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This paper investigates finite-time synchronization of the singular hybrid coupled networks. The singular systems studied in this
paper are assumed to be regular and impulse-free. Some sufficient conditions are derived to ensure finite-time synchronization of
the singular hybrid coupled networks under a state feedback controller by using finite-time stability theory. A numerical example
is finally exploited to show the effectiveness of the obtained results.

1. Introduction

In recent years, singular systems, also known as descrip-
tor systems, generalized state-space systems, differential-
algebraic systems, or semistate systems, are attracting more
and more attentions from many fields of scientific research
because they can better describe a larger class of dynamic
systems than the regular ones.Many results of regular systems
have been extended to the area about singular systems such
as [1–21]. For example, stability (robust stability or quadratic
stability) and stabilization for singular systems have been
studied via LMI approach in [2–8]; robust control (or 𝐻

2
,

𝐻
∞

control and robust dissipative filtering) for singular
systems has been discussed in [9–16]; synchronization (or
state estimation) for singular complex networks has been
considered in [17–21].

Synchronization is an interesting and important charac-
teristic in the coupled networks. There are a lot of results
in regular coupled networks. Recently, some authors study
synchronization of the singular systems such as [17–21] and
the references therein. In [17], Xiong et al. introduced the
singular hybrid coupled systems to describe complex network
with a special class of constrains. They gave a sufficient
condition for global synchronization of singular hybrid
coupled system with time-varying nonlinear perturbation

based on Lyapunov stability theory. Synchronization issues
are studied for singular systems with delays by using Linear
Matrix Inequality (LMI) approach [18]. Koo et al. considered
synchronization of singular complex dynamical network
with time-varying delays [19]. Li et al. in [20] investigated
synchronization and state estimation for singular complex
dynamical networks with time-varying delays. Li et al. in
[21] investigated robust 𝐻

∞
control of synchronization for

uncertain singular complex delayed networks with stochastic
switched coupling.

Finite-time synchronization or finite-time control is
interesting topic for its practical application. There are some
results on finite-time stability [22–26], finite-time synchro-
nization [27–33], finite-time consensus or agreement [34–
37], and finite-time observers [38]. However, these results are
obtained for regular systems. Up to now, to the best of our
knowledge, few authors studied finite-time synchronization
of singular hybrid coupled systemswhose structures aremore
complex than those in [27–33]. Considering the important
role of synchronization of complex networks, the finite-time
synchronization of singular hybrid coupled networks isworth
studying.

Motivated by the previous discussions, in this paper,
we investigate finite-time synchronization of singular hybrid
complex systems. Some sufficient conditions for it are
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obtained by the state feedback controller based on the finite-
time stability theory. Finally, a numerical example is exploited
to illustrate the effectiveness of the obtained result.

The rest of this paper is organized as follows. In Section 2,
a singular hybrid coupled system is given, and some pre-
liminaries are briefly outlined. In Section 3, some sufficient
criteria are derived for the finite-time synchronization of
the proposed singular system by the feedback controller. In
Section 4, an example is provided to show the effectiveness of
the obtained results. Some conclusions are finally drawn in
Section 5.

2. Model Formulation and Some Preliminaries

Consider a singular hybrid coupled system as follows:

𝐸𝑥̇
𝑖
(𝑡) = 𝐴𝑥

𝑖
(𝑡) + 𝑓 (𝑥

𝑖
(𝑡) , 𝑡) + 𝑐

𝑁

∑

𝑗=1

𝑏
𝑖𝑗
(𝑡) Γ𝑥

𝑗
(𝑡) ,

𝑖 = 1, 2, . . . , 𝑁,

(1)

where 𝑥
𝑖
(𝑡) = (𝑥

𝑖1
(𝑡), 𝑥
𝑖2
(𝑡), . . . , 𝑥

𝑖𝑛
(𝑡))
𝑇

∈ R𝑛 represents the
state vector of the 𝑖th node,𝐴, 𝐸 ∈ R𝑛×𝑛 are constantmatrices,
and 𝐸 may be singular. Without loss of generality, we will
assume that 0 < rank(𝐸) = 𝑟 < 𝑛. 𝑓(𝑥

𝑖
(𝑡), 𝑡) is a vector-value

function. The constant 𝑐 > 0 denotes the coupling strength,
and Γ = diag(𝛾

1
, 𝛾
2
, . . . , 𝛾

𝑛
) ∈ R𝑛×𝑛 is inner-coupling matrix

between nodes. 𝐵 = (𝑏
𝑖𝑗
)
𝑁×𝑁

describes the linear coupling
configuration of the network, which satisfies

𝑏
𝑖𝑗

= 𝑏
𝑗𝑖
, for 𝑖 ̸= 𝑗,

𝑏
𝑖𝑖
= −

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝑏
𝑖𝑗
, 𝑖 = 1, 2, . . . , 𝑁.

(2)

Remark 1. If rank(𝐸) = 𝑛, then system (1) is a general nonsin-
gular coupled network.Wewill also give a sufficient condition
of the finite-time synchronization for this circumstance. See
Corollary 10.

Definition 2. The singular system (1) is said to be synchro-
nized in the finite time, if for a suitable designed feedback
controller, there exists a constant 𝑡∗ > 0 (which depends on
the initial vector value 𝑥(0) = (𝑥

𝑇

1
(0), 𝑥
𝑇

2
(0), . . . , 𝑥

𝑇

𝑁
(0))
𝑇),

such that lim
𝑡→ 𝑡
∗ ‖ 𝑥
𝑖
(𝑡) − 𝑥

𝑗
(𝑡) ‖= 0 and ‖ 𝑥

𝑖
(𝑡) − 𝑥

𝑗
(𝑡) ‖≡ 0

for 𝑡 > 𝑡
∗, 𝑖, 𝑗 = 1, 2, . . . , 𝑁.

