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This paper is concerned with the dynamical stability analysis for almost periodic solution of memristive neural networks with
time-varying delays. Under the framework of Filippov solutions, by applying the inequality analysis techniques, the existence
and asymptotically almost periodic behavior of solutions are discussed. Based on the differential inclusions theory and Lyapunov
functional approach, the stability issues of almost periodic solution are investigated, and a sufficient condition for the existence,
uniqueness, and global exponential stability of the almost periodic solution is established. Moreover, as a special case, the condition
which ensures the global exponential stability of a unique periodic solution is also presented for the considered memristive neural
networks. Two examples are given to illustrate the validity of the theoretical results.

1. Introduction

Memristor (resistor with memory), which was firstly postu-
lated by Chua in [1], is the fourth fundamental electronic
component along with the resistor, inductor, and capacitor.
On May 1, 2008, the Hewlett-Packard (HP) research team
announced their realization of a memristor prototype, with
an official publication in Nature [2, 3]. This new circuit ele-
ment is a two-terminal element, either a charge-controlled
memristor or a flux-controlled memristor, and shares many
properties of resistors and the same unit of measurement
(ohm). Subsequently, memristor has received a great deal
of attention from many scientists because of its potential
applications in next generation computer andpowerful brain-
like “neural” computer [4–14].

Recently, various memristor-based networks have been
established by means of the memristive circuits, and many
applications have been made in science and engineering
fields [15–17]; see, for example, Cserey et al. who presented
simulationmeasurements of amemristor crossbar device and
designed a PCB memristor package and the appropriate
measurement board [17]. It should be pointed that, in many
applications, the existing memristor-based networks which
many researchers had designed have been found to be com-
putationally restrictive.

Neural networks, such as Hopfield neural networks, Cel-
lular neural networks, Cohen-Grossberg, and bidirectional
associative neural networks, are very important nonlinear
circuit networks, and, in the past few decades, have been
extensively studied due to their potential applications in
classification, signal and image processing, parallel comput-
ing, associate memories, optimization, cryptography, and so
forth. [18–27]. Many results, which deal with the dynamics of
various neural networks such as stability, periodic oscillation,
bifurcation, and chaos, have been obtained by applying
Lyapunov stability theory; see, for example [28–45] and the
references therein. Very recently, memristor-based neural
networks (memristive neural networks) have been designed
by replacing the resistors in the primitive neural networks
with memristors in [46–52]. As is well known, the memristor
exhibits the feature of pinched hysteresis, which means that a
lag occurs between the application and the removal of a field
and its subsequent effect, just as the neurons in the human
brain have. Because of this feature, the memristive neural
networks can remember its past dynamical history, store a
continuous set of states, and be “plastic” according to the
presynaptic and postsynaptic neuronal activity. In [46], Itoh
and Chua designed a memristor cellular automaton and a
memristor discrete-time cellular neural network, which can
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perform a number of applications such as logical operations,
image processing operations, complex behaviors, higher
brain functions, and RSA algorithm. In [47], Pershin and
Di Ventra constructed a simple neural network consisting
of three electronic neurons connected by two memristor-
emulator synapses and demonstrated experimentally the
formation of associative memory in these memristive neural
networks. This experimental demonstration opens up new
possibilities in the understanding of neural processes using
memory devices, an important step forward to reproduce
complex learning, adaptive and spontaneous behavior with
electronic neural networks.

It is well known that, in the design of practical neural
networks, the qualitative analysis of neural network dynamics
plays an important role. For example, to solve problems of
optimization, neural control, and signal processing, neural
networks have to be designed in such a way that, for a given
external input, they exhibit only one globally asymptotical-
ly/exponentially stable equilibrium point. Hence, in practice
applications, it is an essential issue to discuss the stability
for the memristive neural networks. In [48], Hu and Wang
proposed a piecewise-linear mathematical model of the
memristor to characterize the pinched hysteresis feature.
Based on this model, the memristor-based recurrent neural
network model with time delays was given and two sufficient
conditions for the global uniform asymptotic stability of the
memristor-based recurrent neural networks were obtained.
In [49, 50],Wu et al. investigated the synchronization control
issue of a general class of memristor-based recurrent neural
networks with time delays, and some sufficient conditions
were obtained to guarantee the exponential synchronization
of the coupled networks based on drive-response concept.
In [51], the dynamic behaviors for a class of memristor-
based Hopfield networks were analyzed, and some sufficient
conditions were obtained to ensure the essential bound
of solutions and global exponential stability. In [52], the
stability was considered for the memristor-based recurrent
network with bounded activation functions and bounded
time-varying delays in the presence of strong external stimuli,
and a sufficient condition on the bounds of stimuli was
derived for global exponential stability of memristor-based
recurrent networks.

It should be noted that, very little attention has been
paid to dealing with the periodicity issue, in particular; to
the best of our knowledge, the almost periodic dynamics of
memristive neural networks with time-varying delays have
never been considered in the previous literature, which
motivates the work of this paper.

In this paper, our aim is to study the exponential stability
of almost periodic solution for memristive neural networks
with time-varying delays. By using the concept of Filippov
solutions for the differential equations with discontinuous
right-hand sides and the inequality analysis techniques,
the existence and asymptotically almost periodic behavior
of solution will be discussed. Based on the differential
inclusions theory, the proof of the existence of the almost
periodic solution will be given. By applying Lyapunov
functional approach, a sufficient condition will be established
to ensure the uniqueness and global exponential stability of

the almost periodic solution for the considered memristive
neural networks. As a special case, the conditions of the
global exponential stability of a unique periodic solution
equilibrium point are also presented.

The rest of this paper is organized as follows. In Section 2,
the model formulation and some preliminaries are given. In
Section 3, the existence and asymptotically almost periodic
behavior of solutions are analyzed, the existence of the
almost periodic solution is proved, and the uniqueness and
global exponential stability of the almost periodic solution
are investigated. In Section 4, two numerical examples are
presented to demonstrate the validity of the proposed results.
Some conclusions are made in Section 5.

Notations. Throughout this paper, 𝑅 denotes the set of real
numbers,𝑅𝑛 denotes the 𝑛-dimensional Euclidean space, and
𝑅
𝑚×𝑛 denotes the set of all 𝑚 × 𝑛 real matrices. For any

matrix 𝐴, 𝐴𝑇 denotes the transpose of 𝐴. If 𝐴 is a real
symmetric matrix, 𝐴 > 0 (𝐴 < 0) means that 𝐴 is positive
definite (negative definite). Given the column vectors 𝑥 =

(𝑥
1
, . . . , 𝑥

𝑛
)
𝑇, 𝑦 = (𝑦

1
, . . . , 𝑦

𝑛
)
𝑇

∈ 𝑅
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, |𝑥| =

(|𝑥
1
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𝑛
|)
𝑇, and ‖𝑥‖ = (∑

𝑛

𝑖=1
𝑥
2

𝑖
)
1/2. ‖𝐴‖ = √𝜆

𝑀
(𝐴𝑇𝐴)

represents the norm of 𝐴, where 𝜆
𝑀
(𝐴) is the maximum

eigenvalue of 𝐴. 𝐶([−𝜏, 0]; 𝑅𝑛) denotes the family of contin-
uous function 𝜑 from [−𝑟, 0] to 𝑅𝑛 with the norm ‖𝜑‖ =

sup
−𝑟≤𝑠≤0

|𝜑(𝑠)|. �̇�(𝑡) denotes the derivative of 𝑥(𝑡). Matrices,
if their dimensions are not explicitly stated, are assumed to
have compatible dimensions for algebraic operations.

