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This paper discusses the problem of determining an unknown source which depends only on one variable for the modified
Helmholtz equation. This problem is ill-posed in the sense that the solution (if it exists) does not depend continuously on the
data. The regularization solution is obtained by the quasireversibility regularization method. Convergence estimate is presented
between the exact solution and the regularization solution. Moreover, numerical results are presented to illustrate the accuracy and
efficiency of this method.

1. Introduction

Inverse source problems arise in many branches of science
and engineering, for example, heat conduction, crack iden-
tification, electromagnetic theory, geophysical prospecting,
and pollutant detection. For the heat source identification,
there have been a large number of research results for
different forms of heat source [1–5]. The modified Helmholtz
equation or the Yukawa equation which is pointed out
in [6] appears in implicit marching schemes for the heat
equation, in Debye-Hückel theory, and in the linearization of
the Poisson-Boltzmann equation. The underlying free-space
Green’s function is usually referred to as the Yukawa potential
in nuclear physics. In physics, chemistry, and biology, when
Coulomb forces are damped by screening effects, this Green’s
function is also known as the screenedCoulomb potential. To
the authors’ knowledge, there were few papers for identifying
the unknown source on the modified Helmholtz equation by
regularization method.

In this paper, we consider the following inverse problem:
to find a pair of functions (𝑢(𝑥, 𝑦), 𝑓(𝑥)) which satisfy

󳵻𝑢 (𝑥, 𝑦) − 𝑘
2
𝑢 (𝑥, 𝑦) = 𝑓 (𝑥) ,

−∞ < 𝑥 < ∞, 0 < 𝑦 < +∞,

𝑢 (𝑥, 0) = 0, −∞ < 𝑥 < ∞,

𝑢 (𝑥, 𝑦)
󵄨󵄨󵄨󵄨𝑦→∞ bounded, −∞ < 𝑥 < ∞,

𝑢 (𝑥, 1) = 𝑔 (𝑥) , −∞ < 𝑥 < ∞,

(1)

where 𝑓(𝑥) is the unknown source depending only on
one spatial variable, 𝑢(𝑥, 1) = 𝑔(𝑥) is the supplementary
condition, and the constant 𝑘 > 0 is the wave number. In
applications, input data 𝑔(𝑥) can only bemeasured; there will
be measured data function 𝑔𝛿(𝑥) which is merely in 𝐿2(R)
and satisfies

󵄩󵄩󵄩󵄩󵄩
𝑔 − 𝑔
𝛿󵄩󵄩󵄩󵄩󵄩𝐿2(R)

≤ 𝛿, (2)

where the constant 𝛿 > 0 represents a noise level of input data.
The ill-posedness can be seen by solving the problem (1)

in the Fourier domain. Let𝑓(𝜉) denote the Fourier transform
of 𝑓(𝑥) ∈ 𝐿2(R) which is defined by

𝑓 (𝜉) :=
1

√2𝜋
∫
∞

−∞

𝑒
−𝑖𝜉𝑥
𝑓 (𝑥) 𝑑𝑥. (3)
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The problem (1) can now be formulated in frequency space as
follows:

𝑢̂
𝑦𝑦
(𝜉, 𝑦) − (𝜉

2
+ 𝑘
2
) 𝑢̂ (𝜉, 𝑦) = 𝑓 (𝜉) , 𝜉 ∈ R, 𝑦 > 0,

𝑢̂ (𝜉, 0) = 0, 𝜉 ∈ R,

𝑢̂ (𝜉, 𝑦)
󵄨󵄨󵄨󵄨𝑦→∞ bounded, 𝜉 ∈ R,

𝑢̂ (𝜉, 1) = 𝑔 (𝜉) , 𝜉 ∈ R.

