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The paper deals with the order of convergence of the Laurent polynomials of Hermite-Fejér interpolation on the unit circle with
nodal system, the n roots of a complex number with modulus one. The supremum norm of the error of interpolation is obtained
for analytic functions as well as the corresponding asymptotic constants.

1. Introduction

Thepaper is devoted to study theHermite-Fejér interpolation
problem on the unit circle T . This topic has attracted the
interest of many researchers in recent years, and it has
been the subject of several studies. In [1] Fejér’s classical
result is extended to the unit circle. It is well known that it
ensures uniform convergence of Hermite-Fejér interpolants
to continuous functions on [−1, 1] taking as nodal system
the Chebyshev points (see [2–4]). Specifically, in [1] the
authors consider the nodal system of the 𝑛 roots of a
complex number with modulus one. Then it is proved that
the Laurent polynomials of Hermite-Fejér interpolation for
a given continuous function 𝑓 on the unit circle uniformly
converge to 𝑓.

In [5] second Fejér’s theorem concerning the Hermite
interpolation with nonvanishing derivatives is extended,
to the unit circle. New conditions for the derivatives are
obtained in order that the Hermite interpolants uniformly
converge to continuous functions on the unit circle.

An algorithm for efficient computing of the coefficients
of the Laurent polynomials of Hermite-Fejér and Hermite
interpolation with equally spaced nodes on the unit circle
was given in [6]. These results were extended to the bounded
interval, and the corresponding expressions can be evaluated
using the techniques given in [7]. Some results concerning

the convergence were obtained in [8]. The convergence of
the Laurent polynomials of Hermite-Fejér interpolation has
been studied in [8] for analytic functions defined on open
sets containing the unit disk.The results describe the behavior
outside and inside the unit disk and are extended to the case of
Hermite interpolation, that is, with nonvanishing derivatives.

In the case of bounded interval, the supremum norm
of the error of interpolation was studied in several papers
(see [9]). In particular a lower bound for the order of
convergence of Hermite-Fejér interpolation was obtained in
[10] for general nodal systems. Now, in the present paper, we
study the same problem for the error of interpolation on the
unit circle by taking into account the results obtained in [8].

The organization of the paper is as follows. Section 2 is
dedicated to obtain the results for the order of convergence
for Laurent polynomials, in other words to the polynomial
case. Section 3 contains the extension of the preceding results
for analytic functions. The order of convergence and the
asymptotic constants are deduced in our main result for
analytic functions on an open disk containing the unit
circle. As a consequence, the result is generalized to analytic
functions outside an open disk with radius less than one,and
it is also generalized, in Section 4, to analytic functions on
an open annulus containing the unit circle. Finally, the last
section is devoted to some numerical experiments to reveal
the contributions of our results.
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2. The Polynomial Case

Let {𝛼𝑗}
𝑛−1
𝑗=0 be the 𝑛 roots of a complex number 𝜆 with

modulus 1. We recall that the Hermite interpolation problem
on the unit circle T with nodal system {𝛼𝑗}

𝑛−1
𝑗=0 consists in

obtaining a Laurent polynomial𝐻−(𝑛−1),𝑛(𝑧) ofΛ −(𝑛−1),𝑛[𝑧] =
span{𝑧𝑘 : −(𝑛 − 1) ≤ 𝑘 ≤ 𝑛} that satisfies the following
interpolation conditions:

𝐻−(𝑛−1),𝑛 (𝛼𝑗) = 𝑢𝑗, 𝐻

−(𝑛−1),𝑛 (𝛼𝑗) = V𝑗,

𝑗 = 0, . . . , 𝑛 − 1,

(1)

where {𝑢𝑗}
𝑛−1
𝑗=0 and {V𝑗}

𝑛−1
𝑗=0 are sets of fixed complex numbers.

The particular case when V𝑗 = 0 for all 𝑗 is called the
Hermite-Fejér interpolation problem, and the corresponding
interpolation polynomial is denoted by 𝐻𝐹−(𝑛−1),𝑛(𝑧). When
𝑢𝑗 = 𝑓(𝛼𝑗), (0 ≤ 𝑗 ≤ 𝑛 − 1), for a given function 𝑓(𝑧) defined
on T , we denote the Hermite-Fejér interpolation polynomial
by 𝐻𝐹−(𝑛−1),𝑛(𝑓(𝑧), 𝑧). To estimate the interpolation error
between 𝑓(𝑧) and 𝐻𝐹−(𝑛−1),𝑛(𝑓(𝑧), 𝑧) we consider their dif-
ference that we denote by

Δ 𝑛 (𝑓 (𝑧) , 𝑧) = 𝑓 (𝑧) − 𝐻𝐹−(𝑛−1),𝑛 (𝑓 (𝑧) , 𝑧) . (2)

It is well known that𝐻𝐹−(𝑛−1),𝑛(𝑓(𝑧), 𝑧) can be computed
in terms of the fundamental polynomial of Hermite interpo-
lation, 𝐴𝑗(𝑧), as follows:

𝐻𝐹−(𝑛−1),𝑛 (𝑓 (𝑧) , 𝑧) =

𝑛−1

∑
𝑗=0

𝑓 (𝛼𝑗)𝐴𝑗 (𝑧) , (3)

where 𝐴𝑗(𝑧) is given by 𝐴𝑗(𝑧) = 𝛼
𝑛+1
𝑗 (𝑧
𝑛

− 𝜆)
2
/𝑧
𝑛−1

𝑛
2

𝜆
2
(𝑧 − 𝛼𝑗)

2 and it holds that


𝐴𝑗 (𝑧)


=

1

𝑛2


(𝑧
𝑛
− 𝜆)
2


(𝑧 − 𝛼𝑗)

2

≤ 1 on T . (4)

Representation (3) can be seen in [1], and (4) can be seen in
[5].

