows from (9) that

𝜕𝑢

𝜕𝑥
=
𝜕V

𝜕𝑦
,

𝜕𝑢

𝜕𝑦
= −

𝜕V

𝜕𝑥
,

𝜕𝑓

𝜕𝑧
=
𝜕𝑢

𝜕𝑥
+ 𝑖

𝜕V

𝜕𝑥
.

(11)

Thus

1

2
[
𝐼
𝑛
−𝑖𝐼
𝑛

𝐼
𝑛

𝑖𝐼
𝑛

] 𝐽 (𝑥
𝑒
, 𝑦
𝑒
) [

𝐼
𝑛

𝐼
𝑛

𝑖𝐼
𝑛
−𝑖𝐼
𝑛

]

=
1

2

[
[
[

[

𝜕𝑢

𝜕𝑥
− 𝑖

𝜕𝑢

𝜕𝑦

𝜕V

𝜕𝑥
− 𝑖

𝜕V

𝜕𝑦

𝜕𝑢

𝜕𝑥
+ 𝑖

𝜕𝑢

𝜕𝑦

𝜕V

𝜕𝑥
+ 𝑖

𝜕V

𝜕𝑦

]
]
]

]

[
𝐼
𝑛

𝐼
𝑛

𝑖𝐼
𝑛
−𝑖𝐼
𝑛

]

=
1

2

[
[
[

[

𝜕𝑢

𝜕𝑥
− 𝑖

𝜕𝑢

𝜕𝑦
+ 𝑖

𝜕V

𝜕𝑥
+
𝜕V

𝜕𝑦

𝜕𝑢

𝜕𝑥
− 𝑖

𝜕𝑢

𝜕𝑦
− 𝑖

𝜕V

𝜕𝑥
−
𝜕V

𝜕𝑦

𝜕𝑢

𝜕𝑥
+ 𝑖

𝜕𝑢

𝜕𝑦
+ 𝑖

𝜕V

𝜕𝑥
−
𝜕V

𝜕𝑦

𝜕𝑢

𝜕𝑥
+ 𝑖

𝜕𝑢

𝜕𝑦
− 𝑖

𝜕V

𝜕𝑥
+
𝜕V

𝜕𝑦

]
]
]

]

=
[
[

[

𝜕𝑢

𝜕𝑥
+ 𝑖

𝜕V

𝜕𝑥
0

0
𝜕𝑢

𝜕𝑥
− 𝑖

𝜕V

𝜕𝑥

]
]

]

= 𝐶𝐽 (𝑧
𝑒
) ,

(12)

where 𝐽(𝑥
𝑒
, 𝑦
𝑒
) can be rewritten by

𝐽 (𝑥
𝑒
, 𝑦
𝑒
) =

[
[
[

[

𝜕𝑢

𝜕𝑥

𝜕V

𝜕𝑥

𝜕𝑢

𝜕𝑦

𝜕V

𝜕𝑦

]
]
]

]
(𝑥
𝑒
,𝑦
𝑒
)

,

𝐶𝐽 (𝑧
𝑒
) =

[
[
[
[

[

𝜕𝑓

𝜕𝑧
0

0 (
𝜕𝑓

𝜕𝑧
)

]
]
]
]

]𝑧
𝑒

.

(13)

The equality (12) means that 𝐽(𝑥
𝑒
, 𝑦
𝑒
) and 𝐶𝐽(𝑧

𝑒
) are similar

matrices; thus they have the same eigenvalues. Moreover,
we notice that if 𝜆 is an eigenvalue of 𝜕𝑓/𝜕𝑧, then 𝜆 is
an eigenvalue of 𝜕𝑓/𝜕𝑧. It turns out that the eigenvalues of
𝐽(𝑥
𝑒
, 𝑦
𝑒
) are merely the eigenvalues of [𝜕𝑓/𝜕𝑧]

𝑧
𝑒

if we do not
consider the multiplicity of the eigenvalues. Therefore, the

stability of (7) can be easily checked by examining whether
the real part of the eigenvalues of

𝐽 (𝑧
𝑒
) = [

𝜕(𝑓
1
, . . . , 𝑓

𝑛
)

𝜕(𝑧
1
, . . . , 𝑧

𝑛
)
]
𝑧
𝑒

(14)

is negative. We conclude the following results.

