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The spatiotemporal dynamics of a phytoplankton-zooplanktonmodelwith an alternative prey and refuge effect is investigatedmath-
ematically and numerically.The stability of the equilibriumpoint and the travelingwave solution of the phytoplankton-zooplankton
model are described based on theoretical mathematical work, which provides the basis of the numerical simulation.The numerical
analysis shows that refuges have a strong effect on the spatiotemporal dynamics of the model according to the pattern formation.
These results may help us to understand prey-predator interactions in water ecosystems. They are also relevant to research into
phytoplankton-zooplankton ecosystems.

1. Introduction

In recent years, the degradation of water ecosystems has
exacerbated certain algal species in aquatic systems [1].
Increasing attention is being paid to preventing this exacer-
bation from reaching a critical condition because of adverse
impacts on fisheries and aquaculture [1]. In aquatic systems,
there is an ecological threshold below which species remains
essentially undetected, whereas they seize the opportunity for
unchecked growth if the ecological threshold is exceeded [2].
Predator-prey models have been studied widely and it is well
known that these model can directly reflect changes in the
sizes of populations, which can be used to determine the eco-
logical threshold for certain algal species in aquatic systems.

Since the pioneering work of Lotka and Volterra, the
predator-prey model has developed significantly in mathe-
matical ecology [3]. A variety of models have been studied
including the Wangersky-Cunningham model, the classical
prey-dependent predator-prey model, and the ratio-depend-
ent function response model [4–13]. A previous model
studied the global dynamics of a predator-prey model with
a nonconstant death rate and diffusion [14]. This model
incorporated Holling type II and Leslie-Gower functional
responses [15, 16]. Most authors have focused their attention

on a single prey item known as the focal prey in these studies,
although some studies have show that the presence of
alternative food sources can affect biological control via a
variety of mechanisms [17]. The population of a prey species
may be affected negatively by another prey species because
they may lead to higher predation rates for both prey items
if the prey shares the predator [17]. However, alternative prey
can also offset predation on the focal prey if the predator has
a predilection for the alternative prey [17, 18]. In this case, the
alternative prey may have a positive effect on the population
of the focal prey [17].

In a predator-preymodel, there are solution states in some
cases. However, the transformation between these states is
important.Thus, many researchers have studied the presence
of traveling wave solutions in predator-prey models [19–25].
In the previous works, we mainly discussed the dynamics of
prey-predator system with impulsive control strategy [3, 26–
28].

In this paper, we discuss a two-species predator-prey
model and the effect of alternative prey. This paper is orga-
nized as follows. In Section 2, we introduce the predator-prey
model and the reaction-diffusion term. Section 3 presents
the mathematical analysis, including the existence of an
equilibrium point and boundedness, a stability analysis of the
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equilibrium point, and traveling wave solutions. In Section 4,
we describe a numerical simulation of our analytical results,
which helps us to understand the feasibility of the theorem.
The final section provides our conclusions.

2. The Model

First, we introduce the following model:
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where 𝑋 and 𝑌 are the densities of phytoplankton and zoop-
lankton at time 𝜏 and position (𝑥, 𝑦), respectively.The param-
eters of the model (1) can be expressed as follows: 𝑟

1
repre-

sents the inherent growth rate of the phytoplankton without
any environment limitations; 𝑘

1
is the carrying capacity of the

phytoplankton in the presence of predators and harvesting;
𝑎
1
represents the consumption rate; 𝑏

