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In this paper, we propose an iterative spectral method for solving differential equations with initial values on large intervals. In the
proposed method, we first extend the Legendre wavelet suitable for large intervals, and then the Legendre-Guass collocation points
of the Legendre wavelet are derived. Using this strategy, the iterative spectral method converts the differential equation to a set of
algebraic equations. Solving these algebraic equations yields an approximate solution for the differential equation. The proposed
method is illustrated by some numerical examples, and the result is compared with the exponentially fitted Runge-Kutta method.
Our proposed method is simple and highly accurate.

1. Introduction

In this paper, we are concerned with the numerical solution
of the initial value problem:

𝐹 (𝑥, 𝑦 (𝑥) , 𝑦


(𝑥) , . . . , 𝑦
(𝑙−1)

(𝑥) , 𝑦
(𝑙)

(𝑥)) = 0, 𝑥 ∈ [0, 𝑇) ,

(1)

with the initial conditions

𝑦 (𝑥
0
) = 𝑦
0
, . . . , 𝑦

(𝑙−1)
(𝑥
0
) = 𝑦
(𝑙−1)

0
, (2)

on a large domain [0, 𝑇). This kind of initial value problems
appear in many practical life models and are fundamentally
important in both theory and applications. It has applications
in many branches of science including celestial mechanics,
fluid mechanics, heat wave equations, astrophysics, quantum
chemistry, and electronics; for example, see [1–4]. Therefore,
it is worthwhile to develop numerical methods to approxi-
mate their solutions.

Spectral methods are very powerful tools for solving
many kinds of differential equations (and recently integral
equations) arising in various fields of science and engineering

[5, 6]. There are two main advantages for spectral methods.
One is associated with high accuracy, that is also called
“exponential convergence” meaning that the errors are expo-
nentially small. The second advantage is that they can be
easily implemented. These are two effective properties which
have encouraged many active researchers to use them for
different equations. Among many types of spectral methods,
collocation methods are specific approaches that are more
applicable and widely used. Spectral collocation methods
have been used by many authors; for examples, see [7–12].

In recent years, wavelets have found their way into many
different fields of theoretical and practical sciences. Many
researchers started using various wavelets [13–15] for analyz-
ing problems of high computational complexity. It is proved
that wavelets are powerful tools for exploring new problems
and solving differential equations. The Haar wavelets are
alternative tools that have been studied for similar purposes;
see [16–19].

In this paper, we introduce a reliable algorithm based on
the Legendre wavelets spectral method to obtain numerical
solutions of nonlinear ordinary differential equations on large
intervals. There is a difficulty involved with a direct usage
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of spectral methods and their numerical integration for this
type of equations. By introducing a new Legendre wavelet
interpolant approximation, these difficulties rest mainly with
the improved Legendre waveletspectral method.Themethod
of this paper solves the problem iteratively. The validation
of this technique is especially tested for solutions having
oscillatory behavior. Numerical examples are included to
demonstrate the efficiency and high accuracy of the proposed
method.

The remainder of the paper is organized as follows. In
Section 2, we explain the basic properties of the Legendre
wavelets and Legendre polynomials.The family of the Legen-
dre wavelet is an important example; see Kajani and Vencheh
[20]. Then we introduce an interpolation with the Legendre
wavelet on shifted Legendre-gauss points and its coefficients.
We apply the Legendre wavelets on the spectral method for
solving differential equations in large intervals in Section 3.
Section 4 is devoted to the numerical results, compared to the
exponentially fitted Runge-Kutta method; see Berghe et al.
[21, 22]. Finally, in Section 5, the report ends with a brief
conclusion.

2. The Legendre Wavelets Spectral Method

In this section, we describe spectral method on the Legendre
wavelets. First, the Legendre wavelets on large domain and
then spectral method are briefly introduced. Next, we state
how the interpolation can be performed using the Legendre
wavelets.