2. Model Description and Preliminaries

The KCL equation of the 𝑖th subsystem of a general class of
neural networks with time-varying delays can be written as
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, 𝑡 ≥ 0, 𝑖 = 1, 2, . . . , 𝑛,

(1)

where 𝑥
𝑖
(𝑡) is the voltage of the capacitor C

𝑖
; R
𝑖𝑗
denotes the

resistor between the feedback function 𝑔
𝑖
(𝑥
𝑖
(𝑡)) and 𝑥

𝑖
(𝑡); F
𝑖𝑗
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𝑖
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𝑖
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R
𝑖
represents the parallel resistor corresponding to the

capacitor C
𝑖
; I
𝑖
is the external input or bias;

sgn
𝑖𝑗
= {

1, 𝑖 ̸= 𝑗,

−1, 𝑖 = 𝑗.
(2)
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Let 𝑑
𝑖
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(3)

By replacing the resistors R
𝑖𝑗
and F

𝑖𝑗
in the primitive neural

networks (1) or (3)withmemristorswhosememductances are
W
𝑖𝑗
and M

𝑖𝑗
, respectively, then memristive neural networks

with time-varying delays can be designed as
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where 𝑑
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.

Combining the typical current-voltage characteristics of
memristor (see Figure 1 in [48]), similarly to discussion in
[49, 50], the coefficient parameters of the system (4) 𝑑

𝑖
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𝑖
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where switching jumps 𝑇
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𝑖
> 0, ̌𝑑
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, ̌𝑎
𝑖𝑗
, �̂�
𝑖𝑗
, and
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Notice that the system (4) is a differential equation with
discontinuous right-hand sides, and based on the theory of

differential inclusions [53], if 𝑥
𝑖
(𝑡) is a solution of (4) in the

sense of Filippov [54], then
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The differential inclusion system (6) can be transformed
into the vector form as

�̇� (𝑡) ∈ − [𝐷,𝐷] 𝑥 (𝑡) + [𝐴, 𝐴] 𝑔 (𝑥 (𝑡))

+ [𝐵, 𝐵] 𝑔 (𝑥 (𝑡 − 𝜏 (𝑡))) + 𝐼 (𝑡) , 𝑡 ≥ 0,

(7)

where𝐷 = diag(𝑑
1
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2
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𝑖𝑗
)
𝑛×𝑛

. Or
equivalently, there exist measurable functionsD(𝑡) ∈ [𝐷,𝐷],
A(𝑡) ∈ [𝐴, 𝐴], andB(𝑡) ∈ [𝐵, 𝐵], such that

�̇� (𝑡) = −D (𝑡) 𝑥 (𝑡) +A (𝑡) 𝑔 (𝑥 (𝑡))

+B (𝑡) 𝑔 (𝑥 (𝑡 − 𝜏 (𝑡))) + 𝐼 (𝑡) , 𝑡 ≥ 0.

(8)

To obtain the main results of this paper, some definitions
and lemmas are introduced as follows.

Definition 1 (see [55]). A continuous function 𝑥(𝑡) : 𝑅 → 𝑅
𝑛

is said to be almost periodic on 𝑅, if, for any 𝜀 > 0, there
exists a scalar 𝑙 = 𝑙(𝜀) > 0 and, for any interval with length 𝑙,
there exists a scalar 𝜔 = 𝜔(𝜀) > 0 in this interval, such that
‖ 𝑥(𝑡 + 𝜔) − 𝑥(𝑡) ‖< 𝜀 for all 𝑡 ∈ 𝑅.

Definition 2. Thealmost periodic solution𝑥∗(𝑡) of the system
(4) is said to be globally exponentially stable, if there exist
scalars 𝜂 > 0 and 𝛿 > 0, such that

𝑥 (𝑡) − 𝑥
∗

(𝑡)
 ≤ 𝜂𝑒

−𝛿𝑡

, 𝑡 ≥ 0, (9)

where 𝑥(𝑡) is the solution of the system (4) with the initial
value 𝑥(𝑡) = 𝜑(𝑡) ∈ 𝐶([−𝜏, 0]; 𝑅𝑛). 𝛿 is called as the exponen-
tial convergence rate.

Definition 3 (see [55]). The solution 𝑥(𝑡) of the system (4)
with the initial value 𝑥(𝑡) = 𝜑(𝑡) ∈ 𝐶([−𝜏, 0]; 𝑅𝑛) is said to be
asymptotically almost periodic, if, for any 𝜀 > 0, there exist
scalars 𝑇 > 0, 𝑙 = 𝑙(𝜀) > 0, and 𝜔 = 𝜔(𝜀) > 0 in any interval
with length 𝑙, such that ‖ 𝑥(𝑡 + 𝜔) − 𝑥(𝑡) ‖< 𝜀, for all 𝑡 ≥ 𝑇.

Lemma 4 (see [29]). For any𝑄(𝑡) ∈ [𝑄, 𝑄], the following ine-
quality holds:

‖𝑄 (𝑡)‖ ≤
𝑄
∗ +

𝑄∗
 , (10)

where 𝑄∗ = (𝑄 + 𝑄)/2, 𝑄
∗
= (𝑄 − 𝑄)/2.
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Lemma 5 (see [45]). Let scalar 𝜀 > 0, 𝑥, 𝑦 ∈ 𝑅
𝑛, and 𝐴 ∈

𝑅
𝑛×𝑛, then

𝑥
𝑇

𝐴𝑦 ≤
1

2𝜀
𝑥
𝑇

𝐴𝐴
𝑇

𝑥 +
𝜀

2
𝑦
𝑇

𝑦. (11)

Throughout this paper, the following assumptions are made
on (4):

(𝐴
1
) 𝐼
𝑖
(𝑡) is an almost periodic function.

(𝐴
2
) 𝑔
𝑖
: 𝑅 → 𝑅 is a nondecreasing continuous func-

tion.
(𝐴
3
) 𝜏
𝑖
(𝑡) is an almost periodic function, and 0 <

𝜏
𝑖
(𝑡) < 𝜏, ̇𝜏

𝑖
(𝑡) ≤ 𝜇 < 1, 𝜏 and 𝜇 are constants.

3. Main Results

In this section, themain results concerned with the existence,
uniqueness, and global exponential stability of the almost
periodic solution are addressed for the memristive neural
network in (4).

Theorem6. Under the assumptions (𝐴
1
)−(𝐴

3
), if there exists

a diagonal matrix 𝑃 = diag(𝑝
1
, 𝑝
2
, . . . , 𝑝

𝑛
) > 0 such that

1

1 − 𝜇
𝑈 +P(

𝐵
∗ +

𝐵∗
)
2

𝑈 − 𝑆 < 0, (12)

whereP = max𝑝
𝑖
, 𝑈 is the identity matrix, 𝑆 = (𝑠

𝑖𝑗
)
𝑛×𝑛
, 𝑠
𝑖𝑖
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−2𝑝
𝑖
𝑎
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, 𝑠
𝑖𝑗
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𝑖
𝑎
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|, |𝑝
𝑖
𝑎
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𝑗
𝑎
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|}, 𝑖 ̸= 𝑗, 𝐵∗ =

(𝐵 + 𝐵)/2, and 𝐵
∗
= (𝐵 − 𝐵)/2. then

(1) For any initial value 𝑥(𝑡) = 𝜑(𝑡) ∈ 𝐶([−𝜏, 0]; 𝑅
𝑛

),
there exists a solution of the memristive neural network (4) on
[0, +∞), and this solution is asymptotically almost periodic.