Theorem 7. For system (5) such that 𝑓(𝑧) is holomorphic,

(i) if all of the eigenvalues of 𝐽(𝑧
𝑒
) lie on the left half com-

plex plane, system (5) is exponentially asymptotically
stable at 𝑧

𝑒
;

(ii) if there exists an eigenvalue of 𝐽(𝑧
𝑒
) lying on the right

half complex plane, system (5) is not stable at 𝑧
𝑒
;

(iii) if there is no eigenvalue of 𝐽(𝑧
𝑒
) lying on the right half

complex plane, and there are a pair of eigenvalues lying
on the imaginary axis at least, the stability of system (5)
at 𝑧
𝑒
is not clear.

Corollary 8. For system (5) such that 𝑛 = 1 and 𝑓(𝑧) is
holomorphic,

(i) if the real part of𝑓󸀠(𝑧
𝑒
) < 0, system (5) is exponentially

asymptotically stable at 𝑧
𝑒
;

(ii) if the real part of 𝑓󸀠(𝑧
𝑒
) > 0, system (5) is not stable at

𝑧
𝑒
;

(iii) if the real part of 𝑓󸀠(𝑧
𝑒
) = 0, the stability of system (5)

at 𝑧
𝑒
is not clear.

Case 2. 𝑓(𝑧) is not holomorphic. In particular, we consider
the case that 𝑓(𝑧) = 𝑔(𝑧, 𝑧), where 𝑔(⋅, ⋅) ∈ 𝐻[Ω × Ω,C2𝑛].

The motivation discussing this case is that some well-
known complex-valued systems, such as complex Lorenz
system [14], complex Chen system [15] and complex Lü
system [15], belong to this case. For the details see Example 13.
In this case, since 𝑓(𝑧) is not holomorphic in 𝑧, 𝑓

𝛼
(𝑧) does

not satisfy Cauchy-Riemann equation again. But we have the
following equalities:

𝑢
𝛼
(𝑥, 𝑦) =

1

2
[𝑔
𝛼
(𝑧, 𝑧) + 𝑔

𝛼
(𝑧, 𝑧)] ,

V
𝛼
(𝑥, 𝑦) = −

𝑖

2
[𝑔
𝛼
(𝑧, 𝑧) − 𝑔

𝛼
(𝑧, 𝑧)] ,

𝜕𝑢
𝛼

𝜕𝑥
𝑗

=
1

2
[
𝜕𝑔
𝛼

𝜕𝑧
𝑗

+
𝜕𝑔
𝛼

𝜕𝑧
𝑗

+
𝜕𝑔
𝛼

𝜕𝑧
𝑗

+
𝜕𝑔
𝛼

𝜕𝑧
𝑗

] ,

𝜕𝑢
𝛼

𝜕𝑦
𝑗

=
𝑖

2
[
𝜕𝑔
𝛼

𝜕𝑧
𝑗

−
𝜕𝑔
𝛼

𝜕𝑧
𝑗

+
𝜕𝑔
𝛼

𝜕𝑧
𝑗

−
𝜕𝑔
𝛼

𝜕𝑧
𝑗

] ,

𝜕V
𝛼

𝜕𝑥
𝑗

= −
𝑖

2
[
𝜕𝑔
𝛼

𝜕𝑧
𝑗

+
𝜕𝑔
𝛼

𝜕𝑧
𝑗

−
𝜕𝑔
𝛼

𝜕𝑧
𝑗

−
𝜕𝑔
𝛼

𝜕𝑧
𝑗

] ,

𝜕V
𝛼

𝜕𝑦
𝑗

=
1

2
[
𝜕𝑔
𝛼

𝜕𝑧
𝑗

−
𝜕𝑔
𝛼

𝜕𝑧
𝑗

−
𝜕𝑔
𝛼

𝜕𝑧
𝑗

+
𝜕𝑔
𝛼

𝜕𝑧
𝑗

] .