(4)

The solution of the problem (4) is given by

𝑓 (𝜉) = −
𝜉2 + 𝑘2

1 − 𝑒−
√𝜉
2
+𝑘
2

𝑔 (𝜉) . (5)

So,

𝑓 (𝑥) = −
1

√2𝜋
∫
∞

−∞

𝑒
𝑖𝜉𝑥 𝜉2 + 𝑘2

1 − 𝑒−
√𝜉
2
+𝑘
2

𝑔 (𝜉) 𝑑𝜉. (6)

The unbounded function (𝜉2 + 𝑘2)/(1 − 𝑒−√𝜉
2
+𝑘
2

) in (5) or (6)
can be seen as an amplification factor of 𝑔(𝜉) when 𝜉 → ∞.
Therefore, when we consider our problem in 𝐿2(R), the exact
data function 𝑔(𝜉) must decay. But in the applications, the
input data 𝑔(𝑥) can only be measured and never be exact.
Thus, if we try to obtain the unknown source 𝑓(𝑥), high
frequency components in the error are magnified and can
destroy the solution. So in the following section, we will use
the regularizationmethod to deal with the ill-posed problem.
Before doing that, we impose an a priori bound on the input
data, that is,

󵄩󵄩󵄩󵄩𝑓(⋅)
󵄩󵄩󵄩󵄩𝐻𝑝 ≤ 𝐸, 𝑝 > 0, (7)

where𝐸 > 0 is a constant; ‖ ⋅ ‖
𝐻
𝑝 denotes the norm in Sobolev

space𝐻𝑝(R) defined by

󵄩󵄩󵄩󵄩𝑓(⋅)
󵄩󵄩󵄩󵄩𝐻𝑝 := (∫

∞

−∞

󵄨󵄨󵄨󵄨󵄨
𝑓(𝜉)

󵄨󵄨󵄨󵄨󵄨

2

(1 + 𝜉
2
)
𝑝

𝑑𝜉)

1/2

. (8)

In this paper, a new regularization method which is
proposed as an alternative way of regularization methods for
identifying unknown source, is given. Actually, we discuss the
possibility of modifying (1) to obtain a stable approximation;
that is, we will investigate the following problem:

󳵻𝑢 (𝑥, 𝑦) − 𝑘
2
𝑢 (𝑥, 𝑦) + 𝜇

2
𝑓
𝑥𝑥
(𝑥) = 𝑓 (𝑥) , (9)

where the choice of 𝜇 is based on some a priori knowledge
about the magnitude of the errors in the data 𝑔𝛿. The idea is
called the quasireversibility regularization method. We were
inspired from Eldén [7] who considered a standard inverse
heat conduction problem and the idea initially came from
Weber [8]. Now the quasireversibility regularization method
has been studied for solving various types of inverse problems
[8–13].

In nature, the quasireversibility regularization method
transfers an ill-posed problem to an approximate well-posed
problem which can be discretized using standard technique,

for example, finite differences. For the numerical implemen-
tation of the quasireversibility regularizationmethod, one can
refer to [9–13]. Our aim here is to discuss the stability and
convergence analysis of regularization method.

This paper is organized as follows. Section 2 gives some
auxiliary results. Section 3 gives a regularization solution and
error estimation. Section 4 gives three examples to illustrate
the accuracy and efficiency of this method. Section 5 puts an
end to this paper with a brief conclusion.

2. Some Auxiliary Results

Now we give some important lemmas, which are very useful
for our main conclusion.

Lemma 1. For 𝑟 ≥ 1, there holds

1

1 − 𝑒−𝑟
< 2. (10)

Lemma 2. For 0 < 𝜇 < 1, there hold the following inequalities:

sup
𝜉∈R

(1 −
1

1 + 𝜉2𝜇2
) (1 + 𝜉

2
)
−(𝑝/2)

≤ max {𝜇𝑝, 𝜇2} , (11)

sup
𝜉∈R

𝜉
2
+ 𝑘
2

(1 + 𝜉2𝜇2) (1 − 𝑒−
√𝜉
2
+𝑘
2

)

≤
2

𝜇2
+ 2𝑘
2
. (12)

Proof. Let

𝐺 (𝜉) := (1 −
1

1 + 𝜉2𝜇2
) (1 + 𝜉

2
)
−(𝑝/2)

. (13)

The proof of (11) can be separated from three cases.