Assumption 3. Assume that the singular system (1) is con-
nected in the sense that there are no isolated clusters; that is,
the matrix 𝐵 is an irreducible matrix.

With Assumption 3, we obtain that zero is an eigenvalue
of 𝐵 with multiplicity 1, and all the other eigenvalues of
𝐵 are strictly negative, which are denoted by 0 = 𝜆

1
>

𝜆
2

≥ ⋅ ⋅ ⋅ ≥ 𝜆
𝑁
. At the same time, since 𝐵 is a symmetric

matrix, there exists a unitarymatrix𝑊 = (𝑊
1
,𝑊
2
, . . . ,𝑊

𝑁
) ∈

R𝑛×𝑛 such that 𝐵 = 𝑊Λ𝑊
𝑇 with 𝑊𝑊

𝑇
= 𝐼 and Λ =

diag(𝜆
1
, 𝜆
2
, . . . , 𝜆

𝑁
).

Let 𝑠(𝑡) be a function to which all 𝑥
𝑖
(𝑡) are expected to

synchronize in the finite time. That is, the synchronization
state is 𝑠(𝑡). Suppose that 𝑠(𝑡) satisfies the equation 𝐸 ̇𝑠(𝑡) =

𝐴𝑠(𝑡) + 𝑓(𝑠(𝑡), 𝑡). Let 𝑒
𝑖
(𝑡) = 𝑥

𝑖
(𝑡) − 𝑠(𝑡), 𝑖 = 1, 2, . . . , 𝑁. We

can obtain the following singular error system:

𝐸 ̇𝑒
𝑖
(𝑡) = 𝐴𝑒

𝑖
(𝑡) + 𝑓 (𝑥

𝑖
(𝑡) , 𝑡) − 𝑓 (𝑠 (𝑡) , 𝑡)

+ 𝑐

𝑁

∑

𝑗=1

𝑏
𝑖𝑗
(𝑡) Γ𝑒
𝑗
(𝑡) , 𝑖 = 1, 2, . . . , 𝑁.

(3)

Let 𝑒(𝑡) = (𝑒
1
(𝑡), 𝑒
2
(𝑡), . . . , 𝑒

𝑁
(𝑡)), 𝑦(𝑡) = 𝑒(𝑡)𝑊; then

system (3) can be written as

𝐸 ̇𝑒 (𝑡) = 𝐴𝑒 (𝑡) + 𝐹 (𝑒 (𝑡) , 𝑡) + 𝑐Γ𝑒 (𝑡) 𝐵
𝑇
,

𝐸 ̇𝑦 (𝑡) = 𝐴𝑦 (𝑡) + 𝐹 (𝑒 (𝑡) , 𝑡)𝑊 + 𝑐Γ𝑦 (𝑡) Λ,

(4)

where 𝐹(𝑒(𝑡), 𝑡) = (𝑓(𝑥
1
(𝑡), 𝑡) − 𝑓(𝑠(𝑡), 𝑡), 𝑓(𝑥

2
(𝑡), 𝑡) −

𝑓(𝑠(𝑡), 𝑡), . . . , 𝑓(𝑥
𝑁
(𝑡), 𝑡)−𝑓(𝑠(𝑡), 𝑡)), 𝑦(𝑡) = (𝑦

1
(𝑡), 𝑦
2
(𝑡), . . . ,

𝑦
𝑁
(𝑡)), and 𝑦

𝑖
(𝑡) = 𝑒(𝑡)𝑊

𝑖
∈ R𝑛, 𝑖 = 1, 2, . . . , 𝑁. Then, system

(4) can be written as

𝐸 ̇𝑦
𝑖
(𝑡) = 𝐴𝑦

𝑖
(𝑡) + 𝐹 (𝑒 (𝑡) , 𝑡)𝑊

𝑖
+ 𝑐𝜆
𝑖
Γ𝑦
𝑖
(𝑡)

= (𝐴 + 𝑐𝜆
𝑖
Γ) 𝑦
𝑖
(𝑡) + 𝐹 (𝑒 (𝑡) , 𝑡)𝑊

𝑖
.

(5)

Therefore, the finite-time synchronization problem of
system (1) is equivalent to the finite-time stabilization of
system (5) at the origin under the suitable controllers 𝑢

𝑖
,

𝑖 = 1, 2, . . . , 𝑁.

Assumption 4. Assume that there exist nonnegative constants
𝐿
𝑖
such that

󵄩󵄩󵄩󵄩𝑓 (𝑥
𝑖
(𝑡) , 𝑡) − 𝑓 (𝑠 (𝑡) , 𝑡)

󵄩󵄩󵄩󵄩 ≤ 𝐿
𝑖

󵄩󵄩󵄩󵄩𝑥𝑖 (𝑡) − 𝑠 (𝑡)
󵄩󵄩󵄩󵄩 ,

𝑖 = 1, 2, . . . , 𝑁.