(15)
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From (15), we have 𝑃−1𝐽(𝑥
𝑒
, 𝑦
𝑒
)𝑃 = 𝐽(𝑧

𝑒
), where

𝑃−1 =
1

2
[

[

(𝑖 − 1) 𝐼
𝑛
𝑖𝐼
𝑛

(𝑖 − 1) 𝐼
𝑛
𝐼
𝑛

]

]

,

𝑃 = [
−𝑖𝐼
𝑛

−𝐼
𝑛

− (1 + 𝑖) 𝐼
𝑛
(1 + 𝑖) 𝐼

𝑛

] ,

𝐽 (𝑥
𝑒
, 𝑦
𝑒
) =

[
[
[
[
[

[

𝜕 (𝑢
1
, . . . , 𝑢

𝑛
)

𝜕 (𝑥
1
, . . . , 𝑥

𝑛
)

𝜕 (𝑢
1
, . . . , 𝑢

𝑛
)

𝜕 (𝑥
1
, . . . , 𝑥

𝑛
)

𝜕 (V
1
, . . . , V

𝑛
)

𝜕 (𝑦
1
, . . . , 𝑦

𝑛
)

𝜕 (V
1
, . . . , V

𝑛
)

𝜕 (𝑦
1
, . . . , 𝑦

𝑛
)

]
]
]
]
]

](𝑥
𝑒
,𝑦
𝑒
)

,

𝐽 (𝑧
𝑒
) =

[
[
[
[
[

[

𝜕 (𝑔
1
, . . . , 𝑔

𝑛
)

𝜕 (𝑧
1
, . . . , 𝑧

𝑛
)

−𝑖
𝜕 (𝑔
1
, . . . , 𝑔

𝑛
)

𝜕 (𝑧
1
, . . . , 𝑧

𝑛
)

𝑖
𝜕 (𝑔
1
, . . . , 𝑔

𝑛
)

𝜕 (𝑧
1
, . . . , 𝑧

𝑛
)

𝜕 (𝑔
1
, . . . , 𝑔

𝑛
)

𝜕 (𝑧
1
, . . . , 𝑧

𝑛
)

]
]
]
]
]

]𝑧
𝑒

.

(16)

Hence, 𝐽(𝑥
𝑒
, 𝑦
𝑒
) and 𝐽(𝑧

𝑒
) are similar matrices; they have the

same eigenvalues. We conclude the following:

Theorem 9. For system (5) with 𝑓(𝑧) = 𝑔(𝑧, 𝑧),

(i) if all of eigenvalues of 𝐽(𝑧
𝑒
) lie on the left half complex

plane, then system (5) is exponentially asymptotically
stable at 𝑧

𝑒
;

(ii) if there exists an eigenvalue of 𝐽(𝑧
𝑒
) lying on the right

half complex plane, then system (5) is not stable at 𝑧
𝑒
;

(iii) if there is no eigenvalue of 𝐽(𝑧
𝑒
) lying on the right half

complex plane, and there are a pair of eigenvalues lying
on the imaginary axis at least, then the stability of
system (5) at 𝑧

𝑒
is not clear.

Remark 10. Theorems 7 and 9 provide a new method to
analyze complex-valued differential system.

Remark 11. Corollary 8 is the existing results in [9].

Example 12. Consider the stability of the trivial solution of a
class complex-valued Riccati equation defined by

𝑑𝑧

𝑑𝑡
= 𝑧𝑛 − 𝑝

𝑛−1
𝑧𝑛−1 + ⋅ ⋅ ⋅ + 𝑝

1
𝑧, (17)

where 𝑛 is a positive integer, 𝑝
𝑗
∈ C, 𝑗 = 1, . . . , 𝑛.

In this example, 𝑓(𝑧) = 𝑧𝑛 − 𝑝
𝑛−1

𝑧𝑛−1 + ⋅ ⋅ ⋅ + 𝑝
1
𝑧, 𝑓󸀠(0) =

𝑝
1
; by Corollary 8, if the real part of𝑝

1
is negative, system (17)

is exponentially asymptotically stable at 𝑧
𝑒
= 0; if the real part

of 𝑝
1
is positive, system (17) is not stable at 𝑧

𝑒
= 0.