(2)Thememristive neural network (4) has a unique almost
periodic solution which is globally exponentially stable.

Proof. We should prove this theorem in four steps.

Step 1. In this step, we will prove the existence of the solution,
that is, prove that the system (4) has a global solution for any
initial value 𝑥(𝑡) = 𝜑(𝑡) ∈ 𝐶([−𝜏, 0]; 𝑅𝑛).

Similar to the proof of Lemma 1 in [37], under the
assumptions of Theorem 6, it is easy to obtain the existence
of the local solution of (4) with initial value 𝑥(𝑡) = 𝜑(𝑡) ∈

𝐶([−𝜏, 0]; 𝑅
𝑛

) on [0, 𝑇(𝜑)), where 𝑇(𝜑) ∈ (0, +∞) or 𝑇(𝜑) =
+∞, and [0, 𝑇(𝜑)) is themaximal right-side existence interval
of the local solution.

Due to 𝑑
𝑖
> 0, 𝑖 = 1, 2, . . . , 𝑛, by (12) we can choose con-

stants 𝛿 > 0 and ] > 0, such that 0 < 𝛿 < 𝑑
𝑖
, 𝑖 = 1, 2, . . . , 𝑛,

(𝛿 + 3])𝑈 − 2𝐷 < 0, and

𝑒
𝛿𝑡

1 − 𝜇
𝑈 +P(

𝐵
∗ +

𝐵∗
)
2

𝑈 − 𝑆 < 0. (13)

Without loss of generality, we suppose that 𝑔(0) = 0.
Let scalars 𝛼 > 0, 𝛽 > 0. Consider a Lyapunov functional
defined by

𝑉 (𝑡) = 𝑉
1
(𝑡) + 𝑉

2
(𝑡) + 𝑉

3
(𝑡) , 𝑡 ≥ 0, (14)

where

𝑉
1
(𝑡) = 𝑒

𝛿𝑡

𝑥
𝑇

(𝑡) 𝑥 (𝑡) ,

𝑉
2
= 2𝛼𝑒

𝛿𝑡

𝑛

∑

𝑖=1

𝑝
𝑖
∫

𝑥𝑖(𝑡)

0

𝑔
𝑖
(𝜃) 𝑑𝜃,

𝑉
3
=
𝛼 + 𝛽

1 − 𝜇
∫

𝑡

𝑡−𝜏(𝑡)

𝑔
𝑇

(𝑥 (𝜃)) 𝑔 (𝑥 (𝜃)) 𝑒
𝛿(𝜃+𝜏)

𝑑𝜃.

(15)

Calculate the time derivative of 𝑉(𝑡) along the local solution
of (4) on [0, 𝑇(𝜑)). By (8) and Lemma 5, we have

�̇�
1
(𝑡) = 𝛿𝑒

𝛿𝑡

𝑥
𝑇

(𝑡) 𝑥 (𝑡) + 2𝑒
𝛿𝑡

𝑥
𝑇

(𝑡) �̇� (𝑡)

= 𝛿𝑒
𝛿𝑡

𝑥
𝑇

(𝑡) 𝑥 (𝑡) − 2𝑒
𝛿𝑡

𝑥
𝑇

(𝑡)D (𝑡) 𝑥 (𝑡)

+ 2𝑒
𝛿𝑡

𝑥
𝑇

(𝑡)A (𝑡) 𝑔 (𝑥 (𝑡))

+ 2𝑒
𝛿𝑡

𝑥
𝑇

(𝑡)B (𝑡) 𝑔 (𝑥 (𝑡 − 𝜏 (𝑡)))

+ 2𝑒
𝛿𝑡

𝑥
𝑇

(𝑡) 𝐼 (𝑡)

≤ 𝑒
𝛿𝑡

𝑥
𝑇

(𝑡) (𝛿𝑈 − 2D (𝑡)) 𝑥 (𝑡) + ]𝑒
𝛿𝑡

𝑥
𝑇

(𝑡) 𝑥 (𝑡)

+
𝑒
𝛿𝑡

]
𝑔
𝑇

(𝑥 (𝑡))A(𝑡)
𝑇

A (𝑡) 𝑔 (𝑥 (𝑡))

+ ]𝑒
𝛿𝑡

𝑥
𝑇

(𝑡) 𝑥 (𝑡)

+
𝑒
𝛿𝑡

]
𝑔
𝑇

(𝑥 (𝑡 − 𝜏 (𝑡)))B(𝑡)
𝑇

B (𝑡) 𝑔 (𝑥 (𝑡 − 𝜏 (𝑡)))

+ ]𝑒
𝛿𝑡

𝑥
𝑇

(𝑡) 𝑥 (𝑡) +
𝑒
𝛿𝑡

]
𝐼
𝑇

(𝑡) 𝐼 (𝑡)

≤ 𝑒
𝛿𝑡

𝑥
𝑇

(𝑡) ((𝛿 + 3]) 𝑈 − 2D (𝑡)) 𝑥 (𝑡)

+
𝑒
𝛿𝑡

]
𝑔
𝑇

(𝑥 (𝑡)) ‖A (𝑡)‖
2

𝑔 (𝑥 (𝑡))

+
𝑒
𝛿𝑡

]
𝑔
𝑇

(𝑥 (𝑡 − 𝜏 (𝑡))) ‖B (𝑡)‖
2

𝑔 (𝑥 (𝑡 − 𝜏 (𝑡)))

+
𝑒
𝛿𝑡

]
𝐼
𝑇

(𝑡) 𝐼 (𝑡)

≤
𝑒
𝛿𝑡

]
𝑔
𝑇

(𝑥 (𝑡)) ‖A (𝑡)‖
2

𝑔 (𝑥 (𝑡))

+
𝑒
𝛿𝑡

]
𝑔
𝑇

(𝑥 (𝑡 − 𝜏 (𝑡))) ‖B (𝑡)‖
2

𝑔 (𝑥 (𝑡 − 𝜏 (𝑡)))

+
𝑒
𝛿𝑡

]
𝐼
𝑇

(𝑡) 𝐼 (𝑡) .

(16)

By the assumptions (𝐴
2
) and (𝐴

3
), for any constant 𝛾 > 0, we

have

�̇�
2
(𝑡) = 2𝛼𝛿𝑒

𝛿𝑡

𝑛

∑

𝑖=1

𝑝
𝑖
∫

𝑥𝑖(𝑡)

0

𝑔
𝑖
(𝜃) 𝑑𝜃

+ 2𝛼𝑒
𝛿𝑡

𝑛

∑

𝑖=1

𝑝
𝑖
𝑔
𝑖
(𝑥
𝑖
(𝑡)) �̇�
𝑖
(𝑡)
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≤ 2𝛼𝛿𝑒
𝛿𝑡

𝑛

∑

𝑖=1

𝑝
𝑖
𝑔
𝑖
(𝑥
𝑖
(𝑡)) 𝑥
𝑖
(𝑡)

+ 2𝛼𝑒
𝛿𝑡

𝑛

∑

𝑖=1

𝑝
𝑖
𝑔
𝑖
(𝑥
𝑖
(𝑡)) �̇�
𝑖
(𝑡)

= 2𝛼𝛿𝑒
𝛿𝑡

𝑔
𝑇

(𝑥 (𝑡)) 𝑃𝑥 (𝑡)