(6)

Assumption 5. There exist matrices 𝑃
𝑖
such that

𝐸
𝑇
𝑃
𝑖
= 𝑃
𝑇

𝑖
𝐸 ≥ 0, 𝑖 = 1, 2, . . . , 𝑁, (7)

𝐴
𝑇
𝑃
1
+ 𝑃
𝑇

1
𝐴 < 0,

(𝐴 + 𝑐𝜆
𝑖
Γ)
𝑇
𝑃
𝑖
+ 𝑃
𝑇

𝑖
(𝐴 + 𝑐𝜆

𝑖
Γ) ≤ −𝜂

𝑖
𝐼, 𝑖 = 2, . . . , 𝑁,

(8)

where 𝜂
𝑖
> 2𝐿(𝑁 − 1) ‖ 𝑃

𝑖
‖, 𝐿 = ∑

𝑁

𝑖=1
𝐿
𝑖
.

Lemma 6 (see [26]). Suppose that the function 𝑉(𝑡) : [𝑡
0
,

∞) → [0,∞) is differentiable (the derivative of 𝑉(𝑡) at 𝑡
0

is in fact its right derivative) and 𝑉̇(𝑡) ≤ −𝐾(𝑉(𝑡))
𝛼, ∀𝑡 ≥ 0,

𝑉(𝑡
0
) ≥ 0, where 𝐾 > 0, 0 < 𝛼 < 1 are two constants. Then,

for any given 𝑡
0
, 𝑉(𝑡) satisfies the following inequality:

𝑉
1−𝛼

(𝑡) ≤ 𝑉
1−𝛼

(𝑡
0
) − 𝐾 (1 − 𝛼) (𝑡 − 𝑡

0
) , 𝑡

0
≤ 𝑡 ≤ 𝑡

∗
,

𝑉 (𝑡) ≡ 0, ∀𝑡 > 𝑡
∗
,

(9)

with 𝑡
∗ given by 𝑡

∗
= 𝑡
0
+ 𝑉
1−𝛼

(𝑡
0
)/𝐾(1 − 𝛼).
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Lemma 7 (Jensen’s Inequality). If 𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
are positive

numbers and 0 < 𝑟 < 𝑝, then

(

𝑛

∑

𝑖=1

𝑎
𝑝

𝑖
)

(1/𝑝)

≤ (

𝑛

∑

𝑖=1

𝑎
𝑟

𝑖
)

(1/𝑟)

. (10)

3. Main Results

In this section, we consider the finite-time synchronization
of the singular coupled network (1) under the appropriate
controllers. In order to control the states of all nodes to the
synchronization state 𝑠(𝑡) in finite time, we apply some simple
controllers 𝑢

𝑖
(𝑡) ∈ R𝑛, 𝑖 = 1, 2, . . . , 𝑁, to system (1). Then,

the controlled system can be written as

𝐸𝑥̇
𝑖
(𝑡) = 𝐴𝑥

𝑖
(𝑡) + 𝑓 (𝑥

𝑖
(𝑡) , 𝑡) + 𝑐

𝑁

∑

𝑗=1

𝑏
𝑖𝑗
Γ𝑥
𝑗
(𝑡) + 𝑢

𝑖
,

𝑖 = 1, 2, . . . , 𝑁.

(11)

Then, we have

𝐸 ̇𝑒
𝑖
(𝑡) = 𝐴𝑒

𝑖
(𝑡) + 𝑓 (𝑥

𝑖
(𝑡) , 𝑡) − 𝑓 (𝑠 (𝑡) , 𝑡)

+ 𝑐

𝑁

∑

𝑗=1

𝑏
𝑖𝑗
Γ𝑒
𝑗
(𝑡) + 𝑢

𝑖
,

(12)

𝐸 ̇𝑦
𝑖
(𝑡) = (𝐴 + 𝑐𝜆

𝑖
Γ) 𝑦
𝑖
(𝑡) + 𝐹 (𝑒 (𝑡) , 𝑡)𝑊

𝑖
+ V
𝑖
, (13)

where V
𝑖
= 𝑢𝑊
𝑖
, 𝑢 = (𝑢

1
, 𝑢
2
, . . . , 𝑢

𝑁
).

With Assumption 5, it follows from the proof of Theo-
rem 1 in [2] and Lemma 2.2 in [3] that the pair (𝐸, 𝐴 + 𝑐𝜆

𝑖
Γ)

is regular and impulse-free; that is, there exist nonsingular
matrices 𝑀

𝑖
, 𝑄
𝑖
∈ R𝑛×𝑛 satisfying that

𝑀
𝑖
𝐸𝑄
𝑖
= diag {𝐼

𝑟
, 0} ,

𝑀
𝑖
(𝐴 + 𝑐𝜆

𝑖
Γ)𝑄
𝑖
= diag {𝐴

𝑖
, 𝐼
𝑛−𝑟

} ,

(14)

where 𝐴
𝑖
∈ R𝑟×𝑟, 𝑖 = 1, 2, . . . , 𝑁. So, system (13) is equivalent

to

̇𝑦
1

𝑖
(𝑡) = 𝐴

𝑖
𝑦
1

𝑖
(𝑡) + 𝑀

1

𝑖
𝐹 (𝑒 (𝑡) , 𝑡)𝑊

𝑖
+ 𝑀
1

𝑖
V
𝑖
, (15)

0 = 𝑦
2

𝑖
(𝑡) + 𝑀

2

𝑖
𝐹 (𝑒 (𝑡) , 𝑡)𝑊

𝑖
+ 𝑀
2

𝑖
V
𝑖
, (16)

where 𝑄
−1

𝑖
𝑦
𝑖
(𝑡) = (

𝑦
1

𝑖
(𝑡)

𝑦
2

𝑖
(𝑡)

), 𝑦1
𝑖
(𝑡) ∈ R𝑟, and 𝑦

2

𝑖
(𝑡) ∈ R𝑛−𝑟. And

𝑀
𝑖
= (
𝑀
1

𝑖

𝑀
2

𝑖

), 𝑀1
𝑖

∈ R𝑟×𝑛, 𝑀2
𝑖

∈ R(𝑛−𝑟)×𝑛, 𝑄
𝑖
= ( 𝑄

1

𝑖
𝑄
2

𝑖
), 𝑄1
𝑖
∈

R𝑛×𝑟, and 𝑄
2

𝑖
∈ R𝑛×(𝑛−𝑟).