Example 13. Consider the following system:

𝑧̇
1
= 𝑧2
1
− 𝑖𝑧
1
+ 𝑧
2
,

𝑧̇
2
= −2𝑧

1
− 𝑧
2
,

𝑧 (0) = 𝑧
0
∈ C.

(18)

System (18) has two equilibrium points 𝑃
1
(0, 0) and 𝑃

2
(2 +

𝑖, −4 − 2𝑖), and

𝐽 (𝑃
1
) = (

−𝑖 1
−2 −1

) , 𝐽 (𝑃
2
) = (

4 + 𝑖 1
−2 −1

) . (19)

The eigenvalues of 𝐽(0, 0) and 𝐽 (2 + 𝑖, −4 − 2𝑖) are 𝜆
1
=

−432/1331 − 899/467𝑖, 𝜆
2
= −899/1331 + 432/467𝑖 and

𝜆
3
= 1575/439 + 1313/1195𝑖, 𝜆

4
= −841/1431 − 118/1195𝑖,

respectively. By Theorem 7, system (18) is exponentially
asymptotically stable at 𝑃

1
and not stable at 𝑃

2
.

An alternative, but tedious, approach to the problem is to
separate (18) into real and imaginary parts and rewrite it as
(6):

𝑥̇
1
= 𝑥2
1
+ 𝑥
2
+ 𝑦
1
− 𝑦2
1
,

𝑥̇
2
= −2𝑥

1
− 𝑥
2
,

̇𝑦
1
= 2𝑥
1
𝑦
1
− 𝑥
1
+ 𝑦
2
,

̇𝑦
2
= −2𝑦

1
− 𝑦
2
.

(20)

The equilibrium points of system (20) are 𝑃
1
(0, 0, 0, 0) and

𝑃
2
(2, −4, 1, −2). To judge the stability of those equilibrium

points, we have to compute the eigenvalue of Jacobi matrix:

𝐽 (𝑥, 𝑦) =
(
(

(

2𝑥
1

1 1 − 2𝑦
1

0

−2 −1 0 0

2𝑦
1
− 1 0 2𝑥

1
1

0 0 −2 −1

)
)

)

. (21)

By calculating, it can be found that 𝑃
1
are stable and 𝑃

2
are

not stable; it is not contradictory; in fact, 𝑃
1
is just the point

(0, 0) and 𝑃
2
is just (2 + 𝑖, −4 − 2𝑖) on C2.

Remark 14. The common method to analyze the complex-
valued systems is very tedious and complex. Theorem 7
not only generalizes some known results in the literature
[9], but also greatly reduces the complexity of analysis and
computation.

Example 15. In 2007, Mahmoud presented complex-valued
Chen system [15] described by

𝑧̇
1
= 𝛼 (𝑧

2
− 𝑧
1
) ,

𝑧̇
2
= (𝛾 − 𝛼) 𝑧

1
− 𝑧
1
𝑧
3
+ 𝛾𝑧
2
,

𝑧̇
3
=
1

2
(𝑧
1
𝑧
2
+ 𝑧
1
𝑧
2
) − 𝛽𝑧

3
,

(22)

where 𝛼, 𝛽, and 𝛾 are positive real parameters; 𝑧
1
, 𝑧
2
∈ C

are complex state variables; and 𝑧
3
∈ R is real state variables.

Obviously, 𝑓(𝑧) = (𝛼(𝑧
2
− 𝑧
1
), (𝛾 − 𝛼)𝑧

1
− 𝑧
1
𝑧
3
+ 𝛾𝑧
2
, (𝑧
1
𝑧
2
+

𝑧
1
𝑧
2
)/2−𝛽𝑧

3
) is not holomorphic because of the existence of
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𝑧
1
and 𝑧

2
. For simplicity, we discuss only the stability of the

origin. According to (16), we have

𝐽 (0) = [
𝐴 0
0 𝐴

] , where 𝐴 = [

[

−𝛼 𝛼 0
𝛾 − 𝛼 𝛾 0
0 0 −𝛽

]

]

. (23)

ByTheorem 9, it is easy to conclude that the origin of system
(22) is exponentially asymptotically stable when 𝛼 > 2𝛾.