+ 2𝛼𝑒
𝛿𝑡

𝑔
𝑇

(𝑥 (𝑡)) 𝑃�̇� (𝑡)

= 2𝛼𝛿𝑒
𝛿𝑡

𝑔
𝑇

(𝑥 (𝑡)) 𝑃𝑥 (𝑡)

− 2𝛼𝑒
𝛿𝑡

𝑔
𝑇

(𝑥 (𝑡)) 𝑃D (𝑡) 𝑥 (𝑡)

+ 2𝛼𝑒
𝛿𝑡

𝑔
𝑇

(𝑥 (𝑡)) 𝑃A (𝑡) 𝑔 (𝑥 (𝑡))

+ 2𝛼𝑒
𝛿𝑡

𝑔
𝑇

(𝑥 (𝑡)) 𝑃B (𝑡) 𝑔 (𝑥 (𝑡 − 𝜏 (𝑡)))

+ 2𝛼𝑒
𝛿𝑡

𝑔
𝑇

(𝑥 (𝑡)) 𝑃𝐼 (𝑡)

≤ 2𝛼𝑒
𝛿𝑡

𝑔
𝑇

(𝑥 (𝑡)) 𝑃 (𝛿𝐼 −D (𝑡)) (𝑡) 𝑥 (𝑡)

+ 𝛼𝑒
𝛿𝑡

𝑔
𝑇

(𝑥 (𝑡)) (𝑃A (𝑡) +A(𝑡)
𝑇

𝑃) 𝑔 (𝑥 (𝑡))

+ 𝛼𝑒
𝛿𝑡

𝑔
𝑇

(𝑥 (𝑡)) 𝑃B (𝑡) (𝑃B (𝑡))
𝑇

𝑔 (𝑥 (𝑡))

+ 𝛼𝑒
𝛿𝑡

𝑔
𝑇

(𝑥 (𝑡 − 𝜏 (𝑡))) 𝑔 (𝑥 (𝑡 − 𝜏 (𝑡)))

+ 𝛾𝛼𝑒
𝛿𝑡

𝑔
𝑇

(𝑥 (𝑡)) 𝑔 (𝑥 (𝑡)) +
𝛼P2𝑒𝛿𝑡

𝛾
𝐼
𝑇

(𝑡) 𝐼 (𝑡)

≤ 𝛼𝑒
𝛿𝑡

𝑔
𝑇

(𝑥 (𝑡)) (𝑃A (𝑡) +A(𝑡)
𝑇

𝑃

+𝑃B (𝑡) (𝑃B (𝑡))
𝑇

+ 𝛾𝑈)𝑔 (𝑥 (𝑡))

+ 𝛼𝑒
𝛿𝑡

𝑔
𝑇

(𝑥 (𝑡 − 𝜏 (𝑡))) 𝑔 (𝑥 (𝑡 − 𝜏 (𝑡)))

+
𝛼P2𝑒𝛿𝑡

𝛾
𝐼
𝑇

(𝑡) 𝐼 (𝑡) .

�̇�
3
=
𝛼 + 𝛽

1 − 𝜇
(𝑒
𝛿(𝑡+𝜏)

𝑔
𝑇

(𝑥 (𝑡)) 𝑔 (𝑥 (𝑡)) − 𝑒
𝛿(𝑡−𝜏(𝑡)+𝜏)

× (1 − ̇𝜏 (𝑡)) 𝑔
𝑇

(𝑥 (𝑡 − 𝜏 (𝑡)))

× 𝑔 (𝑥 (𝑡 − 𝜏 (𝑡))) )

≤
𝛼 + 𝛽

1 − 𝜇
𝑔
𝑇

(𝑥 (𝑡)) 𝑔 (𝑥 (𝑡)) 𝑒
𝛿(𝑡+𝜏)

− (𝛼 + 𝛽) 𝑔
𝑇

(𝑥 (𝑡 − 𝜏 (𝑡))) 𝑔 (𝑥 (𝑡 − 𝜏 (𝑡))) 𝑒
𝛿𝑡

.

(17)

From (16) and (17) and by Lemma 4, one yields

�̇� (𝑡) ≤ 𝛼𝑒
𝛿𝑡

𝑔
𝑇

(𝑥 (𝑡))

× (𝑃A (𝑡) +A(𝑡)
𝑇

𝑃 + 𝑃𝐵 (𝑡) (𝑃𝐵 (𝑡))
𝑇

+ (𝛾 +
‖A (𝑡)‖

2

𝛼]
+

𝑒
𝛿𝜏

1 − 𝜇

× (1 +
𝛽

𝛼
))𝑈)𝑔 (𝑥 (𝑡))

+ 𝑒
𝛿𝑡

𝑔
𝑇

(𝑥 (𝑡 − 𝜏 (𝑡))) (
‖B (𝑡)‖

2

]
− 𝛽)

× 𝑔 (𝑥 (𝑡 − 𝜏 (𝑡))) + 𝑒
𝛿𝑡

(
1

]
+
𝛼P2

𝛾
) ‖𝐼 (𝑡)‖

2

≤ 𝛼𝑒
𝛿𝑡

𝑔
𝑇

(𝑥 (𝑡))


× (P
2

(
𝐵
∗ +

𝐵∗
)
2

𝑈 − 𝑆

+ (𝛾 +
(
𝐴∗

 +
𝐴
∗)
2

𝛼]

+
𝑒
𝛿𝜏

1 − 𝜇
(1 +

𝛽

𝛼
))𝑈)

𝑔 (𝑥 (𝑡))


+ 𝑒
𝛿𝑡

𝑔
𝑇

(𝑥 (𝑡 − 𝜏 (𝑡)))

× (

(
𝐵∗

 +
𝐵
∗

2

]
− 𝛽)𝑔 (𝑥 (𝑡 − 𝜏 (𝑡)))

+ 𝑒
𝛿𝑡

(
1

]
+
𝛼P2

𝛾
) ‖𝐼 (𝑡)‖

2

,

(18)

where 𝐴∗ = (𝐴 + 𝐴)/2, 𝐴
∗
= (𝐴 − 𝐴)/2. By (13), we can

choose suitable constants 𝛾 > 0, 𝛼 > 0, ] > 0, and 𝛽 > 0,
such that

(
𝐵∗

 +
𝐵
∗)
2

]
− 𝛽 < 0,

P
2

(
𝐵
∗ +

𝐵∗
)
2

𝑈 − 𝑆

+ (𝛾 +
(
𝐴∗

 +
𝐴
∗)
2

𝛼]
+

𝑒
𝛿𝜏

1 − 𝜇
(1 +

𝛽

𝛼
))𝑈 < 0.

(19)

This implies that

�̇� (𝑡) ≤ 𝑒
𝛿𝑡

(
1

]
+
𝛼P2

𝛾
) ‖𝐼 (𝑡)‖

2

. (20)

Moreover, by the assumption (𝐴
1
), we can obtain that 𝐼(𝑡) is a

bounded function. Hence, there exist a constant𝑀 > 0, such
that

0 < (
1

]
+
𝛼P2

𝛾
) ‖𝐼 (𝑡)‖

2

< 𝑀, 𝑡 ≥ 0. (21)

By (20) and (21), it follows that

�̇� (𝑡) ≤ 𝑀𝑒
𝛿𝑡

, 𝑡 ∈ [0, 𝑇 (𝜑)) . (22)
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From the definition of 𝑉(𝑡) and (22), we have

𝑒
𝛿𝑡

‖𝑥 (𝑡)‖
2

≤ 𝑉 (𝑡) ≤ 𝑉 (0) + ∫

𝑡

0

�̇� (𝑠) 𝑑𝑠

≤ 𝑉 (0) + ∫

𝑡

0

𝑀𝑒
𝛿𝑠

𝑑𝑠

= 𝑉 (0) +
𝑀

𝛿
(𝑒
𝛿𝑡

− 1) , 𝑡 ∈ [0, 𝑇 (𝜑)) .