Case 1 (|𝜉| ≥ 𝜉
0
:= 1/𝜇). We get

𝐺 (𝜉) ≤ (1 + 𝜉
2
)
−(𝑝/2)

≤
󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨
−𝑝

≤ 𝜉
−𝑝

0
= 𝜇
𝑝
. (14)

Case 2 (1 < |𝜉| < 𝜉
0
). We obtain

𝐺 (𝜉) =
𝜉2𝜇2

1 + 𝜉2𝜇2
(1 + 𝜉

2
)
−(𝑝/2)

≤
𝜉2−𝑝𝜇2

1 + 𝜉2𝜇2
≤ 𝜉
2−𝑝
𝜇
2
. (15)

If 0 < 𝑝 ≤ 2, we have

𝐺 (𝜉) < 𝜉
2−𝑝

0
𝜇
2
= 𝜇
𝑝
. (16)

If 𝑝 > 2, then

𝐺 (𝜉) < 𝜇
2
. (17)
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Case 3 (|𝜉| ≤ 1). We get

𝐺 (𝜉) ≤ 𝜉
2
𝜇
2
(1 + 𝜉

2
)
−(𝑝/2)

≤ 𝜉
2
𝜇
2
≤ 𝜇
2
. (18)

Now combining (14) with (16), (17), and (18), the first
inequality (11) holds.

Let

𝐵 (𝜉) :=
𝜉2 + 𝑘2

(1 − 𝑒−
√𝜉
2
+𝑘
2

) (1 + 𝜉2𝜇2)

,

𝐷 (𝜉) :=
𝜉2 + 𝑘2

1 − 𝑒−
√𝜉
2
+𝑘
2

.

(19)

Like the above proof, the proof of (12) is divided into two
cases.

Case 1 (|𝜉| ≤ 𝜉
0
:= 1/𝜇). Using Lemma 1, we have

𝐷 (𝜉) ≤ 𝐷(
1

𝜇
) ≤

2

𝜇2
+ 2𝑘
2
. (20)

So,

𝐵 (𝜉) ≤ 𝐷 (𝜉) ≤
2

𝜇2
+ 2𝑘
2
. (21)

Case 2 (|𝜉| > 𝜉
0
). Using Lemma 1, we get

𝐵 (𝜉) =
𝜉2

(1 − 𝑒−
√𝜉
2
+𝑘
2

) (1 + 𝜉2𝜇2)

+
𝑘2

(1 − 𝑒−
√𝜉
2
+𝑘
2

) (1 + 𝜉2𝜇2)

(22)

≤
2𝜉2

1 + 𝜉2𝜇2
+

𝑘2

1 − 𝑒−
√𝜉
2
+𝑘
2

≤
2

𝜇2
+ 2𝑘
2
. (23)

Combining (21) with (23), the second inequality (12) holds.

3. A Quasireversibility Regularization Method

In this section, we consider the following system:

󳵻𝑢 (𝑥, 𝑦) − 𝑘
2
𝑢 (𝑥, 𝑦) + 𝜇

2
𝑓
𝑥𝑥
(𝑥) = 𝑓 (𝑥) ,

− ∞ < 𝑥 < ∞, 0 < 𝑦 < +∞,

𝑢 (𝑥, 0) = 0, −∞ < 𝑥 < ∞,

𝑢 (𝑥, 𝑦)
󵄨󵄨󵄨󵄨𝑦→∞ bounded, −∞ < 𝑥 < ∞,

𝑢 (𝑥, 1) = 𝑔
𝛿
(𝑥) , −∞ < 𝑥 < ∞,

(24)

where the parameter 𝜇 is regarded as a regularization param-
eter. The problem (24) can be formulated in frequency space

as follows:

𝑢̂
𝑦𝑦
(𝜉, 𝑦) − (𝜉

2
+ 𝑘
2
) 𝑢̂ (𝜉, 𝑦) = (1 + 𝜉

2
𝜇
2
) 𝑓 (𝜉) ,

𝜉 ∈ R, 𝑦 > 0,

𝑢̂ (𝜉, 0) = 0, 𝜉 ∈ R,

𝑢̂ (𝜉, 𝑦)
󵄨󵄨󵄨󵄨𝑦→∞ bounded, 𝜉 ∈ R,

𝑢̂ (𝜉, 1) = 𝑔
𝛿
(𝜉) , 𝜉 ∈ R.