Remark 16. It is not necessary to analyze the stability of
system (22) by decoupling it into real and imaginary parts
just like [15].The conclusion in Example 15 is just the existing
result in [15]. Similarly, the stability of complex-valuedLorenz
system and Lü system can be derived byTheorem 9.

4. Stability of Complex-Valued
Nonautonomous System

In this section, the comparison principle of system (1) is
presented.

Theorem 17. Assume that there exists a positive definite
function 𝑉(𝑡, 𝑧) ∈ 𝐶 [𝐼 × Ω,R+] such that 𝑉(𝑡, 𝑧) is locally
Lipschitzian in 𝑧, and

𝐷+𝑉 (𝑡, 𝑧 (𝑡))
󵄨󵄨󵄨󵄨(1) ≤ 𝑔 (𝑡, 𝑉 (𝑡, 𝑧 (𝑡))) , 𝑡 ∈ 𝐼 \ 𝑆, (24)

where 𝐼 = [𝑡
0
, +∞), 𝑆 is a countable subset of 𝐼, 𝑔 ∈ 𝐶 [𝐼 ×

𝑅+, 𝑅], and Ω ⊆ C𝑛 is a neighbourhood of the origin. Then the
stability properties of the trivial solution of (3) with 𝑔(𝑡, 0) =
0 imply the corresponding stability properties of the trivial
solution of (1) such that 𝑓(𝑡, 0) = 0.

Proof. We just prove the case that the trivial solution of
system (3) is stable.

Since 𝑉(𝑡, 𝑧) is a positive definite function, by Lemma 6,
there exists a𝐾 class function 𝑎(⋅) such that

𝑉 (𝑡, 𝑧) ≥ 𝑎 (‖𝑧‖) . (25)

Considering the stability of the trivial solution of (3), for
all 𝜀 > 0, ∃𝛿∗(𝜀, 𝑡

0
), when 0 < 𝑢

0
< 𝛿∗, the solution of (3)

satisfies

𝑢 (𝑡, 𝑡
0
, 𝑢
0
) < 𝑎 (𝜀) . (26)

Considering the continuity of𝑉(𝑡, 𝑧) and the fact𝑉(𝑡, 0) = 0,
∃𝛿(𝜀, 𝑡

0
), when ‖𝑧

0
‖ < 𝛿, we have 0 < 𝑉(𝑡

0
, 𝑧
0
) ≜ 𝑉
0
< 𝑢
0
<

𝛿∗. Let 𝑧(𝑡) = 𝑧(𝑡, 𝑡
0
, 𝑧
0
) be the solution of system (1), then

𝐷+𝑉
󵄨󵄨󵄨󵄨(1) ≤ 𝑔 (𝑡, 𝑉) , 𝑡 ∈ 𝐼 \ 𝑆,

𝑉 (𝑡
0
, 𝑧
0
) = 𝑉
0
.

(27)

By Lemma 5, we have

𝑎 (‖𝑧 (𝑡)‖) ≤ 𝑉 (𝑡, 𝑧 (𝑡)) ≤ 𝑢 (𝑡, 𝑡
0
, 𝑢
0
) < 𝑎 (𝜀) , (28)

so ‖𝑧(𝑡)‖ < 𝜀; thus the trivial solution of (1) is stable.Theproof
is completed.

Example 18. Consider the stability of the trivial solution of
the following system:

𝑧̇
1
= (−3 + 8 sin 𝑡) 𝑧

1
+ (sin 𝑡) 𝑧

2
,

𝑧̇
2
= (cos 𝑡) 𝑧

1
+ (−3 + 8 sin 𝑡) 𝑧

2
,

𝑧 (0) = 𝑧
0
∈ C
2.