1
is the half-saturation

constant that determines how quickly the maximum is
attained when the phytoplankton density increases; 𝑒
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is the

conversion factor denoting the number of new herbivores
produced for each capture; 𝑠
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is the growth rate of micro-

grazers due to the alternative prey; 𝑑
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independent zooplankton mortality rate where 𝑑
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is the refuge protect the prey, where 𝑚
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[29–32].
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. In model (2), we state that the phytoplankton

and zooplankton generally experience the same homoge-
neous environment. Based on a large number of experi-
mental observations in actual environments, it is known
that the distribution of individual organisms often depends
on interactions with the physical environment and other
organisms. A growing body of research indicates that space
can change the dynamics of populations and the structure of
communities [33]. Thus, we assume that the phytoplankton
and zooplankton move randomly, which is described using
random Brownian motion [34, 35]. The system can be
described using the following set of differential equations:
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(3)

where∇2 = 𝜕2/𝜕𝑥2+𝜕2/𝜕𝑦2 is the usual Laplacian operator in
two-dimensional space. It is assumed that the environment is
uniform and all parameters of the model (3) are independent
of space or time, that is, these parameters are constant.
Parameters 𝐷

1
and 𝐷

2
are positive diffusion coefficients for

the phytoplankton and zooplankton, respectively. From the
viewpoint of biology, we are only interested in the dynamics
of models (2) and (3) in the first quadrant 𝑅2

+
. Thus, model

(3) is analyzed using the following initial conditions:

𝑁
0
= 𝑁 (𝑥, 𝑦 ⋅ 0) ≥ 0,

𝑃
0
= 𝑃 (𝑥, 𝑦 ⋅ 0) ≥ 0,

(𝑥, 𝑦) ∈ Ω = [0, 𝐿] × [0, 𝐿]

(4)

and the homogeneous Neumann boundary condition:
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𝜕𝑃
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= 0, (𝑥, 𝑦) ∈ 𝜕Ω, (5)

which indicates that there are no population fluxes through
the boundary and that no external input is imposed from
the outside [19]. 𝑛 is the outward unit normal vector for the
boundary 𝜕Ω, which is usually assumed to be smooth [35].

3. Mathematical Analysis

First, we will prove that all solutions of model (3) are bound-
ed.

Theorem 1. Let (𝑁, 𝑃) be any solution of model (3). Thus, we
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Proof. Based on the first equation in model (3), we derive
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Next, we will discuss the boundedness of 𝑃(𝑥, 𝑡) based on

the second equation of model (3). We let 𝛽 = 𝑑 − 𝑠 > 0 and
we find that
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we can determine 𝑃/(𝑏 +𝑁) ≥ 1, for all 𝑡 ≥ 𝑇∗, 𝑥 ∈ Ω, where
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= max {𝑇
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, 𝑇}.

Based on the formulae above and the first equation in
model (3), we can obtain
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Substituting inequality (13) into the second equation of
model (3), we can get
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Based on the comparison principle, we can find that
𝑃(𝑥, 𝑡) → 0 as 𝑡 → ∞, 𝑥 ∈ Ω, although this is clearly
contradictory.
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Among the conditions that satisfy Theorem 1, we mainly

address the steady states and their stabilities for (3), as follows.
(i) 𝐸
0
= (0, 0), which corresponds to the extinction of the

phytoplankton and zooplankton, which is apparently
an unstable saddle point.
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In an actual environment with changing parameters, we
will observe different states. In this study, the main aim is to
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3.1. Stability Analysis

Theorem 2. (i) 𝐸
0
= (0, 0) is unstable;
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(b) if 𝑏 ≥ 1, then 0 ≤ 𝑛
2
< min (1, √𝑏𝑒/𝑠 − 𝑏). This com-

pletes the proof.

Theorem 3. If 1 < 𝑏 < (𝑒 − 2𝑠 + √𝑒2 − 4𝑒𝑠)/2𝑠, 𝑒 ≥ 4𝑠 and
(𝐵 − 𝑠)𝑏 > 𝑠 hold, the steady state 𝐸

2
= (𝑛
2
, 𝑝
2
) of the model

(3) is globally asymptotically stable, where 𝐵 = (𝑒𝑛
2
)/(𝑏+𝑛

2
)+

𝑠(1 − 𝑛
2
).