2.1. Review of Legendre Wavelets and Legendre Polynomials.
Continuous wavelets transform (see [20]) is defined by

𝜓
𝑎,𝑏
(𝑡) = |𝑎|

−1/2
𝜓(

𝑡 − 𝑏

𝑎
) , 𝑎, 𝑏 ∈ R, 𝑎 ̸= 0, (3)

for any continuous function𝜓, where 𝑎 is called the scale and
𝑏 is referred by the shift. A discrete wavelet transform is given
by

𝜓
𝑚,𝑛

(𝑡) = 𝑎
−𝑚/2

𝜓 (𝑎
−𝑚
𝑡 − 𝑛𝑏) , (4)

in which the scale and shift are replaced by (𝑎𝑚, 𝑛𝑎𝑚𝑏) for
any 𝑚, 𝑛 ∈ Z. Here, we intend to consider a family of
discrete wavelets 𝜓

𝑚,𝑛
(𝑡) when 𝜓 is derived from a Legendre

polynomial, and it depends on five arguments, namely,
(𝑘, 𝑇, 𝑛,𝑚, 𝑡); 𝑇 is a large integer, 𝑚 is the order of the
Legendre polynomial, 𝑡 stands for the normalized time,

𝑘 = 1, 2, . . . , 𝑇, 𝑛 = 1, 2, . . . , 2
𝑘−1

𝑇. (5)

Therefore, we define the Legendre wavelets on the interval
[0, 𝑇) by

𝜓
𝑛,𝑚

(𝑡)

=

{

{

{

(𝑚 +
1

2
)

1/2

2
𝑘/2
𝐿
𝑚
(2
𝑘
𝑡 − 2𝑛 + 1)

𝑛 − 1

2𝑘−1
≤ 𝑡 <

𝑛

2𝑘−1
,

0 otherwise,
(6)

where 𝐿
𝑚
(𝑡) is the famous 𝑚th-order Legendre polynomial

with the orthogonal weight function 𝑤(𝑡) = 1. An orthonor-
mal set of the Legendre wavelets is presented in [20]. The
Legendre polynomials are obtained by the recursive formulas:

𝐿
0
(𝑡) = 1,

𝐿
1
(𝑡) = 𝑡,

𝐿
𝑚+1

(𝑡) =
2𝑚 + 1

𝑚 + 1
𝑡𝐿
𝑚
(𝑡) −

𝑚

𝑚 + 1
𝐿
𝑚−1

(𝑡) , 𝑚 = 1, 2, . . . .

(7)

Further, the Legendre-Gauss quadrature formula is defined
as follows

∫

1

−1

𝑔 (𝑥) 𝑑𝑥 ≃

𝑀−1

∑

𝑗=0

𝑤
𝑗
𝑔 (𝑥
𝑗
) , (8)

where the Legendre-Gauss collocation points 𝑥
0
< 𝑥
1
<

⋅ ⋅ ⋅ < 𝑥
𝑀−1

are the roots of 𝐿
𝑀
(𝑥) in (−1, 1) and {𝑤

𝑗
}
𝑀−1

𝑗=0

are corresponding weights. While explicit formulas for the
quadrature nodes are not known, the quadrature weights can
be expressed by the following relation:

𝑤
𝑗
=

2

(1 − 𝑥
2

𝑗
) (𝐿


𝑀
(𝑥
𝑗
))
2
, 𝑗 = 0, 1, . . . ,𝑀 − 1. (9)

Thanks to the property of the Legendre-Gauss quadrature
formula, it follows that

∫

𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥 =
𝑏 − 𝑎

2
∫

1

−1

𝑓(
(𝑏 − 𝑎) 𝑥 + 𝑎 + 𝑏

2
) 𝑑𝑥

≃
𝑏 − 𝑎

2

𝑀−1

∑

𝑗=0

𝑤
𝑗
𝑓(

(𝑏 − 𝑎) 𝑥
𝑗
+ 𝑎 + 𝑏

2
)

=

𝑀−1

∑

𝑗=0

𝑤
𝑗
𝑓(

(𝑏 − 𝑎) 𝑥
𝑗
+ 𝑎 + 𝑏

2
) ,

(10)

where

𝑤
𝑗
=

(𝑏 − 𝑎)𝑤
𝑗

2
, 𝑗 = 0, . . . ,𝑀 − 1. (11)

For more details about the Legendre polynomials, see [6].

2.2. Interpolation by the Legendre Wavelets. A function 𝑓 ∈

𝐿
2
[0, 𝑇) can be expanded in terms of the Legendre wavelets

as

𝑓 (𝑥) =

∞

∑

𝑛=1

∞

∑

𝑚=0

𝑦
𝑛,𝑚
𝜓
𝑛,𝑚

(𝑥) , (12)

where 𝜓
𝑛,𝑚
(𝑥) are the Legendre wavelets defined by (6) and

𝑦
𝑛,𝑚

are given by

𝑦
𝑛,𝑚

= ∫

𝑛/2
𝑘−1

(𝑛−1)/2
𝑘−1

𝑓 (𝑡) 𝜓
𝑛,𝑚

(𝑡) 𝑑𝑡. (13)
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Equation (13) can be approximated using the quadrature rule
in (8) as follows:

𝑦
𝑛,𝑚

≃

𝑀−1

∑

𝑗=0

𝑤
𝑗
𝑓 (𝑥
𝑛𝑗
) 𝜓
𝑛,𝑚

(𝑥
𝑛𝑗
) , (14)

where

𝑤
𝑗
=

𝑤
𝑗

2𝑘
, 𝑥
𝑛𝑗
=

𝑥
𝑗

2𝑘
+
2𝑛 − 1

2𝑘
,

𝑗 = 0, . . . ,𝑀 − 1, 𝑛 = 1, . . . , 2
𝑘−1

𝑇.