We recall that for a continuous function 𝑓(𝑧) defined on
T ,𝐻𝐹−(𝑛−1),𝑛(𝑓(𝑧), 𝑧) converges to 𝑓(𝑧) uniformly on T , as it
can be seen in [1].

These results can be improved in case of polynomial
functions. Indeed we can obtain nice explicit expressions
for 𝐻𝐹−(𝑛−1),𝑛(𝑓(𝑧), 𝑧) and Δ 𝑛(𝑓(𝑧), 𝑧) for the polynomial
case; that is, in this section we are going to use an algebraic
polynomial or a Laurent polynomial in the role of 𝑓(𝑧).

Theorem 1. Let 𝑘 be a fixed positive integer number. For 𝑛 > 𝑘

the following conditions hold that

(i) 𝐻𝐹−(𝑛−1),𝑛(𝑧
𝑘
, 𝑧) = (1 − 𝑘/𝑛)𝑧

𝑘
+ (𝑘𝜆/𝑛)𝑧

𝑘−𝑛;

(ii) Δ 𝑛(𝑧
𝑘
, 𝑧) = (𝑘/𝑛)𝑧

𝑘
(1 − 𝜆/𝑧

𝑛
);

(iii) 𝐻𝐹−(𝑛−1),𝑛(𝑧
𝑘
, 𝑧) converges to 𝑧

𝑘 uniformly on compact
subsets 𝐾 of 0 < |𝑧| ≥ 1 with order of convergence
𝑂(𝑛
−1
);

(iv) 𝐻𝐹−(𝑛−1),𝑛(𝑧
−𝑘
, 𝑧) = (1 − 𝑘/𝑛)𝑧

−𝑘
+ (𝑘/𝑛𝜆)𝑧

−𝑘+𝑛;

(v) Δ 𝑛(𝑧
−𝑘
, 𝑧) = (−𝑘/𝑛)𝑧

−𝑘
(𝑧
𝑛
/𝜆 − 1);

(vi) 𝐻𝐹−(𝑛−1),𝑛(𝑧
−𝑘
, 𝑧) converges to 𝑧

−𝑘 uniformly on com-
pact subsets𝐾 of 0 < |𝑧| ≤ 1 with order of convergence
𝑂(𝑛
−1
).

Proof. In order to obtain (i), take into account that when
we evaluate the proposed Laurent polynomial (1 − 𝑘/𝑛)𝑧

𝑘
+

(𝑘𝜆/𝑛)𝑧
𝑘−𝑛 at 𝛼𝑗 we have

(
𝑛 − 𝑘

𝑛
)𝛼
𝑘
𝑗 +

𝑘𝜆

𝑛
𝛼
𝑘−𝑛
𝑗 = (

𝑛 − 𝑘

𝑛
)𝛼
𝑘
𝑗 +

𝑘𝜆

𝑛𝜆
𝛼
𝑘
𝑗 = 𝛼
𝑘
𝑗 , (5)

that is, the interpolation conditions for the function are ful-
filled. In the same way, when we evaluate the corresponding
derivative at 𝛼𝑗 we obtain

(
𝑛 − 𝑘

𝑛
) 𝑘𝛼
𝑘−1
𝑗 +

𝑘𝜆

𝑛
(𝑘 − 𝑛) 𝛼

𝑘−𝑛−1
𝑗

= (
𝑛 − 𝑘

𝑛
) 𝑘𝛼
𝑘−1
𝑗 +

𝑘𝜆

𝑛𝜆
(𝑘 − 𝑛) 𝛼

𝑘−1
𝑗 = 0.

(6)

Thus the existence and uniqueness of the Hermite interpola-
tion polynomial ensures (i).

(ii) It is an immediate consequence of (i) and the defini-
tion of Δ 𝑛(𝑧

𝑘
, 𝑧).

(iii) Take into account that

𝑛Δ 𝑛 (𝑧

𝑘
, 𝑧)


= 𝑘


𝑧
𝑘
(1 −

𝜆

𝑧𝑛
)

, (7)

where the last expression is uniformly bounded if 𝑧 ∈ 𝐾 and
𝑛 is large enough.

(iv), (v), and (vi) can be proved proceeding in the same
way.

Remark 2. The resulting expressions for Δ 𝑛(𝑧
𝑘
, 𝑧) and

Δ 𝑛(𝑧
−𝑘
, 𝑧), given in the preceding theorem, can be rewritten

as follows:

Δ 𝑛 (𝑧
𝑘
, 𝑧) =

1

𝑛
𝑧(

𝑧
𝑛
− 𝜆

𝑧𝑛
) (𝑧
𝑘
)

,

Δ 𝑛 (𝑧
−𝑘
, 𝑧) =

1

𝑛
𝑧(

𝑧
𝑛
− 𝜆

𝜆
) (𝑧
−𝑘
)

.

(8)

Corollary 3. The following hold.

(i) If 𝑝1(𝑧) is a Laurent polynomial with nonnegative
powers of 𝑧, that is, 𝑝1(𝑧) is an algebraic polynomial,
then
(a) Δ 𝑛(𝑝1(𝑧), 𝑧) =

1

𝑛
𝑧((𝑧
𝑛
− 𝜆)/𝑧

𝑛
)𝑝

1(𝑧).