(25)

The solution to the problem (25) is given by

𝑓 (𝜉) = −
𝜉2 + 𝑘2

(1 − 𝑒−
√𝜉
2
+𝑘
2

) (1 + 𝜉2𝜇2)

𝑔
𝛿
(𝜉) := 𝑓

𝛿

𝜇
(𝜉) ,

(26)

so

𝑓
𝛿

𝜇
(𝑥) = −

1

√2𝜋
∫
∞

−∞

𝑒
𝑖𝜉𝑥 𝜉2 + 𝑘2

(1 − 𝑒−
√𝜉
2
+𝑘
2

) (1 + 𝜉2𝜇2)

𝑔
𝛿
(𝜉) 𝑑𝜉,

(27)

which is called the quasireversibility regularization solution.
It is easy to see that, for small 𝜇, when |𝜉| is small, (𝜉2 +

𝑘
2
)/(1 + 𝜉

2
𝜇
2
) is close to 𝜉2 + 𝑘2. When |𝜉| becomes large,

(𝜉2 + 𝑘2)/(1 + 𝜉2𝜇2) is bounded. So, 𝑓𝛿
𝜇
(𝑥) is considered as an

approximation of 𝑓(𝑥).
Now we will give a convergence error estimate between

the regularization solution and the exact solution by the
following theorem.

Theorem 3. Let 𝑓(𝑥) be the solution of (1) whose Fourier
transform is given by (5). Let 𝑔𝛿(𝑥) be the measured data at
𝑦 = 1 satisfying (2). Let priori condition (7) hold for 𝑝 > 0. Let
𝑓𝛿
𝜇
(𝑥) be the quasireversibility regularization approximation to

𝑓(𝑥) given by (27). If one selects

𝜇 = (
𝛿

𝐸
)

1/(𝑝+2)

, (28)

then one obtains the following error estimate:

󵄩󵄩󵄩󵄩󵄩
𝑓 (⋅) − 𝑓

𝛿

𝜇
(⋅)
󵄩󵄩󵄩󵄩󵄩

≤ 2𝛿
𝑝/(𝑝+2)

𝐸
2/(𝑝+2)

(1 +
1

2
max{1, (𝛿

E
)

(2−𝑝)/(𝑝+2)

})

+ 2𝑘
2
𝛿.

(29)
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Proof. Due to the Parseval formula and the triangle inequal-
ity, we have

󵄩󵄩󵄩󵄩󵄩
𝑓 (⋅) − 𝑓

𝛿

𝜇
(⋅)
󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
𝑓 (⋅) − 𝑓

𝛿

𝜇
(⋅)
󵄩󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

−
𝜉2 + 𝑘2

1 − 𝑒−
√𝜉
2
+𝑘
2

𝑔 (𝜉)

− (−
𝜉2 + 𝑘2

(1 − 𝑒−
√𝜉
2
+𝑘
2

) (1 + 𝜉2𝜇2)

𝑔
𝛿
(𝜉))

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜉2 + 𝑘2

1 − 𝑒−
√𝜉
2
+𝑘
2

𝑔 (𝜉)

−
𝜉
2 + 𝑘2

(1 − 𝑒−
√𝜉
2
+𝑘
2

) (1 + 𝜉2𝜇2)

𝑔
𝛿
(𝜉)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜉2 + 𝑘2

1 − 𝑒−
√𝜉
2
+𝑘
2

𝑔 (𝜉)

−
𝜉
2 + 𝑘2

(1 − 𝑒−
√𝜉
2
+𝑘
2

) (1 + 𝜉2𝜇2)

𝑔 (𝜉)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜉2 + 𝑘2

(1 − 𝑒−
√𝜉
2
+𝑘
2

) (1 + 𝜉2𝜇2)

𝑔 (𝜉)

−
𝜉2 + 𝑘2

(1 − 𝑒−
√𝜉
2
+𝑘
2

) (1 + 𝜉2𝜇2)

𝑔
𝛿
(𝜉)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜉2 + 𝑘2

1 − 𝑒−
√𝜉
2
+𝑘
2

𝑔 (𝜉) (1 −
1

1 + 𝜉2𝜇2
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜉2 + 𝑘2

(1 − 𝑒−
√𝜉
2
+𝑘
2

) (1 + 𝜉2𝜇2)

(𝑔 (𝜉) − 𝑔
𝛿
(𝜉))