(29)

Let 𝑉(𝑡, 𝑧) = (1/2)(‖𝑧
1
‖2 + ‖𝑧

2
‖2), then

𝑑𝑉

𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(29)
=
1

2
(𝑧̇
1
𝑧
1
+ 𝑧
1
𝑧̇
1
+ 𝑧̇
2
𝑧
2
+ 𝑧
2
𝑧̇
2
)

= (−3 + 8 sin 𝑡) (󵄩󵄩󵄩󵄩𝑧1
󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩𝑧2

󵄩󵄩󵄩󵄩
2

)

+ (sin 𝑡 + cos 𝑡)Re (𝑧
1
𝑧
2
)

≤ (−3 + 8 sin 𝑡) (󵄩󵄩󵄩󵄩𝑧1
󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩𝑧2

󵄩󵄩󵄩󵄩
2

)

+ 2
󵄩󵄩󵄩󵄩𝑧1𝑧2

󵄩󵄩󵄩󵄩

≤ (−3 + 8 sin 𝑡) (󵄩󵄩󵄩󵄩𝑧1
󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩𝑧2

󵄩󵄩󵄩󵄩
2

)

+
󵄩󵄩󵄩󵄩𝑧1

󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩𝑧2

󵄩󵄩󵄩󵄩
2

= (−2 + 8 sin 𝑡) (󵄩󵄩󵄩󵄩𝑧1
󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩𝑧2

󵄩󵄩󵄩󵄩
2

)

= 2 (−2 + 8 sin 𝑡) 𝑉 ≜ 𝑔 (𝑡, 𝑉) .

(30)

Since the solution of system

𝑢̇ = 𝑔 (𝑡, 𝑢) = 2 (−2 + 8 sin 𝑡) 𝑢,

𝑢 (0) = 𝑢
0
∈ R

(31)

is 𝑢(𝑡) = 𝑢
0
exp{−16 − 4𝑡 − 16 cos 𝑡}, the trivial solution of

system (29) is also asymptotically stable byTheorem 17.

Remark 19. Just as Example 13, we can separate (29) into real
and imaginary parts and rewrite it as a 4-dimension real
time-varying system and then use the comparison principle
in the context of real fields to judge the stability of (29),
but the computation is more complex and lengthy. In fact,
Theorem 17 is the generalization of the real comparison
principle in the complex fields, we can judge directly the
stability properties of complex-valued differential system by
Theorem 17.

Generally speaking, the construction of the complex
positive definite function 𝑉(𝑡, 𝑧) is more difficult than the
case of real system.Next wewill give the constructingmethod
of complex Lyapunov function of a class complex-valued
system defined by

𝑧̇ = 𝐺 (𝑡, 𝑧) [ℎ (𝑧) + 𝑔 (𝑡, 𝑧)] , (32)

where 𝐺 ∈ 𝐶[𝐼 × Ω,R+], 𝑔 ∈ 𝐶[𝐼 × Ω,C], 𝐼 = [𝑡
0
, +∞),

𝑡
0
≥ 0,Ω ⊆ C is a neighbourhood of the origin, ℎ ∈ 𝐻[Ω,C],

ℎ󸀠(0) ̸= 0, and ℎ(0) = 0 if and only if 𝑧 = 0.
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System (32) has been discussed to study the asymptotic
stability of complex-valued Riccati equation

𝑧̇ = 𝑞 (𝑡, 𝑧) − 𝑝 (𝑡) 𝑧
2 (33)

in [18]. Next we will give the exponentially asymptotic
stability condition of system (32) byTheorem 17. Let

𝑟 (𝑧) =

{{{{
{{{{
{

𝑧ℎ󸀠 (0) − ℎ (𝑧)

𝑧ℎ (𝑧)
, 𝑧 ∈ Ω, 𝑧 ̸= 0,

−
ℎ󸀠󸀠 (0)

2ℎ󸀠 (0)
, 𝑧 = 0.