Proof. FromLa Salle’s theorem [36], the Lyapunov function of
model (3) needs to be analyzed to prove the theorem. Thus,
the following function is structured,

𝑉 (𝑁, 𝑃) = ∫

𝑁

𝑛2

𝑒 + (𝑑 (1 − 𝑢) −
𝑒𝑛
2

𝑏 + 𝑛
2

− 𝑑 (1 − 𝑛
2
))

× (1 +
𝑏

𝑢
)𝑑𝑢 + ∫

𝑃

𝑝2

𝑢 − 𝑝
2

𝑢
𝑑𝑢,

(25)

assuming 0 < 𝑏 < (𝑒 − 2𝑠 + √𝑒2 − 4𝑒𝑠)/2𝑠 and 𝑒 ≥ 4𝑠 are
satisfied.

𝑊(𝑡) = ∬
Ω

𝑉 (𝑁, 𝑃) 𝑑Ω (26)

𝑉(𝑁, 𝑃) is positive for all (𝑁, 𝑃) in the positive quadrant,
except for 𝐸

2
= (𝑛
2
, 𝑝
2
) where 𝑉(𝑛

2
, 𝑝
2
) = 0. If 𝑑𝑊/𝑑𝑡 < 0 is

proven, then𝑊(𝑡) is the Lyapunov function. Calculating the
rate of change of𝑊(𝑡) for the solution of model (3), we find
that,

𝑑𝑊

𝑑𝑡
=∬
Ω

((𝑒+(𝑠(1 − 𝑁)−
𝑒𝑛
2

𝑏 + 𝑛
2

−𝑠 (1 − 𝑛
2
))(1 +

𝑏

𝑁
))

× (𝑁 (1 − 𝑁) −
𝑁𝑃

𝑏 + 𝑁
+ 𝐷
1
∇
2
𝑁) +

𝑃 − 𝑝
2

𝑃

× (
𝑒𝑁𝑃

𝑏 + 𝑁
+ 𝑠𝑃 (1 − 𝑁) − 𝑑𝑃 + 𝐷

2
∇
2
𝑃))𝑑Ω

= ∬
Ω

((𝑒+(𝑠(1 − 𝑁)−
𝑒𝑛
2

𝑏 + 𝑛
2

−𝑠 (1 − 𝑛
2
))(1 +

𝑏

𝑁
))

× (𝑁 (1 − 𝑁) −
𝑁𝑃

𝑏 + 𝑁
) +

𝑃 − 𝑝
2

𝑃

× (
𝑒𝑁𝑃

𝑏 + 𝑁
+ 𝑠𝑃 (1 − 𝑁) − 𝑑𝑃)

+ (𝑒+(𝑠 (1 − 𝑁)−
𝑒𝑛
2

𝑏 + 𝑛
2

−𝑠 (1 − 𝑛
2
))(1+

𝑏

𝑁
))

+
𝑃 − 𝑝
2

𝑃
𝐷
2
∇
2
𝑃)𝑑Ω

= 𝐻
1
+ 𝐻
2
.

(27)

Based on simple algebraic computations,𝐻
1
becomes

𝐻
1
= ∬
Ω

(𝑓 (𝑁) − 𝑓 (𝑛
2
)) (𝑔 (𝑁) − 𝑔 (𝑛

2
)) 𝑑Ω, (28)

where 𝑓(𝑥) = 𝑒𝑥/(𝑏 + 𝑥) + 𝑠(1 − 𝑥) and 𝑔(𝑥) = (1 − 𝑥)(𝑏 + 𝑥).
Obviously, 𝑓(𝑥) increases strictly monotonically, so𝐻

1
is

negative for all (𝑁, 𝑃) in the positive quadrant if and only if
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𝑔(𝑥) decreases strictly monotonically, and we find that 1 <

𝑏 < (𝑒 − 2𝑠 + √𝑒2 − 4𝑒𝑠)/2𝑠 and 𝑒 ≥ 4𝑠 holds.
In order to determine𝐻

2
, we can use the Green formula.