(b) If 𝐾 is a compact subset of 0 < |𝑧| < 1, then

lim
𝑛→∞

𝑛Δ 𝑛 (𝑝1 (𝑧) , 𝑧)
∞,𝐾 = max

𝑧∈𝐾


𝑧𝑝

1 (𝑧)


, (9)

where ‖ ‖∞,𝐾 is the supremum norm on 𝐾.
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(c) If𝐾 is a compact subset of |𝑧| = 1with no isolated
points, then

lim
𝑛→∞

𝑛Δ 𝑛 (𝑝1 (𝑧) , 𝑧)
∞,𝐾 = 2max

𝑧∈𝐾


𝑝

1 (𝑧)


. (10)

(ii) If 𝑝2(𝑧) is a Laurent polynomial with only negative
powers of 𝑧, then

(a) Δ 𝑛(𝑝2(𝑧), 𝑧) = 1/𝑛 𝑧((𝑧
𝑛
− 𝜆)/𝜆)𝑝


2(𝑧).

(b) If 𝐾 is a compact subset of |𝑧| < 1, then

lim
𝑛→∞

𝑛Δ 𝑛 (𝑝2 (𝑧) , 𝑧)
∞,𝐾 = max

𝑧∈𝐾


𝑧𝑝

2 (𝑧)


. (11)

(c) If𝐾 is a compact subset of |𝑧| = 1with no isolated
points, then

lim
𝑛→∞

𝑛Δ 𝑛 (𝑝2 (𝑧) , 𝑧)
∞,𝐾 = 2max

𝑧∈𝐾


𝑝

2 (𝑧)


. (12)

Proof. (i) (a) It is a straightforward consequence of the
previous remark.

(i) (b) First of all take into account that for each 𝑧 ∈ 𝐾 it
holds that

lim
𝑛→∞

𝑛Δ 𝑛 (𝑝1 (𝑧) , 𝑧)
 =


𝑧𝑝

1 (𝑧)


. (13)

Therefore, if max𝑧∈𝐾|𝑧𝑝

1(𝑧)| is attained at 𝑧0 ∈ 𝐾, then for

each 𝑧 ∈ 𝐾 the following relation holds:

lim
𝑛→∞

Δ 𝑛 (𝑝1 (𝑧) , 𝑧)
 =


𝑧𝑝

1 (𝑧)


≤


𝑧0𝑝

1 (𝑧0)


. (14)

On the other hand, since for 𝑧0 we have lim𝑛→∞
|𝑛Δ 𝑛(𝑝1(𝑧), 𝑧0)| = |𝑧0𝑝


1(𝑧0)|, then we obtain the result.

(i) (c) If 𝑧0 is the point where max𝑧∈𝐾|𝑝

1(𝑧)| is attained,

then for each 𝑧 ∈ 𝐾 ⊂ T it holds that
𝑛Δ 𝑛 (𝑝1 (𝑧) , 𝑧)

 =

(𝑧
𝑛
− 𝜆) 𝑝


1 (𝑧)



≤ 2max
𝑧∈𝐾


𝑝

1 (𝑧)


= 2


𝑝

1 (𝑧0)


,

(15)

which implies that

lim
𝑛→∞

𝑛Δ 𝑛 (𝑝1 (𝑧) , 𝑧)
∞,𝐾 ≤ 2max

𝑧∈𝐾


𝑝

1 (𝑧)


. (16)

Due to the continuity of𝑝1(𝑧), for each 𝜖 > 0 there exists a
neighborhood of 𝑧0, 𝑁𝑧0 , such that for 𝑧 ∈ 𝑁𝑧0 it is |𝑝


1(𝑧)| >

|𝑝

1(𝑧0)| − 𝜖. On the other hand, for 𝑛 large enough any arc

of T contains points 𝑧 with 𝑧
𝑛
= −𝜆, and therefore for some

𝑧 ∈ 𝑁𝑧0 , with 𝑧
𝑛
= −𝜆, we have

𝑛Δ 𝑛 (𝑝1 (𝑧) , 𝑧)
 ≥ 2 (


𝑝

1 (𝑧0)


− 𝜖) . (17)

Then we obtain

lim
𝑛→∞

𝑛Δ 𝑛 (𝑝1 (𝑧) , 𝑧)
∞,𝐾 = 2max

𝑧∈𝐾


𝑝

1 (𝑧)


. (18)

To obtain (ii) (a), (b), and (c) proceed in the same way.

Theorem4. Let 𝑝(𝑧) = 𝑝1(𝑧)+𝑝2(𝑧) be a Laurent polynomial
with positive and negative powers of 𝑧, 𝑝1(𝑧) and 𝑝2(𝑧),
respectively. It holds that

(i) Δ 𝑛(𝑝(𝑧), 𝑧) = 1/𝑛 𝑧(𝑧
𝑛
− 𝜆)(𝑝


1(𝑧)/𝑧

𝑛
+ 𝑝

2(𝑧)/𝜆);

(ii) if 𝐾 is a compact subset of T with no isolated points,
then

lim
𝑛→∞

𝑛Δ 𝑛 (𝑝 (𝑧) , 𝑧)
∞,𝐾

= max
𝑧∈𝐾,𝛽∈T


(𝛽 − 1) (𝑝


1 (𝑧) + 𝛽𝑝


2 (𝑧))


.