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑓 (𝜉) (1 + 𝜉

2
)
𝑝/2

(1 −
1

1 + 𝜉2𝜇2
) (1 + 𝜉

2
)
−(𝑝/2)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+ sup
𝜉∈R

(
𝜉2 + 𝑘2

(1 − 𝑒−
√𝜉
2
+𝑘
2

) (1 + 𝜉2𝜇2)

)

×
󵄩󵄩󵄩󵄩󵄩
𝑔 (𝜉) − 𝑔

𝛿
(𝜉)
󵄩󵄩󵄩󵄩󵄩

≤ sup
𝜉∈R

((1 −
1

1 + 𝜉2𝜇2
) (1 + 𝜉

2
)
−(𝑝/2)

)

×
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑓 (𝜉) (1 + 𝜉

2
)
𝑝/2󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+ sup
𝜉∈R

(
𝜉2 + 𝑘2

(1 − 𝑒−
√𝜉
2
+𝑘
2

) (1 + 𝜉2𝜇2)

)𝛿

≤ sup
𝜉∈R

((1 −
1

1 + 𝜉2𝜇2
) (1 + 𝜉

2
)
−(𝑝/2)

)𝐸

+ sup
𝜉∈R

(
𝜉2 + 𝑘2

(1 − 𝑒−
√𝜉
2
+𝑘
2

) (1 + 𝜉2𝜇2)

)𝛿

≤ max {𝜇𝑝, 𝜇2} 𝐸 + 2
𝜇2
𝛿 + 2𝑘

2
𝛿

= max{(𝛿
𝐸
)

𝑝/(𝑝+2)

, (
𝛿

𝐸
)

2/(𝑝+2)

}𝐸

+ 2(
𝛿

𝐸
)

−2/(𝑝+2)

𝛿 + 2𝑘
2
𝛿

= 2𝛿
𝑝/(𝑝+2)

𝐸
2/(𝑝+2)

(1 +
1

2
max{1, ( 𝛿

𝐸
)

(2−𝑝)/(𝑝+2)

})

+ 2𝑘
2
𝛿.

(30)

Remark 4. If 0 < 𝑝 ≤ 2,
󵄩󵄩󵄩󵄩󵄩
𝑓 (⋅) − 𝑓

𝛿

𝜇
(⋅)
󵄩󵄩󵄩󵄩󵄩
≤ 3𝛿
𝑝/(𝑝+2)

𝐸
2/(𝑝+2)

+ 2𝑘
2
𝛿 󳨀→ 0 as 𝛿 󳨀→ 0.

(31)

If 𝑝 > 2,
󵄩󵄩󵄩󵄩󵄩
𝑓 (⋅) − 𝑓

𝛿

𝜇
(⋅)
󵄩󵄩󵄩󵄩󵄩
≤ 2𝛿
𝑝/(𝑝+2)

𝐸
2/(𝑝+2)

+ 𝛿
2/(𝑝+2)

𝐸
𝑝/(𝑝+2)

+ 2𝑘
2
𝛿 󳨀→ 0 as 𝛿 󳨀→ 0.

(32)

Hence,𝑓𝛿
𝜇
(𝑥) can be viewed as the approximation of the exact

solution 𝑓(𝑥).

4. Numerical Example

In this section, We will give three different type examples to
verify the validity of the theoretical results of this method.

The numerical examples were constructed in the fol-
lowing way: First we selected the exact solution 𝑓(𝑥) and
obtained the exact data function 𝑔(𝑥) through solving the
forward problems.Thenwe added a normally distributed per-
turbation to each data function and obtained vectors 𝑔𝛿(𝑥).
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Figure 1: Comparison between the exact solution and its computed
approximations with 𝑘 = 1 and various noise levels of 𝜀 = 0.1, 𝜀 =
0.01, 𝜀 = 0.001 for Example 5.
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Figure 2: Comparison between the exact solution and its computed
approximations with 𝑘 = 2 and various noise levels of 𝜀 = 0.01,
𝜀 = 0.001, 𝜀 = 0.0001 for Example 5.

Finally we obtained the regularization solutions through
solving the inverse problem.

In the following, we first give an example which has the
exact expression of the solutions (𝑢(𝑥, 𝑦), 𝑓(𝑥)).

