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The concept of the exponentially stable limit cycle (ESLC) is introduced, and the ESLC phenomenon for a class of nonlinear
systems is explored. Based on time-domain approach with differential inequality, the existence and uniqueness of the ESLC for such
nonlinear systems can be guaranteed. Besides, the period of oscillation, the amplitude of oscillation, and guaranteed convergence
rate can be accurately estimated. Finally, two numerical simulations are provided to illustrate the feasibility and effectiveness of the
obtained result.

1. Introduction

Some specific nonlinear systems can offer oscillations with
fixed period and fixed amplitude. Such oscillations are named
limit cycles or self-oscillations, for example, an RLC electrical
circuit with a nonlinear resistor, fuzzy vehicle control sys-
tems, decentralized relay systems, microwave oscillator, and
the Van der Pol equation. Moreover, oscillators frequently
exist in various fields of application. Recently, a wide variety
of methodologies in the prediction of limit cycles have
been proposed, such as describing function method, the
Poincare-Bendixson theorem, piecewise-linearizedmethods,
the Lyapunov-like approach, averaging method, analytic
method, and others.

In the past, there have been some interesting develop-
ments in various limit cycle problems of nonlinear systems,
but most were restricted to delay-free cases; see, for example,
[1–13] and the references therein. In [13], the existence of
small-amplitude limit cycles of nonlinear dynamical systems
has been studied. A computational method has been pro-
posed to obtain some new results about small limit cycles. As
shown in [2], the persistent behavior of the sawtooth oscil-
lation across different tokamaks indicates that a dynamical
model based on limit cycle oscillation is consistent in contrast

to the Hamiltonianmodels. Recently, Mendelowitz et al. have
studied a system of three limit cycle oscillators which exhibits
two stable steady states [8]. In [7], center conditions and
bifurcation of limit cycles at the nilpotent critical point in a
class of seventh degree system have been investigated. The
fact that there exist 12 small amplitude limit cycles created
from the three order nilpotent critical point has also been
proved.Meanwhile, the driven response of timedelay coupled
limit cycle oscillators has been studied in [14]. In [11], the
definition of the ESLC for nonlinear discrete-time systems
has been firstly introduced. Based on analytic method, the
existence of limit cycle for a class of nonlinear discrete-
time systems can be guaranteed. In addition, a uniqueness
theorem of limit cycles for the Liénard system has been
obtained in [12]. An example of a predator-prey system has
also been given to show the application of the main theorem.
In [9], the existence of limit cycles for a generalized Gause-
type predator-prey model with functional and numerical
responses that satisfy some general assumptions has been
studied. It has been shown that the existence of a limit
cycle is equivalent to the instability of the positive critical
point. Besides, a model of opinion formation in a population
of interacting individuals under the influence of external
leaders or persuaders has been studied in [1].The existence of
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a globally asymptotically stable periodic solution of such a
model has been analytically proved in three example cases.
In [3], by using the averaging method, the limit cycles for a
class of quartic polynomial differential systems aswell as their
global shape in the plane has been investigated and discussed.

Any physical dynamic system inherently contains, more
or less, some time-delay phenomena because the energy in
the system propagates with a finite speed. Very often, the
delay in nonlinear systems is a source of the generation
of oscillation and a source of instability. These motivate
us to investigate the ESLC phenomenon for a class of
nonlinear time-delay systems. In this paper, based on time-
domain approach with differential inequality, the existence
and uniqueness of the ESLC for a class of nonlinear systems
can be guaranteed. Not only the period of oscillation and
amplitude of oscillation can be correctly estimated but also
the guaranteed convergence rate can be accurately calculated.
Finally, two numerical simulations are provided to illustrate
the feasibility and effectiveness of the obtained result.

Throughout this paper, R𝑛 denotes the 𝑛-dimensional
Euclidean space, |𝑎| denotes the modulus of a real number
𝑎,𝑁 denotes the set of natural numbers, and 𝐴𝑇 denotes the
transpose of the matrix 𝐴.

2. Problem Formulation and Main Results

In this paper, we consider the following nonlinear systems:
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trivial case, in the following, we only consider the system (1a)
and (1b) under the case of [𝑥
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̸= 0.
The ESLC and the guaranteed convergence rate of the

continuous system (1a) and (1b) are defined as follows.

Definition 1. Consider the system (1a) and (1b). The closed
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to be an ESLC if there exist two positive numbers 𝛼 and 𝛽
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system (1a) and (1b) satisfies the following inequality:
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In this case, the positive number𝛼 is called the guaranteed
convergence rate.