(19)

Proof. It is clear that max𝑧∈𝐾,𝛽∈T |(𝛽 − 1)(𝑝

1(𝑧) + 𝛽𝑝


2(𝑧))|

exists, it is positive, and it is attained at a point (𝑧0, 𝛽0). We
denote this maximum by𝑚. Besides, since (𝑧𝑛/𝜆−1)(𝑝


1(𝑧)+

(𝑧
𝑛
/𝜆)𝑝

2(𝑧)) can be represented as (𝛽 − 1)(𝑝


1(𝑧) + 𝛽𝑝


2(𝑧))

with 𝛽 ∈ T , then

lim sup
𝑛→∞

𝑛Δ 𝑛 (𝑝 (𝑧) , 𝑧)
∞,𝐾

≤ max
𝑧∈𝐾,𝛽∈T


(𝛽 − 1) (𝑝


1 (𝑧) + 𝛽𝑝


2 (𝑧))


.

(20)

Due to the continuity of (𝛽 − 1)(𝑝

1(𝑧) + 𝛽𝑝


2(𝑧)), for each

𝜖 > 0 there exists a neighborhood of (𝑧0, 𝛽0), 𝑁(𝑧0 ,𝛽0), such
that for (𝑧, 𝛽) ∈ 𝑁(𝑧0 ,𝛽0) it is


(𝛽 − 1) (𝑝


1 (𝑧) + 𝛽𝑝


2 (𝑧))


> 𝑚 − 𝜖, (21)

which implies, in particular,𝑚−|(𝛽0−1)(𝑝

1(𝑧)+𝛽0𝑝


2(𝑧))| < 𝜖.

Moreover, taking into account that for 𝑛 large enough any arc
𝐴 ⊂ T , with 𝑧0 ∈ 𝐴, contains points 𝑧 with 𝑧

𝑛
/𝜆 = 𝛽0, then

we have
𝑛Δ 𝑛 (𝑝 (𝑧) , 𝑧)

∞,𝐾 ≥ 𝑚 − 𝜖. (22)

Remark 5. The previous result can be rewritten as follows:
Δ 𝑛 (𝑝 (𝑧) , 𝑧)

∞,𝐾

≍
max𝑧∈𝐾,𝛽∈T


(𝛽 − 1) (𝑝


1 (𝑧) + 𝛽𝑝


2 (𝑧))



𝑛
,

(23)

where ≍means that the sequences are equivalent.

3. Rate of Convergence for Analytic Functions
on a Disk

In this section we extend the previous results to ana-
lytic functions. Indeed we study the supremum norm of
Δ 𝑛(𝐹(𝑧), 𝑧), ‖Δ 𝑛(𝐹(𝑧), 𝑧)‖∞,𝐶𝜌

for analytic functions 𝐹 on an
open disk containing T along a circumference 𝐶𝜌 of radius
𝜌 ≥ 1.

Theorem 6. Let 𝐹(𝑧) be a nonconstant analytic function
defined on an open disk 𝐷(0, 𝑅), with 𝑅 > 1, and let
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𝐻𝐹−(𝑛−1),𝑛(𝐹(𝑧), 𝑧) be its Hermite-Fejér interpolation polyno-
mial corresponding to the 𝑛 roots of 𝜆. If𝐶𝜌 is the circumference
with radius 𝜌, (1 ≤ 𝜌 < 𝑅), and ‖ ‖∞,𝐶𝜌 is the supremum norm
on 𝐶𝜌, then there exist 𝐶1, 𝐶2 > 0 satisfying

𝐶1

𝑛
≤

𝐹 (𝑧) − 𝐻𝐹−(𝑛−1),𝑛 (𝐹 (𝑧) , 𝑧)
∞,𝐶𝜌

≤
𝐶2

𝑛
. (24)

Proof. We exclude the constant case because we have 𝐹(𝑧) −

𝐻𝐹−(𝑛−1),𝑛(𝐹(𝑧), 𝑧) = 0 in this situation. So let 𝐹(𝑧) =

∑
∞
𝑘=0 𝑎𝑘𝑧

𝑘 be a nonconstant analytic function. Taking into
account that the evaluation of 𝑧𝑘+𝑙𝑛 at 𝛼𝑗 is 𝛼

𝑘+𝑙𝑛
𝑗 = 𝛼

𝑘
𝑗𝛼
𝑙𝑛
𝑗 =

𝛼
𝑘
𝑗𝜆
𝑙, we have 𝐻𝐹−(𝑛−1),𝑛(𝑧

𝑘+𝑙𝑛
, 𝑧) = 𝜆

𝑙
𝐻𝐹−(𝑛−1),𝑛(𝑧

𝑘
, 𝑧). Then

by usingTheorem 1 we can write

𝐹 (𝑧) − 𝐻𝐹−(𝑛−1),𝑛 (𝐹 (𝑧) , 𝑧)

=

∞

∑
𝑘=𝑛

𝑎𝑘𝑧
𝑘

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
(1)

+

𝑛−1

∑
𝑘=0

(
𝑘

𝑛
𝑎𝑘𝑧
𝑘
)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
(2)

+

𝑛−1

∑
𝑘=0

(
−𝑘𝜆

𝑛
𝑎𝑘𝑧
−(𝑛−𝑘)

)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
(3)

+

𝑛−1

∑
𝑘=0

(

∞

∑
𝑙=1

𝑎𝑘+𝑙𝑛𝜆
𝑙
)

𝑘 − 𝑛

𝑛
𝑧
𝑘

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
(4)

+

𝑛−1

∑
𝑘=0

(

∞

∑
𝑙=1

𝑎𝑘+𝑙𝑛𝜆
𝑙
)

−𝑘

𝑛
𝑧
−(𝑛−𝑘)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
(5)

.