(23)

Thus,

‖𝑥 (𝑡)‖
2

≤ 𝑒
−𝛿𝑡

𝑉 (0) +
𝑀

𝛿
(1 − 𝑒

−𝛿𝑡

)

≤ 𝑉 (0) +
𝑀

𝛿
, 𝑡 ∈ [0, 𝑇 (𝜑)) .

(24)

This shows that the local solution 𝑥(𝑡) of (4) is bounded on
[0, 𝑇(𝜑)) and hence is defined on [0, +∞). That is, the system
(4) has a global solution for any initial value 𝑥(𝑡) = 𝜑(𝑡) ∈

𝐶([−𝜏, 0]; 𝑅
𝑛

).

Step 2. In this step, the global solution 𝑥(𝑡) of the system (4)
will be proved to be asymptotically almost periodic.

Let 𝑦(𝑡) = 𝑥(𝑡 + 𝜔) − 𝑥(𝑡), then

̇𝑦 (𝑡) = −D (𝑡) 𝑦 (𝑡) +A (𝑡) 𝑔 (𝑦 (𝑡))

+B (𝑡) 𝑔 (𝑦 (𝑡 − 𝜏 (𝑡))) + 𝐼 (𝜔, 𝑡) ,

(25)

where

𝑔 (𝑦 (𝑡)) = 𝑔 (𝑥 (𝑡 + 𝜔)) − 𝑔 (𝑥 (𝑡)) ,

𝑔 (𝑦 (𝑡 − 𝜏 (𝑡))) = 𝑔 (𝑥 (𝑡 + 𝜔 − 𝜏 (𝑡))) − 𝑔 (𝑥 (𝑡 − 𝜏 (𝑡))) ,

𝐼 (𝜔, 𝑡) = 𝐼 (𝑡 + 𝜔) − 𝐼 (𝑡) .

(26)

Similar to 𝑉(𝑡), define Lyapunov functional𝑊(𝑡) as

𝑊(𝑡) = 𝑒
𝛿𝑡

𝑦
𝑇

(𝑡) 𝑦 (𝑡) + 2𝛼𝑒
𝛿𝑡

𝑛

∑

𝑖=1

𝑝
𝑖
∫

𝑦𝑖(𝑡)

0

𝑔
𝑖
(𝜃) 𝑑𝜃

+
𝛼 + 𝛽

1 − 𝜇
∫

𝑡

𝑡−𝜏(𝑡)

𝑔
𝑇

(𝑦 (𝜃)) 𝑔 (𝑦 (𝜃)) 𝑒
𝛿(𝜃+𝜏)

𝑑𝜃.

(27)

Calculate the derivative of𝑊(𝑡) along the solution of the sys-
tem (25). Arguing as in Step 1, we can choose the appropriate
positive constants ], 𝛾, 𝛼, and 𝛿, such that

�̇� (𝑡) ≤ 𝑒
𝛿𝑡

(
1

]
+
𝛼P2

𝛾
)

𝐼 (𝜔, 𝑡)



2

, 𝑡 > 0. (28)

By the assumption (𝐴
1
), 𝐼
𝑖
(𝑡) is an almost periodic function.

Thus, by Definition 1, for any 𝜀 > 0, there exists 𝑙 = 𝑙(𝜀) > 0,
and for any interval with length 𝑙, there exists a scalar 𝜔 in
this interval, such that

(
1

]
+
𝛼P2

𝛾
)

𝐼 (𝜔, 𝑡)



2

≤
1

2
𝜀
2

𝛿, 𝑡 > 0. (29)

It follows from (28) and (29) that �̇�(𝑡) ≤ (1/2)𝜀2𝛿𝑒𝛿𝑡, 𝑡 > 0,
which implies

𝑒
𝛿𝑡𝑦 (𝑡)



2

≤ 𝑊(𝑡) ≤ 𝑊 (0) + ∫

𝑡

0

1

2
𝛿𝜀
2

𝑒
𝛿𝑠

𝑑𝑠

= 𝑊 (0) +
1

2
𝜀
2

(𝑒
𝛿𝑡

− 1) , 𝑡 > 0,

‖𝑥 (𝑡 + 𝜔) − 𝑥 (𝑡)‖

≤ (𝑒
−𝛿𝑡

𝑊(0) +
1

2
𝜀
2

(1 − 𝑒
−𝛿𝑡

))

1/2

, 𝑡 > 0.

(30)

Therefore, there exists a constant 𝑇 > 0; when 𝑡 > 𝑇, we have

‖𝑥 (𝑡 + 𝜔) − 𝑥 (𝑡)‖ ≤ 𝜀. (31)

This shows that the solution of the system (4) is asymptoti-
cally almost periodic.

Step 3. In this step, we will prove that the system (4) has an
almost periodic solution.

Let 𝑥(𝑡) be the solution of the system (4) with the initial
value 𝑥(𝑡) = 𝜑(𝑡) ∈ 𝐶([−𝜏, 0]; 𝑅𝑛), then 𝑥(𝑡) satisfies (8). Take
a sequence {𝑡

𝑘
}, 𝑡
1
< 𝑡
2
< ⋅ ⋅ ⋅ < 𝑡

𝑘
< 𝑡
𝑘+1

< ⋅ ⋅ ⋅ , lim
𝑘→+∞

𝑡
𝑘
=

+∞. It is easy to derive that the function sequence {𝑥(𝑡 + 𝑡
𝑘
)}

is equicontinuous and uniformly bounded. Hence, by using
Arzela-Ascoli theorem and diagonal selection principle, a
subsequence of {𝑡

𝑘
} (still denoted by {𝑡

𝑘
}) can be selected,

such that {𝑥(𝑡 + 𝑡
𝑘
)} uniformly converges to a continuous

function 𝑥∗(𝑡) on any compact set of 𝑅.
By applying Lebesgue’s dominated convergence theorem

on (8), we can obtain that

𝑥
∗

(𝑡 + ℎ) − 𝑥
∗

(𝑡)

= lim
𝑘→+∞

(𝑥 (𝑡 + 𝑡
𝑘
+ ℎ) − 𝑥 (𝑡 + 𝑡

𝑘
))

= lim
𝑘→+∞

∫

𝑡+ℎ

𝑡

(−D (𝑡) 𝑥 (𝑡
𝑘
+ 𝜃)

+A (𝑡) 𝑔 (𝑥 (𝑡
𝑘
+ 𝜃))

+B (𝑡) 𝑔 (𝑥 (𝑡
𝑘
+ 𝜃 − 𝜏 (𝑡

𝑘
+ 𝜃))) + 𝐼 (𝑡

𝑘
+ 𝜃)) 𝑑𝜃

= ∫

𝑡+ℎ

𝑡

(−D (𝑡) 𝑥
∗

(𝜃) +A (𝑡) 𝑔 (𝑥
∗

(𝜃))