Now, we present the main result for the existence of the
ESLC of system (1a) and (1b) as follows.
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This implies

𝜃 (𝑥 (𝑡)) = 𝑎𝑡 + tan−1 (
𝑥
20

𝑥
10

) . (6)

In the following, there are three cases to discuss the trajecto-
ries of the feedback control system of (1a) and (1b).
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Hence we conclude that
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Applying the differential inequality [15] with the above
inequality, one has
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Figure 1: The diagram of implementation, where 𝐶1 = 𝐶2 = 1 𝜇F and 𝑅𝑖 = 100 kΩ, ∀𝑖 ∈ {1, 2, . . . 24}.
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This completes the proof.

Remark 3. By Theorem 2, it is clear that both of 𝑥
1
(𝑡) and

𝑥
2
(𝑡) can be represented as nonlinear oscillators with the

amplitude √𝑟 and the frequency 𝑎. Such oscillations are
generally independent of the initial condition. Meanwhile,
the phenomenon of limit cycle is not affected by parameter
variation.

Remark 4. Based on time-domain approach with differential
inequality, we may obtain the desired amplitude and the
desired frequency by tuning the parameters 𝑟 and 𝑎, respec-
tively, in view of (4). It is worthwhile to note that anymember
of a family of nonlinear system (1a) and (1b) not only can be
regarded as nonlinear oscillator but also can be implemented
by electronic circuits, as shown in Figure 1.

3. Numerical Simulations

Example 5. Consider the nonlinear system (1a) and (1b) with

𝑎 = 𝑐
2
= 𝑘 = 𝑖 = 1, 𝑐

1
= 2, 𝑟 = 4,

𝑑 = 0.1, [𝑥
10

𝑥
20
]

𝑇

= [4 4]

𝑇

.

(19)
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= 𝑘 = 1, 𝑖 = 2, 𝑟 = 5, 𝑑 =

0.2, [𝑥
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By Theorem 2, we conclude that the phase trajectories of
system (1a) and (1b) tend to the ESLC 𝑠(𝑥) = 𝑥

2

1
+

𝑥
2

2
− 4 = 0 in the 𝑥

1
− 𝑥
2
plane, with the guaranteed

convergence rate 𝛼 = 16. Furthermore, the states 𝑥
1
(𝑡)

and 𝑥
2
(𝑡) exponentially track, respectively, the trajectories

2 cos[𝑡 + (𝜋/4)] and 2 sin[𝑡 + (𝜋/4)], in the time domain,
with the guaranteed convergence rate 𝛼/2 = 8. Some state
trajectories of above nonlinear system are depicted in Figures
2 and 3. From the foregoing simulations results, it is seen that
the nonlinear (1a) and (1b) with

𝑎 = 𝑐
2
= 𝑘 = 𝑖 = 1, 𝑐

1
= 2, 𝑟 = 4,

𝑑 = 0.1, [𝑥
10

𝑥
20
]

𝑇

= [4 4]

𝑇

,

(20)

uniquely possesses the ESLC of 𝑠(𝑥) = 𝑥2
1
+ 𝑥
2

2
− 4 = 0.

Example 6. Consider the nonlinear system (1a) and (1b) with

𝑎 = 10, 𝑐
1
= 𝑐
2
= 𝑘 = 1, 𝑖 = 2, 𝑟 = 5,

𝑑 = 0.2, [𝑥
10

𝑥
20
]

𝑇

= [1 −1]

𝑇

.

(21)

By Theorem 2, we conclude that the phase trajectories of
system (1a) and (1b) tend to the ESLC 𝑠(𝑥) = 𝑥2

1
+ 𝑥
2

2
− 5 = 0

in the 𝑥
1
− 𝑥
2
plane, with the guaranteed convergence rate

𝛼 = 4. Furthermore, the states 𝑥
1
(𝑡) and 𝑥

2
(𝑡) exponentially

track, respectively, the trajectories √5 cos[10𝑡 − (𝜋/4)] and
√5 sin[10𝑡− (𝜋/4)], in the time domain, with the guaranteed
convergence rate 𝛼/2 = 2. Some state trajectories of above
nonlinear system are depicted in Figures 4–5. From the
foregoing simulations results, it is seen that the nonlinear
system (1a) and (1b) with

𝑎 = 10, 𝑐
1
= 𝑐
2
= 𝑘 = 1, 𝑖 = 2, 𝑟 = 5,

𝑑 = 0.2, [𝑥
10

𝑥
20
]

𝑇

= [1 −1]

𝑇

(22)

uniquely possesses the ESLC of 𝑠(𝑥) = 𝑥2
1
+ 𝑥
2

2
− 5 = 0.

4. Conclusion

In this paper, the concept of the ESLC has been introduced
and the ESLC phenomenon for a class of nonlinear systems
has been explored. Based on time-domain approach with
differential inequality, the existence and uniqueness of the
ESLC for such nonlinear systems can be guaranteed. Besides,
the period of oscillation, the amplitude of oscillation, and
guaranteed convergence rate can be accurately estimated.
Finally, numerical simulations have also been provided to
illustrate the feasibility and effectiveness of the obtained
result.
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