(25)

Let 𝑧 be a point belonging to 𝐶𝜌 = {𝑧 : |𝑧| = 𝜌} with
𝜌 ≥ 1 and 𝑅1, such that 𝜌 < 𝑅1 < 𝑅. Then there exists a
positive constant𝐾1, such that for 𝑛 large enough we have

|(1)| =



∞

∑
𝑘=𝑛

𝑎𝑘𝑧
𝑘



≤
(𝜌/𝑅1)

𝑛

1 − 𝜌/𝑅1
≤ 𝐾1(

1

𝑅1
)

𝑛

,

|(4)| =



𝑛−1

∑
𝑘=0

(

∞

∑
𝑙=1

𝑎𝑘+𝑙𝑛𝜆
𝑙
)

𝑘 − 𝑛

𝑛
𝑧
𝑘



≤
(1/𝑅1)

𝑛

1 − 1/𝑅1

𝑛−1

∑
𝑘=0

(
𝜌

𝑅1
)

𝑘

=
𝑅1

𝑅1 − 1

1

𝑅𝑛1

1 − (𝜌/𝑅1)
𝑛

1 − 𝜌/𝑅1
≤ 𝐾1(

1

𝑅1
)

𝑛

,

|(5)| ≤ 𝐾1(
1

𝑅1
)

𝑛

.

(26)

Now we consider (2) and (3) as follows:

|(2) + (3)|

=



𝑛−1

∑
𝑘=0

𝑘

𝑛
𝑎𝑘𝑧
𝑘
+

𝑛−1

∑
𝑘=0

−𝑘𝜆

𝑛
𝑎𝑘𝑧
−(𝑛−𝑘)



=



𝑧

𝑛
(1 −

𝜆

𝑧𝑛
)

𝑛−1

∑
𝑘=0

𝑘𝑎𝑘𝑧
𝑘−1



=



𝑧

𝑛
(1 −

𝜆

𝑧𝑛
)(𝐹

(𝑧) −

∞

∑
𝑘=𝑛

𝑘𝑎𝑘𝑧
𝑘−1

)



≤
𝜌

𝑛


1 −

𝜆

𝑧𝑛


(

𝐹
∞,𝐶𝜌

+

∞

∑
𝑘=𝑛

𝑘
1

𝑅𝑘1
𝜌
𝑘−1

)

≤
2𝜌

𝑛
(

𝐹
∞,𝐶𝜌

+
1

𝜌

∞

∑
𝑘=𝑛

𝑘(
𝜌

𝑅1
)

𝑘

)

=
2𝜌

𝑛
(

𝐹
∞,𝐶𝜌

+
1

𝜌

𝑛(𝜌/𝑅1)
𝑛

1 − 𝜌/𝑅1
+ (

𝜌

𝑅1
)

𝑛+1
1

(1 − 𝜌/𝑅1)
2
) .

(27)

So we obtain that there exists a positive constant 𝐶2, such
that for 𝑛 large enough

𝐹 (𝑧) − 𝐻𝐹−(𝑛−1),𝑛 (𝐹 (𝑧) , 𝑧)
∞,𝐶𝜌

≤
𝐶2

𝑛
. (28)

In order to obtain the lower bound we use the following
inequality:

|(2) + (3)| − |(1)| − |(4)| − |(5)|

≤
𝐹 (𝑧) − 𝐻𝐹−(𝑛−1),𝑛 (𝐹 (𝑧) , 𝑧)

 .
(29)

For an arbitrary 𝑧 ∈ 𝐶𝜌 and 𝑛 large enough we have

−3𝐾1(
1

𝑅1
)

𝑛

≤ − |(1)| − |(4)| − |(5)| . (30)

On the other hand, as the zeros of 𝐹

(𝑧) cannot have

accumulation points on 𝐷(0, 𝑅), then for 𝜖 > 0 there exist
an arc 𝐴(𝐶𝜌) ⊂ 𝐶𝜌 and a positive constant 𝑚1 = ‖𝐹


‖∞,𝐶𝜌 ,

such that

0 < 𝑚1 − 𝜖 ≤

𝐹

(𝑧)


∀𝑧 ∈ 𝐴 (𝐶𝜌) . (31)

Next we study two different cases 𝜌 > 1 and 𝜌 = 1.
(i) If 𝜌 > 1 it holds that

𝜌

𝑛


1 −

𝜆

𝑧𝑛


(𝑚1 − 𝜖 −



∞

∑
𝑘=𝑛

𝑘𝑎𝑘𝑧
𝑘−1



)

≤ |(2) + (3)| for 𝑧 ∈ 𝐴 (𝐶𝜌)

(32)

and, as before, for 𝑛 large enough there exist positive con-
stants𝐷 and 𝐸, such that for 𝑧 ∈ 𝐶𝜌 we have



∞

∑
𝑘=𝑛

𝑘𝑎𝑘𝑧
𝑘−1



≤
𝜌
𝑛

𝑅𝑛1
𝑛𝐷 ≤

𝐸

𝑛
. (33)

Thus for 𝑛 large enough and 𝑧 ∈ 𝐴(𝐶𝜌) we have

0 <
𝜌

𝑛


1 −

𝜆

𝑧𝑛


(𝑚1 −

𝐸

𝑛
) < |(2) + (3)| . (34)
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Then there exists𝑀 > 0 satisfying

𝑀

𝑛
<

𝜌

𝑛


1 −

𝜆

𝑧𝑛


(𝑚1 −

𝐸

𝑛
) < |(2) + (3)| . (35)