(15)

Substituting (13) into (12) gives rise to

𝑓 (𝑥) = ∫

𝑛/2
𝑘−1

(𝑛−1)/2
𝑘−1

𝑓 (𝑡)

∞

∑

𝑚=0

∞

∑

𝑛=0

𝜓
𝑛,𝑚

(𝑥) 𝜓
𝑛,𝑚

(𝑡) 𝑑𝑡. (16)

Equation (16) gives the “completeness relation” for the basis
set, namely,

∞

∑

𝑚=0

∞

∑

𝑛=0

𝜓
𝑛,𝑚

(𝑥) 𝜓
𝑛,𝑚

(𝑡) = 𝛿 (𝑥 − 𝑡) , (17)

and is therefore an identity. If (14) is substituted into (12)
(truncated at𝑀− 1 and 2𝑘−1𝑇) we have

𝑓 (𝑥
𝑛𝑖
) =

𝑀−1

∑

𝑗=0

𝑓 (𝑥
𝑛𝑗
)𝑤
𝑗

𝑀−1

∑

𝑚=0

2
𝑘−1
𝑇

∑

𝑛=0

𝜓
𝑛,𝑚

(𝑥
𝑛𝑖
) 𝜓
𝑛,𝑚

(𝑥
𝑛𝑗
) . (18)

The discrete version of (17) is given by

𝑤
𝑗

𝑀−1

∑

𝑚=0

2
𝑘−1
𝑇

∑

𝑛=0

𝜓
𝑛,𝑚

(𝑥
𝑛𝑖
) 𝜓
𝑛,𝑚

(𝑥
𝑛𝑗
) = 𝛿
𝑖𝑗
. (19)

Equations (12) (truncated at𝑀 − 1 and 2𝑘−1𝑇), and (14) also
supply interpolation functions 𝐼

𝑛𝑗
(𝑥) governed by

𝐼
𝑛𝑗
(𝑥) = 𝑤

𝑗

𝑀−1

∑

𝑚=0

𝜓
𝑛,𝑚

(𝑥
𝑛𝑗
) 𝜓
𝑛,𝑚

(𝑥) ,

𝑗 = 0, 1, . . . ,𝑀 − 1, 𝑛 = 1, . . . , 2
𝑘−1

𝑇.

(20)

In particular, 𝐼
𝑛𝑗
(𝑥
𝑛𝑖
) = 𝛿
𝑖𝑗
. This implies that

𝑓 (𝑥) ≃

2
𝑘−1
𝑇

∑

𝑛=1

𝑀−1

∑

𝑗=0

𝐼
𝑛𝑗
(𝑥) 𝑓 (𝑥

𝑛𝑗
) , (21)

since the following holds:

2
𝑘−1
𝑇

∑

𝑛=1

𝑀−1

∑

𝑚=0

𝑀−1

∑

𝑗=0

𝑤
𝑗
𝑓 (𝑥
𝑛𝑗
) 𝜓
𝑛,𝑚

(𝑥
𝑛𝑗
) 𝜓
𝑛,𝑚

(𝑥)

=

2
𝑘−1
𝑇

∑

𝑛=1

𝑀−1

∑

𝑗=0

𝑀−1

∑

𝑚=0

𝑤
𝑗
𝑓 (𝑥
𝑛𝑗
) 𝜓
𝑛,𝑚

(𝑥
𝑛𝑗
) 𝜓
𝑛,𝑚

(𝑥)

=

2
𝑘−1
𝑇

∑

𝑛=1

𝑀−1

∑

𝑗=0

𝑤
𝑗

𝑀−1

∑

𝑚=0

𝑓 (𝑥
𝑛𝑗
) 𝜓
𝑛,𝑚

(𝑥
𝑛𝑗
) 𝜓
𝑛,𝑚

(𝑥) .