In order to achieve our aim, we design the following
controllers:

V
𝑖
= −𝑘𝑀

−1

𝑖
sign (𝑀

𝑖
𝐸𝑒 (𝑡)𝑊

𝑖
)
󵄨󵄨󵄨󵄨𝑀𝑖𝐸𝑒 (𝑡)𝑊

𝑖

󵄨󵄨󵄨󵄨

𝛽

, (17)

where
𝑀
𝑖
𝐸𝑒 (𝑡)𝑊

𝑖
= 𝑀
𝑖
𝐸𝑦
𝑖
(𝑡) = 𝑀

𝑖
𝐸𝑄
𝑖
𝑄
−1

𝑖
𝑦
𝑖
(𝑡)

= (
𝐼
𝑟

0

0 0
)(

𝑦
1

𝑖

𝑦
2

𝑖

) = (
𝑦
1

𝑖

0
) ,

󵄨󵄨󵄨󵄨𝑀𝑖𝐸𝑦𝑖 (𝑡)
󵄨󵄨󵄨󵄨

𝛽

= (
󵄨󵄨󵄨󵄨󵄨
𝑦
1

𝑖1
(𝑡)

󵄨󵄨󵄨󵄨󵄨

𝛽

, . . . ,
󵄨󵄨󵄨󵄨󵄨
𝑦
1

𝑖𝑟
(𝑡)

󵄨󵄨󵄨󵄨󵄨

𝛽

, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛−𝑟

)

𝑇

,

sign (𝑀
𝑖
𝐸𝑦
𝑖
(𝑡)) = diag( sign (𝑦

1

𝑖1
(𝑡)) , sign (𝑦

1

𝑖2
(𝑡)) , . . . ,

sign (𝑦
1

𝑖𝑟
(𝑡)) , 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛−𝑟

) .

(18)

𝑘 > 0 is a tunable constant, and the real number 𝛽 satisfies
0 < 𝛽 < 1. So, we obtain 𝑢 = (V

1
, V
2
, . . . , V

𝑁
)𝑊
−1

=

V(𝜉
1
, 𝜉
2
, . . . , 𝜉

𝑁
). That is, 𝑢

𝑖
= V𝜉
𝑖
.

Remark 8. From (17), the controllers 𝑢
𝑖
are dependent not

only on the coupled matrix 𝐵, but also on the singular matrix
𝐸. And from the shape of controllers, we only use the states
𝑦
1

𝑖
of slow subsystems (15) in controllers V

𝑖
, but we do not

consider the states 𝑦2
𝑖
of fast subsystems (16). It is very special.

It is interesting for our future research to designmore general
controller whichmakes the singular hybrid coupled networks
synchronize in finite time.

Theorem 9. Suppose that Assumptions 3, 4, and 5 hold.
Under the controllers (17), the singular system (1) is syn-
chronized in a finite time 𝑡

∗
= 𝑡

0
+ (𝑉

(1−𝛽)/2
(𝑡
0
)/

𝑎𝑘𝑏
−(1+𝛽)/2

(1 − 𝛽)), where 𝑉(𝑡
0
) = ∑

𝑁

𝑖=1
𝑦
𝑇

𝑖
(𝑡
0
)𝐸
𝑇
𝑃
𝑖
𝑦
𝑖
(𝑡
0
) =

∑
𝑁

𝑖=1
(𝑒(𝑡
0
)𝑊
𝑖
)
𝑇
𝐸
𝑇
𝑃
𝑖
(𝑒(𝑡
0
)𝑊
𝑖
), 𝑒(𝑡
0
) is the initial condition of

𝑒(𝑡), and 𝑎 and 𝑏 are defined as (25).

Proof. Consider the following Lyapunov function:

𝑉 (𝑡) =

𝑁

∑

𝑖=1

𝑦
𝑇

𝑖
(𝑡) 𝐸
𝑇
𝑃
𝑖
𝑦
𝑖
(𝑡) . (19)

The derivative of 𝑉(𝑡) along the trajectory of system (13) is

𝑉̇ (𝑡)

=

𝑁

∑

𝑖=1

[𝑦
𝑇

𝑖
(𝑡) 𝑃
𝑇

𝑖
((𝐴 + 𝑐𝜆

𝑖
Γ) 𝑦
𝑖
(𝑡) + 𝐹 (𝑒 (𝑡) , 𝑡)𝑊

𝑖
+ V
𝑖
)

+((𝐴 + 𝑐𝜆
𝑖
Γ) 𝑦
𝑖
(𝑡) + 𝐹 (𝑒 (𝑡) , 𝑡)𝑊

𝑖
+ V
𝑖
)
𝑇

𝑃
𝑖
𝑦
𝑖
(𝑡) ]