(34)

It can be verified that 𝑟(𝑧) is analytic function inΩ, so we can
take

𝑤 (𝑧) = 𝑧 exp{∫
𝑧

0

𝑟 (𝑡) 𝑑𝑡} (35)

and 𝑉(𝑧) = ‖𝑤(𝑧)‖, then when ℎ(𝑧) ̸= 0,

𝑑

𝑑𝑡
𝑉2(𝑧)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(32)
=

𝑑

𝑑𝑡
[𝑤 (𝑧)𝑤 (𝑧)]

= 2Re [𝑤̇ (𝑧) 𝑤 (𝑧)𝑧̇]

= 2Re {𝑤 (𝑧)𝑤 (𝑧) [𝑧−1 + 𝑟 (𝑧) 𝑧̇]}

= 2𝑉2 (𝑧)Re [ℎ󸀠 (0) ℎ−1 (𝑧) 𝑧̇] ,

(36)

thus

𝑑

𝑑𝑡
𝑉 (𝑧)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(32)
= 𝑉 (𝑧)Re [ℎ󸀠 (0) ℎ−1 (𝑧) 𝑧̇]

= 𝐺 (𝑡, 𝑧) 𝑉 (𝑧)

× Re {ℎ󸀠 (0) ℎ−1 (𝑧) [ℎ (𝑧) + 𝑔 (𝑡, 𝑧)]}

= 𝐺 (𝑡, 𝑧) 𝑉 (𝑧)Re{ℎ󸀠 (0) [1 +
𝑔 (𝑡, 𝑧)

ℎ (𝑧)
]} .

(37)

ByTheorem 17, when 𝑉̇(𝑧)|
(32)

≤ −𝑐𝑉(𝑧), 𝑐 > 0, namely,

𝐺 (𝑡, 𝑧)Re{ℎ󸀠 (0) [1 +
𝑔 (𝑡, 𝑧)

ℎ (𝑧)
]} ≤ −𝑐, (38)

the trivial solution of system (32) is exponentially asymptoti-
cally stable. So we have the following result.

Theorem 20. The trivial solution of system (32) is exponen-
tially asymptotically stable if ∃𝑐 > 0 such that the inequality
(38) holds for almost everywhere (𝑡, 𝑧) ∈ 𝐼 × Ω.

Example 21. Consider complex-valued Riccati equation
defined by

𝑑𝑧

𝑑𝑡
= −𝑒−𝑡 [(𝜌 + 𝑡) 𝑧 + 𝑧2] ,

𝑧 (0) = 𝑧
0
∈ C,

(39)

where 𝑡 ≥ 0 and ‖𝑧‖ < 𝜌, 𝜌 > 0. In this example,𝐺(𝑡, 𝑧) = 𝑒−𝑡,
ℎ(𝑧) = −𝑧2 − 𝜌𝑧, 𝑔(𝑡, 𝑧) = −𝑧𝑡, and when ℎ(𝑧) ̸= 0

𝐺 (𝑡, 𝑧)Re{ℎ󸀠 (0) [1 +
𝑔 (𝑡, 𝑧)

ℎ (𝑧)
]}

< −𝜌Re{1 + 𝑡

𝜌 + 𝑧
} = −𝜌{1 +

𝜌 + Re 𝑧
󵄩󵄩󵄩󵄩𝜌 + 𝑧

󵄩󵄩󵄩󵄩
2
𝑡} < −𝜌.

(40)

So the trivial solution of (39) is exponentially asymptotically
stable.

Remark 22. Theasymptotic stability of system (39) can not be
judged by Theorem 3.2 of the paper [18], because condition
(3.13) of the theorem can not be satisfied, so our stability
criterion is more effective.

5. Conclusion

This paper has discussed the stability of complex-valued
differential system. The stability criteria of complex-valued
autonomous system has been established. For the general
complex-valued non-autonomous system, the comparison
principle in the context of complex fields have been derived.
Those derived stability criteria not only provide a new
method to analyze complex-valued differential system, but
also greatly reduce the complexity of analysis and computa-
tion. Based on the new results, the stability conditions of a
class complex-valued nonlinear system have been presented.
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particle quantum systems,” Journal of Applied Mathematics, vol.
2012, Article ID 387823, 15 pages, 2012.

[8] J. Barreiro, M. Müller, P. Schindler et al., “An open-system
quantum simulator with trapped ions,” Nature, vol. 470, no.
7335, pp. 486–491, 2011.

[9] C.-D. Yang, “Stability and quantization of complex-valued
nonlinear quantum systems,” Chaos, Solitons and Fractals, vol.
42, no. 2, pp. 711–723, 2009.
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