+B (𝑡) 𝑔 (𝑥
∗

(𝜃 − 𝜏 (𝜃))) + 𝐼 (𝜃)) 𝑑𝜃

(32)

for any 𝑡 ∈ [−𝜏, +∞) and ℎ ∈ 𝑅. This implies that 𝑥∗(𝑡)
is a solution of (4). By the result obtained in Step 2, 𝑥(𝑡) is
asymptotically almost periodic. That is, for any 𝜀 > 0, there
exist 𝑇 > 0, 𝑙 = 𝑙(𝜀), and for any interval with length 𝑙, there
exists a scalar𝜔 in this interval, such that ‖𝑥(𝑡+𝜔)−𝑥(𝑡)‖ ≤ 𝜀
for all 𝑡 ≥ 𝑇. Thus, there exists a constant 𝐾 > 0; for all
𝑡 ∈ [−𝜏, +∞) and 𝑘 > 𝐾, we can get that

𝑥 (𝑡 + 𝑡𝑘 + 𝜔) − 𝑥 (𝑡 + 𝑡𝑘)
 ≤ 𝜀. (33)



Journal of Applied Mathematics 7

Let 𝑘 → +∞ in (33), it follows that ‖𝑥∗(𝑡 + 𝜔) − 𝑥∗(𝑡)‖ ≤ 𝜀
for all 𝑡 ∈ [−𝜏, +∞). This shows that 𝑥∗(𝑡) is the almost
periodic solution of (4). The proof of the existence of the
almost periodic solution has been completed.

Step 4. In this step, we will prove that the uniqueness and
global exponential stability of the almost periodic solution for
the system (4).

Let 𝑥(𝑡) be any solution of (4), and let 𝑥∗(𝑡) be an almost
periodic solution of (4). Set 𝑧(𝑡) = 𝑥(𝑡) − 𝑥∗(𝑡), then

�̇� (𝑡) = −D (𝑡) 𝑧 (𝑡) +A (𝑡) 𝑔 (𝑧 (𝑡))

+B (𝑡) 𝑔 (𝑧 (𝑡 − 𝜏 (𝑡))) ,

(34)

where

𝑔 (𝑧 (𝑡)) = 𝑔 (𝑥 (𝑡)) − 𝑔 (𝑥
∗

(𝑡)) ,

𝑔 (𝑧 (𝑡 − 𝜏 (𝑡))) = 𝑔 (𝑥 (𝑡 − 𝜏 (𝑡))) − 𝑔 (𝑥
∗

(𝑡 − 𝜏 (𝑡))) .

(35)

Similar to 𝑉(𝑡), define Lyapunov functional 𝐿(𝑡) as

𝐿 (𝑡) = 𝐿
1
(𝑡) + 𝐿

2
(𝑡) + 𝐿

3
(𝑡) , (36)

where

𝐿
1
(𝑡) = 𝑒

𝛿𝑡

𝑧
𝑇

(𝑡) 𝑧 (𝑡) ,

𝐿
2
(𝑡) = 2𝛼𝑒

𝛿𝑡

𝑛

∑

𝑖=1

𝑝
𝑖
∫

𝑧𝑖(𝑡)

0

𝑔
𝑖
(𝜃) 𝑑𝜃,

𝐿
3
(𝑡) = (𝛼 + 𝛽)∫

𝑡

𝑡−𝜏(𝑡)

𝑔
𝑇

(𝑧 (𝜃)) 𝑔 (𝑧 (𝜃)) 𝑒
𝛿(𝜃+𝜏)

𝑑𝜃.

(37)

Arguing as in Step 1, we have

�̇�
1
(𝑡) ≤

𝑒
𝛿𝑡

]
𝑔
𝑇

(𝑧 (𝑡)) ‖A (𝑡)‖
2

𝑔 (𝑧 (𝑡))

+
𝑒
𝛿𝑡

]
𝑔
𝑇

(𝑧 (𝑡 − 𝜏 (𝑡))) ‖B (𝑡)‖
2

𝑔 (𝑧 (𝑡 − 𝜏 (𝑡))) ,

�̇�
2
(𝑡) ≤ 𝛼𝑒

𝛿𝑡

𝑔 (𝑧 (𝑡)) (𝑃A (𝑡) +A(𝑡)
𝑇

𝑃

+ 𝑃B (𝑡) (𝑃B (𝑡))
𝑇

) 𝑔 (𝑧 (𝑡))

+ 𝛼𝑒
𝛿𝑡

𝑔
𝑇

(𝑧 (𝑡 − 𝜏 (𝑡))) 𝑔 (𝑧 (𝑡 − 𝜏 (𝑡))) ,

�̇�
3
(𝑡) ≤

𝛼 + 𝛽

1 − 𝜇
𝑔 (𝑧 (𝑡)) 𝑔 (𝑧 (𝑡)) 𝑒

𝛿(𝑡+𝜏)

− (𝛼 + 𝛽) 𝑔
𝑇

(𝑧 (𝑡 − 𝜏 (𝑡)) 𝑔 (𝑧 (𝑡 − 𝜏 (𝑡))) 𝑒
𝛿𝑡

.

(38)

Thus

�̇� (𝑡) ≤ 𝛼𝑒
𝛿𝑡

𝑔
𝑇

(𝑧 (𝑡)) (𝑃A (𝑡) +A (𝑡) 𝑃 + 𝑃B (𝑡) (𝑃B (𝑡))
𝑇

+(
‖A (𝑡)‖

2

𝛼]
+

𝑒
𝛿𝜏

1 − 𝜇
(1 +

𝛽

𝛼
))𝑈)

× 𝑔 (𝑧 (𝑡))

+ 𝑒
𝛿𝑡

𝑔 (𝑧 (𝑡 − 𝜏 (𝑡))) (
‖B (𝑡)‖

2

]
− 𝛽)𝑔 (𝑧 (𝑡 − 𝜏 (𝑡)))

≤ 𝛼𝑒
𝛿𝑡

𝑔
𝑇

(𝑥 (𝑡))


× (P
2

(
𝐵
∗ +

𝐵∗
)
2

𝑈 − 𝑆

+ (
(
𝐴∗

 +
𝐴
∗)
2

𝛼]
+
𝑒
𝛿𝜏

1 − 𝜇
(1 +

𝛽

𝛼
))𝑈)

×
𝑔 (𝑥 (𝑡))



+ 𝑒
𝛿𝑡

𝑔
𝑇

(𝑥 (𝑡 − 𝜏 (𝑡))) (
(
𝐵∗

 +
𝐵
∗)
2

]
− 𝛽)

× 𝑔 (𝑥 (𝑡 − 𝜏 (𝑡))) .

(39)

By (13), we can choose appropriate constants 𝛾 > 0, 𝛼 > 0,
] > 0, and 𝛽 > 0, such that

P
2

(
𝐵
∗ +

𝐵∗
)
2

𝑈 − 𝑆

+ (
(
𝐴∗

 +
𝐴
∗)
2

𝛼]
+

𝑒
𝛿𝜏

1 − 𝜇
(1 +

𝛽

𝛼
))𝑈 < 0,

(
𝐵∗

 +
𝐵
∗)
2

]
− 𝛽 < 0.

(40)

This implies that �̇�(𝑡) ≤ 0.Therefore, combined with the defi-
nition of 𝐿(𝑡), it follows that

‖𝑧 (𝑡)‖
2

=
𝑥 (𝑡) − 𝑥

∗

(𝑡)


2

≤ 𝑒
−𝛿𝑡

𝐿 (𝑡) ≤ 𝐿 (0) 𝑒
−𝛿𝑡

. (41)

This shows that the almost periodic solution 𝑥∗(𝑡) of the sys-
tem (4) is globally exponentially stable. Consequently, the
periodic solution 𝑥∗(𝑡) is unique. This completes the proof
of Theorem 6.