=

𝑁

∑

𝑖=1

[ 𝑦
𝑇

𝑖
(𝑡) (𝑃

𝑇

𝑖
(𝐴 + 𝑐𝜆

𝑖
Γ) + (𝐴 + 𝑐𝜆

𝑖
Γ)
𝑇

𝑃
𝑖
) 𝑦
𝑖
(𝑡)

+ 2𝑦
𝑇

𝑖
(𝑡) 𝑃
𝑇

𝑖
𝐹 (𝑒 (𝑡) , 𝑡)𝑊

𝑖

−2𝑘𝑦
𝑇

𝑖
(𝑡) 𝑃
𝑇

𝑖
𝑀
−1

𝑖
sign (𝑀

𝑖
𝐸𝑒 (𝑡)𝑊

𝑖
)
󵄨󵄨󵄨󵄨𝑀𝑖𝐸𝑒 (𝑡)𝑊

𝑖

󵄨󵄨󵄨󵄨

𝛽

].

(20)
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By using Assumption 4, one can get the following inequality:

󵄩󵄩󵄩󵄩𝐹 (𝑒 (𝑡) , 𝑡)𝑊
𝑖

󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑁

∑

𝑘=1

[𝑓 (𝑥
𝑘
(𝑡) , 𝑡) − 𝑓 (𝑠 (𝑡) , 𝑡)]𝑊

𝑖𝑘

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤

𝑁

∑

𝑘=1

𝐿
𝑘

󵄩󵄩󵄩󵄩𝑒𝑘 (𝑡)
󵄩󵄩󵄩󵄩

=

𝑁

∑

𝑘=1

𝐿
𝑘

󵄩󵄩󵄩󵄩𝑦 (𝑡) 𝜉
𝑘

󵄩󵄩󵄩󵄩 ≤

𝑁

∑

𝑘=1

𝐿
𝑘

󵄩󵄩󵄩󵄩𝑦 (𝑡)
󵄩󵄩󵄩󵄩 = 𝐿

󵄩󵄩󵄩󵄩𝑦 (𝑡)
󵄩󵄩󵄩󵄩

≤ 𝐿

𝑁

∑

𝑘=1

󵄩󵄩󵄩󵄩𝑦𝑘 (𝑡)
󵄩󵄩󵄩󵄩 ,

(21)

where𝑊
𝑖
= (𝑊
𝑖1
,𝑊
𝑖2
, . . . ,𝑊

𝑖𝑛
)
𝑇 and (𝜉

1
, 𝜉
2
, . . . , 𝜉

𝑁
) = 𝑊

−1
=

𝑊
𝑇.
Define 𝑀

−𝑇

𝑖
𝑃
𝑖
𝑄
𝑖

= (
𝑃
1

𝑖
𝑃
2

𝑖

𝑃
3

𝑖
𝑃
4

𝑖

), where 𝑃
1

𝑖
∈ R𝑟×𝑟, 𝑃

2

𝑖
∈

R𝑟×(𝑛−𝑟), 𝑃3
𝑖

∈ R(𝑛−𝑟)×𝑟, and 𝑃
4

𝑖
∈ R(𝑛−𝑟)×(𝑛−𝑟). Using (7) and

(8) (see [2]), one can obtain that 𝑃1
𝑖

= (𝑃
1

𝑖
)
𝑇

> 0 and 𝑃
2

𝑖
= 0;

then,

𝑉 (𝑡) =

𝑁

∑

𝑖=1

𝑦
𝑇

𝑖
(𝑡) 𝐸
𝑇
𝑃
𝑖
𝑦
𝑖
(𝑡) =

𝑁

∑

𝑖=1

(𝑦
1

𝑖
(𝑡))
𝑇

𝑃
1

𝑖
𝑦
1

𝑖
(𝑡) , (22)

− 2𝑘𝑦
𝑇

𝑖
(𝑡) 𝑃
𝑇

𝑖
𝑀
−1

𝑖
sign (𝑀

𝑖
𝐸𝑒 (𝑡)𝑊

𝑖
)
󵄨󵄨󵄨󵄨𝑀𝑖𝐸𝑒 (𝑡)𝑊

𝑖

󵄨󵄨󵄨󵄨

𝛽

= −2𝑘𝑦
𝑇

𝑖
(𝑡) 𝑃
𝑇

𝑖
𝑀
−1

𝑖
(sign (𝑦

1

𝑖1
(𝑡))

󵄨󵄨󵄨󵄨󵄨
𝑦
1

𝑖1
(𝑡)

󵄨󵄨󵄨󵄨󵄨

𝛽

, . . . ,

sign (𝑦
1

𝑖𝑟
(𝑡))

󵄨󵄨󵄨󵄨󵄨
𝑦
1

𝑖𝑟
(𝑡)

󵄨󵄨󵄨󵄨󵄨

𝛽

, 0, . . . , 0)

= −2𝑘𝑦
𝑇

𝑖
(𝑡) 𝑄
−𝑇

𝑖
(

𝑃
1

𝑖
0

𝑃
3

𝑖
𝑃
4

𝑖

)

𝑇

𝑀
𝑖
𝑀
−1

𝑖

× diag (sign (𝑦
1

𝑖
(𝑡)) , 0) (

󵄨󵄨󵄨󵄨󵄨
𝑦
1

𝑖
(𝑡)

󵄨󵄨󵄨󵄨󵄨

𝛽

0
)

= −2𝑘𝑦
1𝑇

𝑖
(𝑡) 𝑃
1𝑇

𝑖
sign (𝑦

1

𝑖
(𝑡))

󵄨󵄨󵄨󵄨󵄨
𝑦
1

𝑖
(𝑡)

󵄨󵄨󵄨󵄨󵄨

𝛽

≤ −2𝑘𝜆min (𝑃
1𝑇

𝑖
)
󵄨󵄨󵄨󵄨󵄨
𝑦
1

𝑖
(𝑡)

󵄨󵄨󵄨󵄨󵄨

1+𝛽

.