(ii) If 𝜌 = 1, we consider an arcA(𝐶𝜌) ⊂ 𝐴(𝐶𝜌)with |𝑧
𝑛
−

𝜆| > 𝑚2 > 0 for 𝑧 ∈ A(𝐶𝜌) and a positive constant
𝑚2 > 0. Then



𝑧

𝑛
(1 −

𝜆

𝑧𝑛
)

=

1

𝑛



𝑧
𝑛
− 𝜆

𝑧𝑛


=

1

𝑛

𝑧
𝑛
− 𝜆

 >
𝑚2

𝑛
. (36)

Proceeding in the same way as in the previous case we
have (𝑚2/𝑛)(𝑚1 −𝐸/𝑛) < |(2) + (3)|. Thus there exists𝑀 > 0,
such that

𝑀

𝑛
< |(2) + (3)| . (37)

Taking into account (35) and (37) we have for 𝑛 large
enough, 𝜌 ≥ 1 and 𝑧 ∈ A(𝐶𝜌)

𝑀

𝑛
− 3𝐾1(

1

𝑅1
)

𝑛

≤
𝐹 (𝑧) − 𝐻𝐹−(𝑛−1),𝑛 (𝐹 (𝑧) , 𝑧)



≤
𝐹 (𝑧) − 𝐻𝐹−(𝑛−1),𝑛 (𝐹 (𝑧) , 𝑧)

∞,𝐶𝜌
.

(38)

Then it is straightforward that there exists 𝐶1, such that

𝐶1

𝑛
<

𝐹 (𝑧) − 𝐻𝐹−(𝑛−1),𝑛 (𝐹 (𝑧) , 𝑧)
∞,𝐶𝜌

(39)

for 𝑛 large enough.

Remark 7. Notice that

(i) the constants 𝐶1 and 𝐶2 are closely related to the
supremum norm ‖ 𝐹


‖∞,𝐶𝜌 ;

(ii) clearly we can obtain an analogous result for noncon-
stant analytic function defined on |𝑧| > 𝑟 with 𝑟 < 1.

4. Rate of Convergence for Analytic Functions
on an Annulus

Next we deal with the case of analytic functions on an open
annulus containing T . We obtain explicit expressions for
𝑛Δ 𝑛(𝐹(𝑧), 𝑧) and the asymptotic behavior of its supremum
norm; that is, we obtain the order of convergence and the
asymptotic constant.

Throughout this section we consider a function 𝐹 with
Laurent expansion at 𝑧 = 0 given by 𝐹(𝑧) = ∑

∞
𝑘=−∞ 𝑎𝑘𝑧

𝑘

which converges on an annulus containing T .Then there exist
𝐶 > 0 and 𝑟, 0 < 𝑟 < 1, such that |𝑎−𝑘|, |𝑎𝑘| < 𝐶𝑟

𝑘 for every
𝑘 ≥ 0.

For each 𝑛 ≥ 2 we denote by 𝑃𝑛−2(𝑧) = ∑
𝑛−2
𝑘=0 𝑎𝑘𝑧

𝑘

and by �̃�𝑛−2(𝑧) = ∑
∞
𝑘=𝑛−1 𝑎𝑘𝑧

𝑘. In the same way we

denote by 𝑄𝑛−2(𝑧) = ∑
−1
𝑘=−(𝑛−2) 𝑎𝑘𝑧

𝑘 and by 𝑄𝑛−2(𝑧) =

∑
−(𝑛−1)

𝑘=−∞
𝑎𝑘𝑧
𝑘 (if 𝑛 = 2, 𝑄𝑛−2(𝑧) = 0).

Furthermore we denote by 𝑃(𝑧) = 𝑃𝑛−2(𝑧) + �̃�𝑛−2(𝑧) and
by 𝑄(𝑧) = 𝑄𝑛−2(𝑧) + 𝑄𝑛−2(𝑧).

Then we have the following decompositions of 𝐹(𝑧) for
each 𝑛 ≥ 2:

𝐹 (𝑧) = 𝑃 (𝑧) + 𝑄 (𝑧)

= 𝑃𝑛−2 (𝑧) + �̃�𝑛−2 (𝑧)

+ 𝑄𝑛−2 (𝑧) + 𝑄𝑛−2 (𝑧) .

(40)

By using this notation for the decompositions of 𝐹(𝑧) we
obtain the following results.

Lemma 8. In our conditions it holds that

𝑛Δ 𝑛 (�̃�𝑛−2 (𝑧) + 𝑄𝑛−2 (𝑧) , 𝑧) = 𝑜 (𝑟
𝑛
1)

for each 𝑟1 with 𝑟 < 𝑟1 < 1, 𝑧 ∈ T .
(41)

Proof. If |𝑧| = 1 we have |�̃�𝑛−2(𝑧)| ≤ 𝐶(𝑟
𝑛−1

/(1 − 𝑟)) and
|𝑄𝑛−2(𝑧)| ≤ 𝐶(𝑟

𝑛−1
/(1 − 𝑟)). On the other hand, by using (3)

and (4) we have for 𝑧 ∈ T


𝐻𝐹−(𝑛−1),𝑛 (�̃�𝑛−2 (𝑧) , 𝑧)


=



𝑛−1

∑
𝑗=0

�̃�𝑛−2 (𝛼𝑗)𝐴𝑗 (𝑧)



≤ 𝑛𝐶
𝑟
𝑛−1

1 − 𝑟
,


𝐻𝐹−(𝑛−1),𝑛 (𝑄𝑛−2 (𝑧) , 𝑧)


=



𝑛−1

∑
𝑗=0

𝑄𝑛−2 (𝛼𝑗)𝐴𝑗 (𝑧)



≤ 𝑛𝐶
𝑟
𝑛−1

1 − 𝑟
.