Notice that periodic function can be regarded as special
almost periodic function. Hence, when 𝐼

𝑖
(𝑡) is a periodic

external input in the system (4), we can get the following
corollary.

Corollary 7. Suppose that the assumptions (𝐴
2
)-(𝐴
3
) hold. If

there exists a diagonal matrix 𝑃 = diag(𝑝
1
, 𝑝
2
, . . . , 𝑝

𝑛
) > 0

such that
1

1 − 𝜇
𝑈 +P(

𝐵
∗ +

𝐵∗
)
2

𝑈 − 𝑆 < 0, (42)

where P = max𝑝
𝑖
, 𝑈 is the identity matrix, and 𝑆 =

(𝑠
𝑖𝑗
)
𝑛×𝑛
, 𝑠
𝑖𝑖
= −2𝑝

𝑖
𝑎
𝑖𝑖
, 𝑠
𝑖𝑗
= −max{|𝑝

𝑖
𝑎
𝑖𝑗
+ 𝑝
𝑗
𝑎
𝑗𝑖
|, |𝑝
𝑖
𝑎
𝑖𝑗
+

𝑝
𝑗
𝑎
𝑗𝑖
|}, and 𝑖 ̸= 𝑗, then one has the following.

(1) For any initial value 𝑥(𝑡) = 𝜑(𝑡) ∈ 𝐶([−𝜏, 0]; 𝑅𝑛), there
exists a solution of the memristive neural network (4)
on [0, +∞), and this solution is asymptotically periodic.
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(2) The memristive neural network (4) has a unique peri-
odic solution which is globally exponentially stable.

When 𝐼
𝑖
(𝑡) is a constant external input 𝐼

𝑖
, the system (4)

changes as

�̇�
𝑖
(𝑡) = −𝑑

𝑖
(𝑥
𝑖
(𝑡)) 𝑥
𝑖
(𝑡) +

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
(𝑥
𝑖
(𝑡)) 𝑔
𝑗
(𝑥
𝑗
(𝑡))

+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
(𝑥
𝑖
(𝑡)) 𝑔
𝑗
(𝑥
𝑗
(𝑡 − 𝜏 (𝑡))) + 𝐼

𝑖
, 𝑖 = 1, 2, . . . , 𝑛.

(43)

Since a constant can be also regarded as a special almost peri-
odic function, by applyingTheorem 6 on the neural network
(43), we have the following.

Corollary 8. Suppose that the assumptions (𝐴
2
)-(𝐴
3
) hold. If

there exists a diagonal matrix 𝑃 = diag(𝑝
1
, 𝑝
2
, . . . , 𝑝

𝑛
) > 0

such that

1

1 − 𝜇
𝑈 +P(

𝐵
∗ +

𝐵∗
)
2

𝑈 − 𝑆 < 0, (44)

where P = max𝑝
𝑖
, 𝑈 is the identity matrix, and 𝑆 =

(𝑠
𝑖𝑗
)
𝑛×𝑛
, 𝑠
𝑖𝑖
= −2𝑝

𝑖
𝑎
𝑖𝑖
, 𝑠
𝑖𝑗
= −max{|𝑝

𝑖
𝑎
𝑖𝑗
+ 𝑝
𝑗
𝑎
𝑗𝑖
|, |𝑝
𝑖
𝑎
𝑖𝑗
+

𝑝
𝑗
𝑎
𝑗𝑖
|}, and 𝑖 ̸= 𝑗, then one has the following.

(1) For any initial value 𝑥(𝑡) = 𝜑(𝑡) ∈ 𝐶([−𝜏, 0]; 𝑅𝑛), there
exists a solution of the memristive neural network (43)
on [0, +∞).

(2) Thememristive neural network (43) has a unique equi-
librium point which is globally exponentially stable.

4. Illustrative Examples

In this section, two examples will be given to illustrate the
effectiveness of the results obtained in this paper.

Example 1. Consider the second-order memristive neural
network with time-varying delays in (4) described by

(
�̇�
1
(𝑡)

�̇�
2
(𝑡)
) = (

𝑑
11
(𝑥
1
) 0

0 𝑑
22
(𝑥
2
)
)(

𝑥
1
(𝑡)

𝑥
2
(𝑡)
)

+ (
𝑎
11
(𝑥
1
) 𝑎
12
(𝑥
1
)

𝑎
21
(𝑥
2
) 𝑎
22
(𝑥
2
)
)(

𝑥
3

1
(𝑡)

𝑥
3

2
(𝑡)
)

+ (
𝑏
11
(𝑥
1
) 𝑏
12
(𝑥
1
)

𝑏
21
(𝑥
2
) 𝑏
22
(𝑥
2
)
)(

𝑥
3

1
(𝑡 − 0.5 (sin 𝑡 + 1))

𝑥
3

2
(𝑡 − 0.5 (sin 𝑡 + 1)))

+ (
2 − 4 sin 𝑡

−3 − 4 cos√2𝑡) ,

(45)

where

𝑑
11
(𝑥
1
) = {

0.8,
𝑥1 (𝑡)

 < 1.5,

1,
𝑥1 (𝑡)

 > 1.5,

𝑑
22
(𝑥
2
) = {

2,
𝑥2 (𝑡)

 < 1.5,

2.4,
𝑥2 (𝑡)

 > 1.5,

𝑎
11
(𝑥
1
) = {

−150,
𝑥1 (𝑡)

 < 1.5,

−145,
𝑥1 (𝑡)

 > 1.5,

𝑎
12
(𝑥
1
) = {

0,
𝑥1 (𝑡)

 < 1.5,

1,
𝑥1 (𝑡)

 > 1.5,

𝑎
21
(𝑥
2
) = {

0,
𝑥2 (𝑡)

 < 1.5,

2,
𝑥2 (𝑡)

 > 1.5,

𝑎
22
(𝑥
2
) = {

−162,
𝑥2 (𝑡)

 < 1.5,

−160,
𝑥2 (𝑡)

 > 1.5,

𝑏
11
(𝑥
1
) = {

−1,
𝑥1 (𝑡)

 < 1.5,

3,
𝑥1 (𝑡)

 > 1.5,

𝑏
12
(𝑥
1
) = {

0,
𝑥1 (𝑡)

 < 1.5,

4,
𝑥1 (𝑡)

 > 1.5,

𝑏
21
(𝑥
2
) = {

1,
𝑥2 (𝑡)

 < 1.5,

2,
𝑥2 (𝑡)

 > 1.5,

𝑏
22
(𝑥
2
) = {

2,
𝑥2 (𝑡)

 < 1.5,

3,
𝑥2 (𝑡)

 > 1.5.

(46)

It is obvious that 𝜏 = 1, 𝜇 = 0.5. Choose the positive definite
diagonal matrix 𝑃 = diag(1, 0.1), then 𝑆 = (

290.0 −1.2

−1.2 320.0
). It is

easy to check that

1

1 − 𝜇
𝑈 +P(

𝐵
∗ +

𝐵∗
)
2

𝑈 − 𝑆

= (
−226.7157 1.2000

1.2000 −256.7157
) < 0.

(47)

All conditions of Theorem 6 hold; hence the memristive
neural network in this example has a unique almost periodic
solution which is globally exponentially stable.