Example 5. It is easy to see that the function

𝑢 (𝑥, 𝑦) = {
(1 − 𝑒−

√2𝑘𝑦) sin 𝑘𝑥, 𝑦 > 0,
0, 𝑦 ≤ 0

(33)
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Figure 3: Comparison between the exact solution (- - -) and its
computed approximations with 𝑘 = 3 and various noise levels of
𝜀 = 0.01 (−∗−), 𝜀 = 0.001 (− ⊳ −), 𝜀 = 0.0001 (−o−) for Example 5.
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Figure 4: Comparison between the exact solution and its computed
approximations with 𝑘 = 1 and various noise levels of 𝜀 = 0.1, 𝜀 =
0.01, 𝜀 = 0.001 for Example 6.

and the function

𝑓 (𝑥) = −2𝑘
2 sin 𝑘𝑥 (34)

are satisfied with the problem (1) with exact data

𝑔 (𝑥) = (1 − 𝑒
−√2𝑘

) sin 𝑘𝑥. (35)

Suppose that the sequence 𝑔(𝑥
𝑖
)
𝑖=𝑛

𝑖=1
represents samples from

the function𝑔(𝑥) on an equidistant grid, thenwe use the rand
function given in MATLAB to generate the noisy data,

(𝑔
𝛿
) = 𝑔 + 𝜀 rand (size (𝑔)) , (36)
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Figure 5: Comparison between the exact solution and its computed
approximations with 𝑘 = 1 and various noise levels of 𝜀 = 0.1, 𝜀 =
0.01, 𝜀 = 0.001 for Example 6.
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Figure 6: Comparison between the exact solution and its computed
approximations with 𝑘 = 1 and various noise levels of 𝜀 = 0.1, 𝜀 =
0.01, 𝜀 = 0.001 for Example 6.

where

𝑔 = (𝑔 (𝑥
1
) , . . . , 𝑔 (𝑥

𝑛
))
𝑇

, 𝑥
𝑖
= (𝑖 − 1) Δ𝑥 − 10,

Δ𝑥 =
20

𝑛 − 1
, 𝑖 = 1, . . . , 𝑛.

(37)

The function “rand(⋅)” generates arrays of random numbers
whose elements are normally distributed with mean 0, vari-
ance 𝜎2 = 1. “Rand(size(𝑔))” returns an array of random
entries that is the same size as 𝑔. The total noise level 𝛿 can
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Figure 7: Comparison between the exact solution (- - -) and its
computed approximations with 𝑘 = 1 and various noise levels of
𝜀 = 0.01 (−∗−), 𝜀 = 0.001 (− ⊳ −), 𝜀 = 0.0001 (−o−) for Example 7.

−10 −5

−2

−1

𝑓
(
𝑥
)

an
d 

its
 m

od
ifi

ed
 ap

pr
ox

im
at

io
n

𝑥

0 5 10

0

1

2

3

4

Figure 8: Comparison between the exact solution (- - -) and its
computed approximations with 𝑘 = 2 and various noise levels of
𝜀 = 0.01 (−∗−), 𝜀 = 0.001 (− ⊳ −), 𝜀 = 0.0001 (−o−) for Example 7.

be measured in the sense of RootMean Square Error (RMSE)
according to

𝛿 =
󵄩󵄩󵄩󵄩󵄩
𝑔
𝛿
− 𝑔
󵄩󵄩󵄩󵄩󵄩2
= (

1

𝑛

𝑛

∑
𝑖=1

(𝑔
𝑖
− 𝑔
𝛿

𝑖
)
2

)

1/2

. (38)

In our computations, we take 𝑛 = 100, and the relative
error is given as follows:

rerr (𝑓) :=
󵄩󵄩󵄩󵄩󵄩
𝑓𝛿
𝜇
− 𝑓
󵄩󵄩󵄩󵄩󵄩2

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩2

, (39)

where ‖ ⋅ ‖
2
is defined by (38).

Tables 1, 2, 3 and 4 show that parameters 𝛿, 𝜇, and rerr(𝑓)
all depend on the perturbation 𝜀. Parameters 𝛿, 𝜇 and rerr(𝑓)
decrease with the decrease of 𝜀. These are consistent with
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Figure 9: Comparison between the exact solution (- - -) and its
computed approximations with 𝑘 = 1 and various noise levels of
𝜀 = 0.01 (−∗−), 𝜀 = 0.001 (− ⊳ −), 𝜀 = 0.0001 (−o−) for Example 7.

our error estimate. In addition, rerr(𝑓) does not decrease
for stronger “smoothness” assumptions on the exact solution
𝑓(𝑥).