If it satisfies the homogeneous Neumann boundary condi-
tions, we find

𝐻
2
= −∬

Ω

(𝐷
1|∇𝑁|

2 𝑑

𝑑𝑁

×(𝑒+(𝑠 (1−𝑁)−
𝑒𝑛
2

𝑏+𝑛
2

−𝑠 (1−𝑛
2
))(1+

𝑏

𝑁
))

+𝐷
2|∇𝑃|
2 𝑑

𝑑𝑃
(
𝑃 − 𝑝
2

𝑃
))𝑑Ω

= −∬
Ω

(𝐷
1|∇𝑁|

2
(
(𝐵 − 𝑠) 𝑏

𝑁2
− 𝑠) + 𝐷

2|∇𝑃|
2 𝑝2

𝑃2
)𝑑Ω,

(29)

where 𝐵 = 𝑒𝑛
2
/(𝑏 + 𝑛

2
) + 𝑠(1 − 𝑛

2
). Based on Theorem 1, we

know 0 < 𝑁 < 1. If (𝐵 − 𝑠)𝑏 > 𝑠 is found,𝐻
2
< 0. If 1 < 𝑏 <

(𝑒−2𝑠+√𝑒2 − 4𝑒𝑠)/2𝑠, 𝑒 ≥ 4𝑠 and (𝐵−𝑠)𝑏 > 𝑠 hold, so 𝑑𝑊/𝑑𝑡

is negative.Therefore, 𝐸
2
= (𝑛
2
, 𝑝
2
) is globally asymptotically

stable.

3.2. TravelingWave Solutions. In the previous section, we dis-
cussed the stability of the equilibrium points 𝐸

𝑖
(𝑖 = 0, 1, 2)

for model (3). It can be got that 𝐸
0
= (0, 0) is unstable,

𝐸
1
= (1, 0) is unstable for model (3), and the steady state

𝐸
2
= (𝑛
2
, 𝑝
2
) of themodel (3) is globally asymptotically stable

in suitable conditions. However, this is an essential condition
that leads to travelingwave solutions. In this section, themain
aim is to find a heteroclinic orbit between 𝐸

1
= (1, 0) and

𝐸
2
= (𝑛
2
, 𝑝
2
) or 𝐸

0
= (0, 0) and 𝐸

2
= (𝑛
2
, 𝑝
2
).

To find the heteroclinic orbit between 𝐸
1
= (1, 0) and

𝐸
2
= (𝑛
2
, 𝑝
2
), we need to show that model (3) has a solution

with the special form 𝑁(𝑥, 𝑡) = 𝑁(𝑥 + 𝑐𝑡), 𝑃(𝑥, 𝑡) = 𝑃(𝑥 +

𝑐𝑡), where the wave speed parameter 𝑐 is positive. After
substituting 𝑁(𝑥, 𝑡) = 𝑁(𝑥 + 𝑐𝑡), 𝑃(𝑥, 𝑡) = 𝑃(𝑥 + 𝑐𝑡), and
𝑠 = 𝑥 + 𝑐𝑡 into (3), we get the following wave equations

𝑐𝑁

= 𝑁 (1 − 𝑁) −

𝑁

𝑏 + 𝑁
𝑃 + 𝐷

1
𝑁

,

𝑐𝑃

=

𝑒𝑁

𝑏 + 𝑁
𝑃 + 𝑠𝑃 (1 − 𝑁) − 𝑑𝑃 + 𝐷

2
𝑃

.

(30)

If𝑁(𝑠) and 𝑃(𝑠) are nonnegative and they satisfy the fol-
lowing boundary conditions

𝑁(−∞) = 1, 𝑁 (+∞) = 𝑛
2
,

𝑃 (−∞) = 0, 𝑃 (+∞) = 𝑝
2
,

(31)

which shows there is a traveling wave solution between 𝐸
1
=

(1, 0) and 𝐸
2
= (𝑛
2
, 𝑝
2
).