(42)

Then we can write

Δ 𝑛 (�̃�𝑛−2 (𝑧) + 𝑄𝑛−2 (𝑧) , 𝑧)



≤

�̃�𝑛−2 (𝑧)


+

𝑄𝑛−2 (𝑧)



+

𝐻𝐹−(𝑛−1),𝑛 (�̃�𝑛−2 (𝑧) , 𝑧)



+

𝐻𝐹−(𝑛−1),𝑛 (𝑄𝑛−2 (𝑧) , 𝑧)



≤ 𝐶(
𝑟
𝑛−1

1 − 𝑟
+

𝑟
𝑛−1

1 − 𝑟
+ 𝑛

𝑟
𝑛−1

1 − 𝑟
+ 𝑛

𝑟
𝑛−1

1 − 𝑟
)

(43)

and the result is proved.

Lemma 9. In our conditions the following holds.

(i) For 𝑧 ∈ T and 𝑟1, such that 𝑟 < 𝑟1 < 1

𝑛Δ 𝑛 (𝑃𝑛−2 (𝑧) , 𝑧) = 𝑧 (
𝑧
𝑛
− 𝜆

𝑧𝑛
)𝑃

𝑛−2 (𝑧)

= 𝑧 (
𝑧
𝑛
− 𝜆

𝑧𝑛
)𝑃

(𝑧) + 𝑜 (𝑟

𝑛
1) .

(44)
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Table 1

𝑝 𝑛 Max detected in 𝐾1 of |𝑛Δ 𝑛(𝐹(𝑧), 𝑧)|/|𝑃

(1) − 𝑄


(1)| Max detected in 𝐾2 of |𝑛Δ 𝑛(𝐹(𝑧), 𝑧)|/|𝑃


(1) − 𝑄


(1)|

4 16 0.713835 1.68672
6 64 0.939856 1.9788
8 256 0.997746 1.99866
10 1024 0.995921 1.99992
12 4096 0.998066 1.99999
14 16384 1.00795 2.

Table 2

𝑝 𝑛 Max detected in 𝐾1 of |𝑛Δ 𝑛(𝐹(𝑧), 𝑧)|/|𝑃

(1) − 𝑄


(1)| Max detected in 𝐾2 of |𝑛Δ 𝑛(𝐹(𝑧), 𝑧)|/|𝑃


(1) − 𝑄


(1)|

4 16 1.40634 1.90275
6 64 1.53754 1.99369
8 256 1.56734 1.99959
10 1024 1.57482 1.99957
12 4096 1.57653 2.
14 16384 1.57144 2.

(ii) For 𝑧 ∈ T and 𝑟1, such that 𝑟 < 𝑟1 < 1

𝑛Δ 𝑛 (𝑄𝑛−2 (𝑧) , 𝑧) = 𝑧 (
𝑧
𝑛
− 𝜆

𝜆
)𝑄

𝑛−2 (𝑧)

= 𝑧 (
𝑧
𝑛
− 𝜆

𝜆
)𝑄

(𝑧) + 𝑜 (𝑟

𝑛
1) .

(45)

Proof. (i) Take into account (i) (a) in Corollary 3 in order to
prove the first equality. To obtain the second equality take into
account that for |𝑧| = 1,𝑃𝑛−2𝑃


(𝑧) = 𝑜(𝑟1)

𝑛, and 𝑧((𝑧
𝑛
−𝜆)/𝑧

𝑛
)

is bounded.
(ii) Proceed in the same way.

Theorem 10. In our conditions the following holds.

(i) For 𝑧 ∈ T and 𝑟1 such that 𝑟 < 𝑟1 < 1

𝑛Δ 𝑛 (𝐹 (𝑧) , 𝑧) = 𝑧 (
𝑧
𝑛
− 𝜆

𝑧𝑛
)𝑃

(𝑧)

+ 𝑧 (
𝑧
𝑛
− 𝜆

𝜆
)𝑄

(𝑧) + 𝑜 (𝑟

𝑛
1) .

(46)

(ii) If 𝐾 is a compact subset of T with no isolated points,
then

lim
𝑛→∞

𝑛Δ 𝑛 (𝐹 (𝑧) , 𝑧)
∞,𝐾

= max
𝑧∈𝐾,𝛽∈T


(𝛽 − 1) (𝑃


(𝑧) + 𝛽𝑄


(𝑧))


.

(47)

Proof. (i) It is a straightforward from previous lemmas.
To prove (ii) use the same technique as inTheorem 4.

5. Numerical Tests

In this section we present some numerical experiments
concerning the main results in Sections 3 and 4.

Theorem 10 ensures that under appropriate assumptions,

‖ 𝑛Δ 𝑛 (𝐹 (𝑧) , 𝑧) ‖∞,𝐾

max𝑧∈𝐾,𝛽∈T
(𝛽 − 1) (𝑃 (𝑧) + 𝛽𝑄 (𝑧))


→ 1. (48)

Moreover from the proofs of Lemmas 8 and 9 we can predict
where this limit can be observed. In fact near 𝑧0, when (𝑧0, 𝛽0)

is the pointwhere themaximumofmax𝑧∈𝐾,𝛽∈T |(𝛽−1)(𝑃

(𝑧) +

𝛽𝑄

(𝑧))| is attained, we would observe the convergence.
A second interesting point is that when the maximum

max𝑧∈T ,𝛽∈T |(𝛽 − 1)(𝑃

(𝑧) + 𝛽𝑄


(𝑧))| is attained at a unique

point, then for a compact set 𝐾 with 𝑧0 ∉ 𝐾:

‖ 𝑛Δ 𝑛 (𝐹 (𝑧) , 𝑧) ‖∞,𝐾

max𝑧∈T ,𝛽∈T
(𝛽 − 1) (𝑃 (𝑧) + 𝛽𝑄 (𝑧))


→ 𝑙 < 1. (49)

We have developed some numerical examples to see these
phenomena about Theorem 10.