Example 6. Consider a piecewise smooth unknown source:

𝑓 (𝑥) =

{{{{

{{{{

{

0, 0 ≤ −10 ≤ −5,

𝑥 + 5, −5 ≤ 𝑥 ≤ 0,

−𝑥 + 5, 0 ≤ 𝑥 ≤ 5,

0, 5 ≤ 𝑥 ≤ 10.

(40)

Example 7. Consider the following discontinuous unknown
source:

𝑓 (𝑥) =

{{{{

{{{{

{

−1, 0 ≤ −10 ≤ −5,

1, −5 ≤ 𝑥 ≤ 0,

−1, 0 ≤ 𝑥 ≤ 5,

1, 5 ≤ 𝑥 ≤ 10.

(41)

From Figures 1, 2, 3, 4, 5, 6, 7, 8, and 9, we can find that
the smaller 𝜀 is, the better the computed approximation is
and the smaller 𝑘 is, the better the computed approximation
is. This is consistent with (29). From Figures 4–9, it can be
seen that the numerical solution is less ideal than that of
Example 5. In Examples 6 and 7, since the direct problemwith
the source term𝑓(𝑥) does not have an analytical solution, the
data 𝑔(𝑥) is obtained by solving the direct problem. It is not
difficult to see that the well-known Gibbs phenomenon and
the recovered data near the nonsmooth and discontinuities
points are not accurate. Taking into consideration of the ill-
posedness of the problem, the results presented in Figures 4–
9 are reasonable.

5. Conclusions

In this paper, we considered the inverse problem of deter-
mining the unknown source using the quasireversibility

Table 1: 𝛿, 𝜇 and the relative error rerr(𝑓) with 𝑘 = 2, 𝑝 = 1 and
𝜇 = (𝛿/𝐸)

1/3 for different 𝜀.

𝜀

10
−1

10
−2

10
−3

10
−4

10
−5

𝛿 0.1866 0.0205 0.0020 2.0115 × 10
−4

1.9050 × 10
−5

𝜇 0.0727 0.0389 0.0177 0.0083 0.0038
rerr(𝑓) 2.0442 1.7760 0.7874 0.5816 0.4817

Table 2: 𝛿, 𝜇 and the relative error rerr(𝑓) with 𝑘 = 2, 𝑝 = 2 and
𝜇 = (𝛿/𝐸)

1/4 for different 𝜀.

𝜀

10
−1

10
−2

10
−3

10
−4

10
−5

𝛿 0.2119 0.0192 0.0020 1.9216 × 10
−4

1.994 × 10
−5

𝜇 0.0080 0.0555 0.0318 0.0177 0.0100
rerr(𝑓) 1.9593 1.6765 0.6422 0.4318 0.3215

Table 3: 𝛿, 𝜇 and the relative error rerr(𝑓) with 𝑘 = 2, 𝑝 = 3 and
𝜇 = (𝛿/𝐸)

1/5 for different 𝜀.

𝜀

10
−1

10
−2

10
−3

10
−4

10
−5

𝛿 0.2026 0.0207 0.0020 2.0160 × 10
−4

1.9794 × 10
−5

𝜇 0.0813 0.0615 0.0387 0.0244 0.0153
rerr(𝑓) 1.7544 1.6173 0.5137 0.3176 0.2689

Table 4: 𝛿, 𝜇 and the relative error rerr(𝑓) with 𝑘 = 2, 𝑝 = 5 and
𝜇 = (𝛿/𝐸)

1/7 for different 𝜀.

𝜀

10
−1

10
−2

10
−3

10
−4

10
−5

𝛿 0.2085 0.0206 0.0021 2.0920 × 10
−4

2.0210 × 10
−5

𝜇 0.0770 0.0639 0.0464 0.0334 0.0240
rerr(𝑓) 2.0533 1.6183 0.6187 0.4769 0.3231

regularization method for the modified Helmholtz equation.
It was shown that, with a certain choice of the parameter,
a stability estimate was obtained. Meanwhile, the numerical
example verified the efficiency and accuracy of this method.
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