Substituting 𝑢 = 𝑁 and 𝑤 = 𝑃
 into (30),

𝑁

= 𝑢,

𝑢

=

𝑐

𝐷
1

𝑢 −
𝑁 (1 − 𝑁)

𝐷
1

+
𝑁𝑃

𝐷
1
(𝑏 + 𝑁)

,

𝑃

= 𝑤,

𝑤

=

𝑐

𝐷
2

𝑤 −
𝑒𝑁𝑃

𝐷
2
(𝑏 + 𝑁)

−
𝑠𝑃 (1 − 𝑁)

𝐷
2

+
𝑑𝑃

𝐷
2

.

(32)

After computing the Jacobian matrix for model (32) at
(1, 0, 0, 0), we get the following matrix:

𝐽
(1,0,0,0)

=

[
[
[
[
[
[

[

0 1 0 0

1

𝐷
1

𝑐

𝐷
1

1

𝐷
1
(𝑏 + 1)

0

0 0 0 1

0 0
𝑑

𝐷
2

−
1

𝐷
2
(𝑏 + 1)

𝑐

𝐷
2

]
]
]
]
]
]

]

. (33)

Therefore, the characteristic equation of (1, 0, 0, 0) is giv-
en by |𝜂𝐸 − 𝐽

(1,0,0,0)
| = 0, and 𝜂

𝑖
are its eigenvalues, as follows

𝜂
1
=

𝑐 + √𝑐2 + 4𝐷
1

𝐷
1

, 𝜂
2
=

𝑐 − √𝑐2 + 4𝐷
1

𝐷
1

,

𝜂
3
=
𝑐 + √𝑐2 − 4 (1/ (𝑏 + 1) − 𝑑)

𝐷
2

,

𝜂
4
=
𝑐 − √𝑐2 − 4 (1/ (𝑏 + 1) − 𝑑)

𝐷
2

.

(34)

If 0 < 𝑐 < 𝑐
∗

= 2√𝐷
2
(𝑒/(𝑏 + 1) − 𝑑), then 𝜂

3
and

𝜂
4
are a pair of complex conjugate eigenvalues with positive

real parts. Based on the theorem given in [37], we can find
a two-dimensional unstable manifold, which has the base at
(1, 0, 0, 0). If 𝑠 → −∞, the trajectory approaching (1, 0, 0, 0)
must have 𝑃(𝑠) < 0 for some 𝑠. However, this is contradictory
if 0 < 𝑃 < 𝑏 + 1.

This discussion shows that because 0 < 𝑐 < 𝑐
∗

=

2√𝐷
2
(𝑒/(𝑏 + 1) − 𝑑), traveling wave solutions cannot be

found for model (32), whereas if 𝑐 > 2√𝐷
2
(𝑒/(𝑏 + 1) − 𝑑,

model (32) has non-negative solutions that satisfy the bound-
ary conditions. In some suitable conditions, therefore, there is
a travelingwave solution from (1, 0, 0, 0) to (𝑛

2
, 0, 𝑝
2
, 0). Next,

we discuss the Jacobian matrix of model (32) at (𝑛
2
, 0, 𝑝
2
, 0),

𝐽
(𝑛2 ,0,𝑝2,0)

=

[
[
[
[
[
[

[

0 1 0 0

𝑎
21

𝑐

𝐷
1

𝑎
23

0

0 0 0 1

𝑎
41

0 0
𝑐

𝐷
2

]
]
]
]
]
]

]