(23)

Substituting (8), (21), and (23) into (20) and letting 𝜂
1
= 0,

while 𝜂
𝑖
≥ 2𝐿(𝑁 − 1) ‖ 𝑃

𝑖
‖, 𝑖 = 2, . . . , 𝑁, one has

𝑉̇ (𝑡) ≤

𝑁

∑

𝑖=1

[

[

−𝜂
𝑖

󵄩󵄩󵄩󵄩𝑦𝑖 (𝑡)
󵄩󵄩󵄩󵄩

2

+ 2𝐿
󵄩󵄩󵄩󵄩𝑃𝑖

󵄩󵄩󵄩󵄩

𝑁

∑

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑗
(𝑡)

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑦𝑖 (𝑡)
󵄩󵄩󵄩󵄩

−2𝑘𝜆min (𝑃
1𝑇

𝑖
)
󵄨󵄨󵄨󵄨󵄨
𝑦
1

𝑖
(𝑡)

󵄨󵄨󵄨󵄨󵄨

1+𝛽
]

]

≤

𝑁

∑

𝑖=1

− 2𝑘𝜆min (𝑃
1𝑇

𝑖
)
󵄨󵄨󵄨󵄨󵄨
𝑦
1

𝑖
(𝑡)

󵄨󵄨󵄨󵄨󵄨

1+𝛽

.

(24)

Let

𝑎 ≜ min
𝑖

{𝜆min (𝑃
1𝑇

𝑖
)} , 𝑏 ≜ max

𝑖

{𝜆max (𝑃
1𝑇

𝑖
)} . (25)

From (22), we get

𝑎

𝑁

∑

𝑖=1

󵄩󵄩󵄩󵄩󵄩
𝑦
1

𝑖
(𝑡)

󵄩󵄩󵄩󵄩󵄩

2

≤ 𝑉 (𝑡) ≤ 𝑏

𝑁

∑

𝑖=1

󵄩󵄩󵄩󵄩󵄩
𝑦
1

𝑖
(𝑡)

󵄩󵄩󵄩󵄩󵄩

2

. (26)

By the use of (24)–(26) and Lemma 7, we can obtain that

𝑉̇ (𝑡) ≤ − 2𝑎𝑘

𝑁

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨
𝑦
1

𝑖
(𝑡)

󵄨󵄨󵄨󵄨󵄨

1+𝛽

≤ −2𝑎𝑘(

𝑁

∑

𝑖=1

󵄩󵄩󵄩󵄩𝑦𝑖 (𝑡)
󵄩󵄩󵄩󵄩

2

)

(1+𝛽)/2

≤ − 2𝑎𝑘(
1

𝑏
𝑉 (𝑡))

(1+𝛽)/2

= −2𝑎𝑘𝑏
−(1+𝛽)/2

(𝑉 (𝑡))
(1+𝛽)/2

.

(27)

FromLemma 6, we have that the solutions𝑦1
𝑖
(𝑡) of system

(15) are globally asymptotically stable with respect to 𝑦
1

𝑖
(𝑡) =

0 in the finite time 𝑡
∗; that is,

lim
𝑡→ 𝑡
∗

󵄩󵄩󵄩󵄩󵄩
𝑦
1

𝑖
(𝑡)

󵄩󵄩󵄩󵄩󵄩
= 0,

󵄩󵄩󵄩󵄩󵄩
𝑦
1

𝑖
(𝑡)

󵄩󵄩󵄩󵄩󵄩
= 0 for 𝑡 ≥ 𝑡

∗
, (28)

where 𝑡
∗

= 𝑡
0
+ (𝑉
(1−𝛽)/2

(𝑡
0
)/𝑎𝑘𝑏
−(1+𝛽)/2

(1 − 𝛽)).
In the following, we show that 𝑦2

𝑖
(𝑡) are globally asymp-

totically stable with respect to 𝑦
2

𝑖
(𝑡) = 0 in the finite time 𝑡

∗.
From (16), one has

󵄩󵄩󵄩󵄩󵄩
𝑦
2

𝑖
(𝑡)

󵄩󵄩󵄩󵄩󵄩
≤

󵄩󵄩󵄩󵄩󵄩
𝑀
2

𝑖

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝐹 (𝑒 (𝑡) , 𝑡)𝑊
𝑖

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩󵄩
𝑀
2

𝑖

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩V𝑖
󵄩󵄩󵄩󵄩 . (29)

Similar to the proof of Lemma 2.2 in [3] and the proof of
Theorem 1 in [17], let 𝑀

2

𝑖
(𝑀
2

𝑖
)
𝑇

= 𝐼
𝑛−𝑟

, which implies that
‖ 𝑀
2

𝑖
‖= 1. One has

󵄩󵄩󵄩󵄩󵄩
𝑦
2

𝑖
(𝑡)

󵄩󵄩󵄩󵄩󵄩
≤

󵄩󵄩󵄩󵄩𝐹 (𝑒 (𝑡) , 𝑡)𝑊
𝑖

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑢𝑖𝑊𝑖

󵄩󵄩󵄩󵄩

≤ 𝐿

𝑁

∑

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑗
(𝑡)