(22)

3. Solving IVPs on a Large Domain

Consider the initial value problem governed by (1) and (2).
In order to solve this problem, we divide the interval [0, 𝑇)
into some subintervals given by [(𝑛 − 1)/2𝑘−1, 𝑛/2𝑘−1) for 𝑛 =
1, . . . , 2

𝑘−1
𝑇. Consequently, 𝑥 ∈ [(𝑛− 1)/2𝑘−1, 𝑛/2𝑘−1) implies

that

𝜓
𝑝𝑗
(𝑥) = 0, for any 𝑝 ̸= 𝑛. (23)

Thus, 𝐼
𝑝𝑗
(𝑥) = 0 for all 𝑝 ̸= 𝑛. As a result, the Legendre

wavelet interpolant approximation to the function 𝑦 on the
𝑛th subinterval follows (21) and is given by

𝑦 (𝑥) ≃ 𝑌
𝑛
(𝑥)

=

2
𝑘−1
𝑇

∑

𝑝=1

𝑀−1

∑

𝑗=0

𝐼
𝑝𝑗
(𝑥) 𝑦
𝑝𝑗

=

𝑀−1

∑

𝑗=0

𝐼
𝑛𝑗
(𝑥) 𝑦
𝑛𝑗
, for 𝑥 ∈ [𝑛 − 1

2𝑘−1
,
𝑛

2𝑘−1
) .

(24)

Inductively, we define that

𝑌
(𝑠)

𝑛
(𝑥) :=

𝑀−1

∑

𝑗=0

𝐼
(𝑠)

𝑛𝑗
(𝑥) 𝑦
𝑛𝑗
, 𝑠 = 1, . . . , 𝑚. (25)

Applying the points {𝑥
𝑛𝑗
| 𝑛 = 1, . . . , 2

𝑘−1
𝑇, 𝑗 = 𝑙, . . . ,𝑀 − 1}

into (1) leads to

𝐹 (𝑥
𝑛𝑗
, 𝑌
𝑛
(𝑥
𝑛𝑗
) , 𝑌


𝑛
(𝑥
𝑛𝑗
) , . . . , 𝑌

(𝑙−1)

𝑛
(𝑥
𝑛𝑗
) , 𝑌
(𝑙)

𝑛
(𝑥
𝑛𝑗
)) = 0.

(26)

Besides, the initial conditions for the 𝑛th subinterval can be
approximated as follows:

lim
𝑥→((𝑛−1)/2

𝑘−1
)
−
𝑌
(𝑠)

𝑛−1
(𝑥) − 𝑌

(𝑠)

𝑛
(
𝑛 − 1

2𝑘−1
) = 0,

for any 𝑠 = 0, . . . , 𝑙 − 1.
(27)

Equations (26) and (27) give a system of 𝑀 algebraic
equations. By solving this algebraic system, we obtain {𝑦

𝑛𝑗
|

𝑛 = 1, . . . , 2
𝑘−1

𝑇, 𝑗 = 0, . . . ,𝑀 − 1}. Then, the approximate
solution on the 𝑛th subinterval is obtained by substituting 𝑦

𝑛𝑗

into (24).
Our proposed procedure starts with setting 𝑛 = 1.

The initial conditions in (2) are used for the approximate
solution for the first subinterval [0, 1/2𝑘−1). This allows to
obtain the initial conditions for the second subinterval from
(27). Consequently, the approximate solution of the second
subinterval is computed.Theprocedure is repeated till the last
subinterval. Finally, the approximate solution of the IVP in (1)
and (2) on the whole domain [0, 𝑇) is obtained by

𝑦 (𝑥) ≃

2
𝑘−1
𝑇

∑

𝑛=1

𝑌
𝑛
(𝑥) =

2
𝑘−1
𝑇

∑

𝑛=1

𝑀−1

∑

𝑗=0

𝐼
𝑛𝑗
(𝑥) 𝑦
𝑛𝑗
. (28)
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Table 1: Numerical comparison for Example 1.

Methods 𝑀 𝑘 Errors
LWSM 10 4 3.30 × 10

−15

12 4 5.30 × 10
−20

10 5 7.36 × 10
−18

12 5 2.85 × 10
−23

EFRKMB 2.03 × 10
−14

Table 2: Numerical comparison for Example 2.