, (35)

where 𝑎
21

= −(1 − 2𝑛
2
)/𝐷
1
+ 𝑏(1 − 𝑛

2
)/𝐷
1
(𝑏 + 𝑛

2
), 𝑎
23

=

𝑛
2
/𝐷
1
(𝑏+𝑛
2
), and 𝑎

41
= −𝑒𝑏(1−𝑛

2
)/𝐷
2
(𝑏+𝑛
2
)+𝑠(𝑏+𝑛

2
)(1−

𝑛
2
)/𝐷
2
. Thus, the characteristic equation of (𝑛

2
, 0, 𝑝
2
, 0) is

given by |𝜂𝐸−𝐽
(𝑛2 ,0,𝑝2,0)

| = 0 and 𝜂 is its eigenvalues, as follows:
𝑇(𝜂) = 𝜂

4
−(𝑐/𝐷

1
+𝑐/𝐷
2
)𝜂
3
+(𝑐
2
/𝐷
1
𝐷
2
−𝑎
21
)𝜂
2
+(𝑐𝑎
21
/𝐷
2
)𝜂−

𝑎
23
𝑎
41
.
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Figure 1: Spatiotemporal dynamics of model (3). In ((a), (b)) 𝑏 = 0.1, ((c), (d)) 𝑏 = 0.2, and ((e), (f)) 𝑏 = 0.5. The iteration numbers are 140
in ((a), (c), (e)) and 3000 in ((b), (d), (f)).

Based on the Routh-Hurwitz stability criterion, when
𝑎
41

< 0 and 𝑐 > √𝐷
1
𝐷
2
𝑎
21
, the characteristic equation

of (𝑛
2
, 0, 𝑝
2
, 0) always has two eigenvalues with positive

real parts and two eigenvalues with negative real parts,
that is, to say, there is a stable two-dimensional manifold
at (𝑛
2
, 0, 𝑝
2
, 0) and a trajectory from (1, 0, 0, 0) to (𝑛

2
, 0,

𝑝
2
, 0) where 𝑠 → ∞. Thus, if 𝑎

41
< 0 and 𝑐 >

max (2√𝐷
2
(𝑒/(𝑏 + 1) − 𝑑), √𝐷

1
𝐷
2
𝑎
21
) hold, there is a trav-

eling wave solution.

4. Numerical Results

In this section, the spatiotemporal dynamics of the phyto-
plankton-zooplankton model will be simulated, to better
understand the theoretical findings. All our numerical simu-
lations use the homogeneous Neumann boundary conditions
where (𝐿𝑥, 𝐿𝑦) = (500, 800). Based onnumerical simulations,
we found that the spatial pattern distributions of the phyto-
plankton and zooplankton were always of the same type.This
is because the Holling II function reaction term shows that
the number of predatory zooplankton is proportional to the
number of phytoplankton, while the number of zooplankton
is equal to the number of predators. Therefore, we only

show the spatial patterns of the phytoplankton and the
snapshot with blue parts represents the low density value
of phytoplankton 𝑁, whereas the snapshot with red parts
represents the high density value of phytoplankton 𝑁. To
investigate the interplay among several critical parameters,
we determine the pattern formation using model (3) where
other parameters were fixed as 𝑑 = 0.1, 𝑠 = 0.01, 𝑒 = 0.4,
𝐷
1
= 1, and𝐷

2
= 0.01.

We only changed the value of 𝑏 to test its effects on the
spatiotemporal dynamics of the model (3). In Figure 1, we
show some snapshots of the numerical simulations where
the value of 𝑏 ranged from 0.1 to 0.5. Figures 1(a) and 1(b)
show that the value of 𝑏 is 0.1, the spatial distribution of prey
is a spiral stripy wave, and it is unstable. The instability is
uncertain, so we expect that instability can be avoided by
increasing the value of 𝑏. In Figures 1(c) and 1(d), the value
of 𝑏 is 0.2 and we can observe a periodic spiral wave, because
the phytoplankton gather in the form of a continuous spiral
stripe to avoid the predator. Finally, in Figures 1(e) and 1(f)
the value of 𝑏 increases to 0.5 and the spatial distribution
of prey is a periodic spiral wave, where the width of the
stripe increases. Thus, the living space of the prey grows with
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Figure 2: Spatiotemporal dynamics of model (3). ((a), (c), (e)) phytoplankton (2-D), ((b), (d), (f)) phase diagram.This analysis used the same
set of parameter values as Figure 1.