󵄩󵄩󵄩󵄩󵄩
+

󵄩󵄩󵄩󵄩󵄩󵄩
− 𝑘𝑀

−1

𝑖
sign (𝑀

𝑖
𝐸𝑦
𝑖
(𝑡))

×
󵄨󵄨󵄨󵄨𝑀𝑖𝐸𝑦𝑖 (𝑡)

󵄨󵄨󵄨󵄨

𝛽
󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝐿

𝑁

∑

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑄
𝑗

󵄩󵄩󵄩󵄩󵄩
(
󵄩󵄩󵄩󵄩󵄩
𝑦
1

𝑗
(𝑡)

󵄩󵄩󵄩󵄩󵄩
+

󵄩󵄩󵄩󵄩󵄩
𝑦
2

𝑗
(𝑡)

󵄩󵄩󵄩󵄩󵄩
) + 𝑘

󵄩󵄩󵄩󵄩󵄩
𝑀
−1

𝑖

󵄩󵄩󵄩󵄩󵄩

×
󵄨󵄨󵄨󵄨󵄨
𝑦
1

𝑖
(𝑡)

󵄨󵄨󵄨󵄨󵄨

𝛽

.

(30)

Then,

𝑁

∑

𝑖=1

󵄩󵄩󵄩󵄩󵄩
𝑦
2

𝑖
(𝑡)

󵄩󵄩󵄩󵄩󵄩
≤

𝑁

∑

𝑖=1

[

[

𝐿

𝑁

∑

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑄
𝑗

󵄩󵄩󵄩󵄩󵄩
(
󵄩󵄩󵄩󵄩󵄩
𝑦
1

𝑗
(𝑡)

󵄩󵄩󵄩󵄩󵄩
+

󵄩󵄩󵄩󵄩󵄩
𝑦
2

𝑗
(𝑡)

󵄩󵄩󵄩󵄩󵄩
)

+𝑘
󵄩󵄩󵄩󵄩󵄩
𝑀
−1

𝑖

󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨󵄨
𝑦
1

𝑖
(𝑡)

󵄨󵄨󵄨󵄨󵄨

𝛽
]

]

;

(31)
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that is,

𝑁

∑

𝑖=1

(1 − 𝑁𝐿
󵄩󵄩󵄩󵄩𝑄𝑖

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩󵄩
𝑦
2

𝑖
(𝑡)

󵄩󵄩󵄩󵄩󵄩
≤

𝑁

∑

𝑖=1

(𝑁𝐿
󵄩󵄩󵄩󵄩𝑄𝑖

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝑦
1

𝑗
(𝑡)

󵄩󵄩󵄩󵄩󵄩

+𝑘
󵄩󵄩󵄩󵄩󵄩
𝑀
−1

𝑖

󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨󵄨
𝑦
1

𝑖
(𝑡)

󵄨󵄨󵄨󵄨󵄨

𝛽

) .

(32)

With Assumption 4, there must exist nonsingular matri-
ces 𝑀

𝑖
, 𝑄
𝑖

∈ R𝑛×𝑛 satisfying the equalities 𝑀
𝑖
𝐸𝑄
𝑖

=

diag{𝐼
𝑟
, 0},𝑀

𝑖
(𝐴+𝑐𝜆

𝑖
Γ)𝑄
𝑖
= diag{𝐴

𝑖
, 𝐼
𝑛−𝑟

}, where𝐴
𝑖
∈ R𝑟×𝑟,

𝑖 = 1, 2, . . . , 𝑁. Moreover, nonsingular matrices 𝑄
𝑖
can be

suitably chosen to satisfy 1 − 𝑁𝐿 ‖ 𝑄
𝑖

‖> 0, for ∀𝑖 ∈

{1, 2, . . . , 𝑁}. Therefore, one can obtain lim
𝑡→ 𝑡
∗ ‖ 𝑦
2

𝑖
(𝑡) ‖= 0,

and ‖ 𝑦
2

𝑖
(𝑡) ‖= 0 for 𝑡 ≥ 𝑡

∗ from (28) and (32), 𝑖 = 1, 2, . . . , 𝑁.
Consequently, lim

𝑡→ 𝑡
∗ ‖ 𝑒

𝑖
(𝑡) ‖= 0, and ‖ 𝑒

𝑖
(𝑡) ‖= 0 for

𝑡 ≥ 𝑡
∗, 𝑖 = 1, 2, . . . , 𝑁. The proof is completed.

If rank(𝐸) = 𝑛, system (1) is a general nonsingular
coupled network. By using the controllers 𝑢

𝑖
similar to V

𝑖
in

(17), we can derive the finite-time synchronization of system
(1). For simplicity, let 𝐸 = 𝐼

𝑛
. Then, we have the following.

Corollary 10. When 𝐸 = 𝐼
𝑛
, under Assumptions 3 and 4, let

the controllers 𝑢
𝑖
(𝑡) be as follows:

𝑢
𝑖
(𝑡) = −𝑘 sign (𝑒

𝑖
(𝑡))

󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡)
󵄨󵄨󵄨󵄨

𝛽

, 𝑖 = 1, 2, . . . , 𝑁; (33)

system (1) is synchronized in a finite time.