Example 11. Let 𝐹(𝑧) be 𝐹(𝑧) = 𝑃(𝑧) + 𝑄(𝑧) = 𝑒
𝑧
+ 1/(𝑧 − 𝑎)

with 𝑎 ∈ (0, 1). It is easy to see that the corresponding
maximum with 𝐾 = T is attained at (𝑧0, 𝛽0) = (1, −1).
Furthermore the maximum value is 2|𝑃


(1) − 𝑄


(1)|, and it

is unique. For 𝑛 = 2
𝑝, 𝑝 = 4, 6, 8, 10, 12, 14 we obtain the

corresponding Hermite- Fejér approximants (based on the 𝑛

roots of 1) the correspondingΔ 𝑛(𝐹(𝑧), 𝑧), andwe evaluate the
quotient

𝑛Δ 𝑛 (𝐹 (𝑧) , 𝑧)


𝑃
 (1) − 𝑄 (1)


(50)

in 5000 random points of the arc𝐾1 = [𝑒
(𝜋/6)𝚤

, 𝑒
(𝜋/2)𝚤

] ⊂ T . As
we have said the maximum of the quotients must converge
to a value less than 2. As a second part of the example we
evaluate the quotients in 1000 random points of the arc𝐾2 =
[𝑒
0𝚤
, 𝑒
(2𝜋/𝑛)𝚤

] ⊂ T . This second sequence must converge to 2;
notice that the great number of evaluations gives an estimate
of the supremum norm.
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Table 3

𝑝 𝑛 Max detected in 𝐾1 of |𝑛Δ 𝑛(𝐹(𝑧), 𝑧)|/|1.005𝐹

(1.005)| Max detected in 𝐾2 of |𝑛Δ 𝑛(𝐹(𝑧), 𝑧)|/|1.005𝐹


(1.005)|

4 16 1.88649 1.35356
6 64 1.67554 1.72464
8 256 1.25126 1.27855
10 1024 0.9862 1.0064
12 4096 0.980863 1.
14 16384 0.980855 1.

0.7

0.6

0.5

0.4

0.3

0.2

0.1

1 65432

Figure 1

Table 1 shows the results observed for 𝑎 = 0.5.
Figure 1 shows the graphic of |Δ 𝑛(𝐹(𝑧), 𝑒

𝚤𝑥
)| for 𝑎 = .5,

𝑛 = 16, and 𝑥 ∈ [0, 2𝜋]. In this graphic we can see given
in thw following we can see that the maximum of the error is
attained near to 𝑥1 = 0 or near 𝑥1 = 2𝜋 and its corresponding
points in T are near to 𝑧 = 1.

Table 2 shows the results observed for 𝑎 = 0.01.
Next we are going to applyTheorem 6.This result and the

details of its proof claim that for an analytic function 𝐹(𝑧), a
compact arc 𝐾 of radius 𝜌 > 1 and under the corresponding
assumptions,

𝑛Δ 𝑛 (𝐹 (𝑧) , 𝑧)
∞,𝐾

max𝑧∈𝐾
𝑧𝐹
 (𝑧)


→ 1 (51)

and the convergence can be increasing or decreasing; really it
depends on the sign of |1 − 1/𝑧

𝑛
| − 1.

We must point out that outside the unit disc the algo-
rithms for Hermite-Fejér interpolation can be unstable, so we
deal with a compact set near T .

Example 12. Let 𝐹(𝑧) be 𝐹(𝑧) = 𝑒
𝑧, and let 𝐾, 𝐾1, and 𝐾2

be the arcs [1.005, 1.005𝑒
𝚤(𝜋/4)

], [1.005𝑒
𝚤(𝜋/16)

, 1.005𝑒
𝚤(𝜋/4)

],
and [1.005, 1.005𝑒

𝚤(𝜋/32)
], respectively. It is easy to see that

max𝑧∈𝐾|𝑧𝐹

(𝑧)| is attained at 1.005. So we can observe

𝑛Δ 𝑛 (𝐹 (𝑧) , 𝑧)
∞,𝐾2

/max𝑧∈𝐾|𝑧𝐹

(𝑧)| tending to 1 and

𝑛Δ 𝑛 (𝐹 (𝑧) , 𝑧)
∞,𝐾1

/max𝑧∈𝐾|𝑧𝐹

(𝑧)| tending to a number

𝑙 < 1. For 𝑛 = 2
𝑝, 𝑝 = 4, 6, 8, 10, 12, 14 we obtain

the corresponding Hermite-Fejér approximants, and the

corresponding Δ 𝑛(𝐹(𝑧), 𝑧), and we obtain 5000 evaluations
for the quotient

𝑛Δ 𝑛 (𝐹 (𝑧) , 𝑧)


1.005𝐹1 (1.005)
(52)

in randompoints of the arc𝐾1. As we have said themaximum
of quotients must converge to a value less than 1. As a
second part of the example we obtain 1000 evaluations for
the quotients in random points of the arc𝐾2, and this second
sequence must converge to 1. Notice that the great number
of evaluations gives an estimation of the supremum norm.
Table 3 shows the observed results.
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