increasing values of 𝑏. To better understand the effects of
prey refuges, we present the spatiotemporal series and phase
diagram in Figure 2, using the same parameter values shown
in Figure 1. This series of snapshots also shows that we can
increase the number of prey refuges to avoid exacerbating
algal growth.

Figure 3 shows the spatial patterns of the phytoplankton
when the value of 𝑏 increases to 1.2. Based on the above

theoretical analysis, we can see that phytoplankton and
zooplankton will coexist. With increasing iterations, we can
obtain the stable wave pattern shown in the interior of
Figure 3(c), which is limited to a rectangular area. Thus, the
phytoplankton is limited to this area and its value is almost
constant in this area. Figure 3(d) also further that the state of
the phytoplankton is changed from its original state to a final
stable state.
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Figure 3: Spatiotemporal dynamics of model (3) where 𝑏 = 1.2. The number of iterations are as follows (a) 1, (b) 200, and (c) 3000. (d) The
phase diagram.
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Figure 4: Traveling wave solutions for phytoplankton and the change in phytoplankton density at specific times.

Based on the analysis above, we can see that model (3)
has traveling wave solutions, which supports all of the results
above. If the value of 𝑏 is 1.2, the traveling wave solution of
model (3) and the corresponding spatial trend are as shown
in Figure 4. It is important to note that the phytoplankton
density in Figure 4 changes from 𝐸

1
= (1, 0) to 𝐸

2
= (𝑛
2
, 𝑝
2
)

with spatial variation 𝑥 and time variation 𝑡, before finally
reaching a steady state. We also used different time traveling

waves 𝐿
1
, 𝐿
2
, 𝐿
3
, 𝐿
4
at times 𝑡 = 3500, 𝑡 = 4000, 𝑡 = 4500,

𝑡 = 5000, respectively. Figure 4 shows that the trajectories
of the phytoplankton population are different at different
times, although all trajectories started at a steady state 𝐸

1
=

(1, 0), before finally moving to a steady state 𝐸
2
= (𝑛
2
, 𝑝
2
).

Furthermore, it is important to note that model (3) has a
travelingwave solution connecting the steady state𝐸

1
= (1, 0)

and the coexisting equilibrium points 𝐸
2
= (𝑛
2
, 𝑝
2
). These
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results further show that the coexisting equilibrium points
𝐸
2
= (𝑛
2
, 𝑝
2
) becomes more stable as the value of 𝑏 increase.

5. Discussion

In this paper, we considered a phytoplankton-zooplankton
model given by two coupled reaction-diffusion equations
with a Holling’s type II functional response and alterna-
tive prey and refuge effects with homogeneous Neumann
boundary conditions. Mathematical analyses were used to
investigate the stability of the equilibrium points and the
critical conditions for traveling wave solution.The numerical
analysis indicated that parameter 𝑏 has an important effect
on the spatiotemporal dynamics of model (3). Earlier in the
article, 𝑚

1
= 1 − 𝑏

1
/𝑏𝑘
1
. When the carrying capacity 𝑘

1
and

half-saturation constant 𝑏
1
are fixed, the value of 𝑏 is only

determined by the refuge protecting the prey 𝑚
1
, which is

changed readily by different biological and chemical factors.
These result shows that the prey refuge 𝑚

1
has an important

role in the spatiotemporal dynamics ofmodel (1), where it can
make the systemmore stable thereby stabilizing the density of
phytoplankton, which helps to avoid the exacerbation of algal
growth.These results may help us to understand the effects of
the undoubted susceptibility to diffusion in real ecosystems.
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