Figure 1 displays the state trajectory of the network with
initial condition (𝜑

1
(𝑡), 𝜑
2
(𝑡))
𝑇

= (−0.5𝑡
2

, 0.5𝑡)
𝑇, 𝑡 ∈ [−1, 0).

It can be seen that this trajectory converges to the unique
almost periodic solution of the network.This is in accordance
with the conclusion of Theorem 6.

Example 2. Consider the third-order memristive neural net-
work with time-varying delays in (4) described by

(

�̇�
1
(𝑡)

�̇�
2
(𝑡)

�̇�
3
(𝑡)

) = (

𝑑
11
(𝑥
1
) 0 0

0 𝑑
22
(𝑥
2
) 0

0 0 𝑑
33
(𝑥
3
)

)(

𝑥
1
(𝑡)

𝑥
2
(𝑡)

𝑥
3
(𝑡)

)
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Figure 1: The state trajectory of the network with the initial condition (𝜑
1
(𝑡), 𝜑
2
(𝑡))
𝑇

= (−0.5𝑡
2

, 0.5𝑡)
𝑇, 𝑡 ∈ [−1, 0).

+ (

𝑎
11
(𝑥
1
) 𝑎
12
(𝑥
1
) 𝑎
13
(𝑥
1
)

𝑎
21
(𝑥
2
) 𝑎
22
(𝑥
2
) 𝑎
23
(𝑥
2
)

𝑎
31
(𝑥
3
) 𝑎
32
(𝑥
3
) 𝑎
33
(𝑥
3
)

)(

𝑥
3

1
(𝑡)

𝑥
3

2
(𝑡)

𝑥
3

3
(𝑡)

)

+ (

𝑏
11
(𝑥
1
) 𝑏
12
(𝑥
1
) 𝑏
13
(𝑥
1
)

𝑏
21
(𝑥
2
) 𝑏
22
(𝑥
2
) 𝑏
23
(𝑥
2
)

𝑏
31
(𝑥
3
) 𝑏
32
(𝑥
3
) 𝑏
33
(𝑥
3
)

)

× (

𝑥
3

1
(𝑡 − 0.5 (cos 𝑡 + 1))

𝑥
3

2
(𝑡 − 0.5 (cos 𝑡 + 1))

𝑥
3

3
(𝑡 − 0.5 (cos 𝑡 + 1))

)

+ (

2 + 2 sin√2𝑡
−3 − 3 cos√3𝑡

sin√6𝑡
) ,

(48)

where

𝑑
11
(𝑥
1
) = {

0.1,
𝑥1 (𝑡)

 < 1,

0.3,
𝑥1 (𝑡)

 > 1,

𝑑
22
(𝑥
2
) = {

1,
𝑥2 (𝑡)

 < 1,

1.9,
𝑥2 (𝑡)

 > 1,

𝑑
33
(𝑥
3
) = {

3,
𝑥3 (𝑡)

 < 1,

3.3,
𝑥3 (𝑡)

 > 1,

𝑎
11
(𝑥
1
) = {

−50,
𝑥1 (𝑡)

 < 1,

−49.3,
𝑥1 (𝑡)

 > 1,

𝑎
12
(𝑥
1
) = {

−8,
𝑥1 (𝑡)

 < 1,

−7.6,
𝑥1 (𝑡)

 > 1,

𝑎
13
(𝑥
1
) = {

−16,
𝑥1 (𝑡)

 < 1,

−15.4,
𝑥1 (𝑡)

 > 1,

𝑎
21
(𝑥
2
) = {

−1,
𝑥2 (𝑡)

 < 1,

−0.7,
𝑥2 (𝑡)

 > 1,

𝑎
22
(𝑥
2
) = {

−160,
𝑥2 (𝑡)

 < 1,

−159.5,
𝑥2 (𝑡)

 > 1,

𝑎
23
(𝑥
2
) = {

2,
𝑥2 (𝑡)

 < 1,

2.3,
𝑥2 (𝑡)

 > 1,

𝑎
31
(𝑥
3
) = {

−3,
𝑥3 (𝑡)
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Figure 2: The state trajectory of the network with the initial condition (𝜑
1
(𝑡), 𝜑
2
(𝑡), 𝜑
3
(𝑡))
𝑇

= (0.3 sin 𝑡, 0.2 sin 𝑡, 0.4 cos 𝑡)𝑇, 𝑡 ∈ [−1, 0).

𝑏
23
(𝑥
2
) = {

0.7,
𝑥2 (𝑡)

 < 1,

0.8,
𝑥2 (𝑡)

 > 1,

𝑏
31
(𝑥
3
) = {

0,
𝑥3 (𝑡)

 < 1,

0.1,
𝑥3 (𝑡)

 > 1,

𝑏
32
(𝑥
3
) = {

0,
𝑥3 (𝑡)

 < 1,

0.2,
𝑥3 (𝑡)

 > 1,

𝑏
33
(𝑥
3
) = {

−1,
𝑥3 (𝑡)

 < 1,

−0.6,
𝑥3 (𝑡)

 > 1.

(49)

It is obvious that 𝜏 = 1, 𝜇 = 0.5. Choose the positive
definite diagonal matrix 𝑃 = diag(1, 1, 0.1), then 𝑆 =

(
98.60 −9.00 −16.30

−9.00 319.00 −1.94

−16.30 −1.94 239.40

). It is easy to check that

1

1 − 𝜇
𝑈 +P(

𝐵
∗ +

𝐵∗
)
2

𝑈 − 𝑆

= (

−91.7253 9.0000 16.3000

9.0000 −312.1253 1.9400

16.3000 1.9400 −232.5253

) < 0.

(50)

All conditions of Theorem 6 hold; hence the memristive
neural network in this example has a unique almost periodic
solution which is globally exponentially stable.

Figure 2 displays the state trajectory of the network with
initial condition (𝜑

1
(𝑡), 𝜑
2
(𝑡), 𝜑
3
(𝑡))
𝑇

= (0.3 sin 𝑡, 0.2 sin 𝑡,
0.4 cos 𝑡)𝑇, 𝑡 ∈ [−1, 0). It can be seen that this trajectory con-
verges to the unique almost periodic solution of the network.
This is in accordance with the conclusion of Theorem 6.

5. Conclusion

In this paper, the exponential stability issue of the almost
periodic solution for memristive neural networks with
time-varying delays has been investigated. A sufficient con-
dition has been obtained to ensure the existence, uniqueness,
and global exponential stability of the almost periodic solu-
tion. As special cases, when the external input is a periodic
or constant function in the network, the conditions which
ensure the global exponential stability of a unique periodic
solution or equilibrium point have been established for the
considered memristive neural networks with time-varying
delay. Two illustrative examples have been also given to
demonstrate the effectiveness and validity of the proposed
results in this paper.

In [56], the distributed filtering issue have been studied
for a class of time-varying systems over sensor networks
with quantization errors and successive packet dropouts. In
[57], authors considered the the exponential stabilization of a
class of stochastic system with Markovian jump parameters
and mode-dependent mixed time delays. In [58], authors
discussed the fuzzy-model-based robust fault detection with
stochastic mixed time delays and successive packet dropouts.
However, the issues of distributed filtering, stochastic stabi-
lization, and robust fault detection have not been investigated
for memristive neural networks in the existing literature.
These will be the topic of our research on memristive
neural networks with mode-dependent mixed time delays
and Markovian jump parameters in future.
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