Methods 𝑀 𝑘 Errors
LWSM 26 3 5.69 × 10

−14

27 3 8.24 × 10
−16

25 4 2.11 × 10
−21

27 4 3.48 × 10
−24

20 5 1.96 × 10
−19

25 5 8.32 × 10
−29

EFRKMB 1.70 × 10
−14

4. Numerical Experiments

We apply the method presented in the last section and
numerically solve five problems to demonstrate the efficiency
of the proposed method. We also compare the results with
exponentially fitted Runge-Kutta method [21, 22]. Further,
the global errors evaluated at the end point of the interval are
tabulated. The following notations are used in the tables.

LWSM stands for “the Legendre wavelets on spectral
method,”

EFRKMB denotes “the exponentially fitted Runge-Kutta
method using Vanden Berghe’s technique with ℎ = 0.0625”;
see [21, 22].

Example 1. Consider the initial value problem

𝑑
2
𝑢

𝑑𝑥2
= −𝑢(𝑢

2
+ V
2
)
−3/2

,

𝑑
2V

𝑑𝑥2
= −V(𝑢

2
+ V
2
)
3/2

,

(29)

for 0 ≤ 𝑥 ≤ 7, where 𝑢(0) = 1, 𝑢(0) = 0, V(0) = 0, V(0) = 1.

The exact solutions of this problem are 𝑢(𝑥) =

cos(𝑥), V(𝑥) = sin(𝑥). In order to obtain a solid criterion
for a global error assessment, we estimate the error at the
endpoints. The Euclidean norms of the end-point global
errors are provided in Table 1. Table 1 demonstrates that
LWSM gives a better approximation than that of EFRKMB.

Example 2. Let

𝑦

= −30 sin (30𝑥) , (30)

for 0 ≤ 𝑥 ≤ 10, where 𝑦(0) = 0, 𝑦(0) = 1.

The exact solution of this initial value problem is given by
𝑦(𝑥) = sin(30𝑥)/30. Table 2 represents the Euclidean norms

Table 3: Numerical comparison for Example 3.

Methods 𝑀 𝑘 Errors
LWSM 12 4 1.06 × 10

−19

12 3 1.08 × 10
−16

15 3 1.95 × 10
−24

EFRKMB 2.07 × 10
−7

Table 4: Numerical comparison for Example 4.

Methods 𝑀 𝑘 Errors
LWSM 12 4 2.06 × 10

−18

12 3 2.08 × 10
−15

15 3 2.95 × 10
−21

EFRKMB 2.40 × 10
−9

of the numerical errors at the endpoints associated with
LWSM and EFRKMB. It indicates that our approach is highly
more accurate than EFRKMB in this example. Furthermore,
the error decreases for any increase in𝑀 and 𝑘 as it is also the
case for Example 1.

Example 3. Let

𝑢

= −𝑢 + .001 cos (𝑥) , (31)

for 0 ≤ 𝑥 ≤ 1000, where 𝑢(0) = 1, 𝑢

(0) = 0. The exact

solution of this initial value problem is 𝑢(𝑥) = cos(𝑥) +
0.0005𝑥 sin(𝑥). The numerical data associated with the end-
point global errors are provided in Table 3 which give us
similar conclusions to Examples 1 and 2 as expected.

Example 4. Let

𝑦

+ 𝑦
3
+ 𝑦 = 𝐵 cos (Ω𝑥) ,

𝑦 (0) = 0.20042672806900,

𝑦


(0) = 0,

(32)

where 0 ≤ 𝑥 ≤ 300, 𝐵 = 0.002, andΩ = 1.01.

The exact solution is governed by

𝑦 (𝑥) = 0.200179477536 cos (Ω𝑥) + 0.246946143

× 10
−3 cos (3Ω𝑥) + 0.304016 × 10−6 cos (5Ω𝑥)

+ 0.374 × 10
−9 cos (7Ω𝑥) .

(33)

The numerical comparison of the two methods using the
Euclidean norms of the end-point global errors is provided
in Table 4. Similar conclusions to those of previous examples
are drawn in this table.

5. Conclusions

We define an interpolation using the Legendre wavelets for
the shifted Legendre-Guass collocation points. Then, this
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gives rise to a set of algebraic equations, andfinally its solution
constitutes the desired approximate solutions. Our approach
is based on a partitioning of the domain interval and solving a
given IVP iteratively on each interval. This approach is called
an iterative spectral method and is suitable for solving IVP on
large intervals.

The main characteristic behind this technique is that
it iteratively solves the IVP and the defined interpolation
substantially reduces the computational effort. This leads
to highly accurate numerical results as depicted by several
examples. The proposed method is simple and easy to imple-
ment in practical problems. It can be applied for solving other
mathematical equations, such as integral equations, integro-
differential equations and partial differential equations.
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