Remark 11. Since the conditions in Assumption 5 are not
strict LMIs problems, they cannot be solved directly by
the LMI Matlab Toolbox. According to Lemma 1 in [17],
Lemma 1 in [9], and Remark 3 in [18], if matrix 𝐸 has the
decomposition as

𝐸 = 𝑈(
𝐼
𝑟

0

0 0
)(

Ξ
𝑟

0

0 𝐼
𝑛−𝑟

)𝑉
𝑇
, (34)

where 𝑈 = (𝑈
1
, 𝑈
2
), 𝑉 = (𝑉

1
, 𝑉
2
), and Ξ

𝑟
= diag{󰜚

1
, . . . , 󰜚

𝑟
}

with 󰜚
𝑖

> 0 for 𝑖 = 1, 2, . . . , 𝑟, then Assumption 5 can be
transformed into a strict LMIs problem.

Corollary 12. Suppose that Assumptions 3 and 4 hold, and
matrix 𝐸 has the decomposition as (34) in Remark 11. By the
controllers (17), the singular hybrid coupled network (1) can be
synchronized in the finite time in the sense of Definition 2, if
there exist matrices 𝑇

𝑖
∈ R𝑟×𝑟, 𝑇

𝑖
≥ 0, and 𝑆

𝑖
∈ R(𝑛−𝑟)×𝑟,

𝑖 = 1, 2, . . . , 𝑁, such that

𝐴
𝑇
(𝑈
1
𝑇
1
𝑈
𝑇

1
𝐸 + 𝑈

2
𝑆
1
) + (𝑈

1
𝑇
1
𝑈
𝑇

1
𝐸 + 𝑈

2
𝑆
1
)
𝑇

𝐴 < 0,

(𝐴 + 𝑐𝜆
𝑖
Γ)
𝑇

(𝑈
1
𝑇
𝑖
𝑈
𝑇

1
𝐸 + 𝑈

2
𝑆
𝑖
)

+ (𝑈
1
𝑇
𝑖
𝑈
𝑇

1
𝐸 + 𝑈

2
𝑆
𝑖
)
𝑇

(𝐴 + 𝑐𝜆
𝑖
Γ) ≤ −𝜂

𝑖
𝐼,

(35)

where 𝜂
𝑖
> 2𝐿(𝑁 − 1) ‖ 𝑃

𝑖
‖, 𝑃
𝑖
= (𝑈
1
𝑇
𝑖
𝑈
𝑇

1
𝐸 + 𝑈

2
𝑆
𝑖
), 𝑖 =

2, . . . , 𝑁, and 𝐿 = ∑
𝑁

𝑖=1
𝐿
𝑖
.

Suppose that we choose the average state of all node states
as synchronized state; that is, 𝑠(𝑡) = (1/𝑁)∑

𝑁

𝑘=1
𝑥
𝑘
(𝑡). We

have similar results. Before giving these results, we need some
assumptions as follows:

Assumption 2󸀠. Assume that there exist nonnegative con-
stants 𝐿

𝑖𝑗
such that

󵄩󵄩󵄩󵄩󵄩
𝑓 (𝑥
𝑖
(𝑡) , 𝑡) − 𝑓 (𝑥

𝑗
(𝑡) , 𝑡)

󵄩󵄩󵄩󵄩󵄩
≤ 𝐿
𝑖𝑗

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖
(𝑡) − 𝑥

𝑗
(𝑡)

󵄩󵄩󵄩󵄩󵄩
,

𝑖, 𝑗 = 1, 2, . . . , 𝑁.

(36)

Assumption 3󸀠.There exist matrices 𝑃
𝑖
such that

𝐸
𝑇
𝑃
𝑖
= 𝑃
𝑇

𝑖
𝐸 ≥ 0, 𝑖 = 1, 2, . . . , 𝑁,

𝐴
𝑇
𝑃
1
+ 𝑃
𝑇

1
𝐴 < 0,

(𝐴 + 𝑐𝜆
𝑖
Γ)
𝑇

𝑃
𝑖
+ 𝑃
𝑇

𝑖
(𝐴 + 𝑐𝜆

𝑖
Γ) ≤ −𝜍

𝑖
𝐼,

𝑖 = 2, . . . , 𝑁,

(37)

where 𝜍
𝑖
> (4𝐿/𝑁)(𝑁 − 1) ‖ 𝑃

𝑖
‖, 𝐿 = ∑

𝑁

𝑖=1
𝐿
𝑖
, and 𝐿

𝑖
=

∑
𝑁

𝑘=1,𝑘 ̸= 𝑖
𝐿
𝑖𝑘
.

Theorem 13. Suppose that Assumptions 3, 2󸀠, and 3󸀠 hold. By
the controllers (17), the singular hybrid coupled network (1) can
be synchronized to the average state of all node states in the
finite time in the sense of Definition 2.

Corollary 14. Suppose that Assumptions 3 and 2󸀠 hold, and
matrix 𝐸 has the decomposition as (34) in Remark 11. By the
controllers (17), if there exist matrices 𝑇

𝑖
∈ R𝑟×𝑟, 𝑇

𝑖
≥ 0, and

𝑆
𝑖
∈ R(𝑛−𝑟)×𝑟, 𝑖 = 1, 2, . . . , 𝑁, such that

𝐴
𝑇
(𝑈
1
𝑇
1
𝑈
𝑇

1
𝐸 + 𝑈

2
𝑆
1
) + (𝑈

1
𝑇
1
𝑈
𝑇

1
𝐸 + 𝑈

2
𝑆
1
)
𝑇

𝐴 < 0,

(𝐴 + 𝑐𝜆
𝑖
Γ)
𝑇

(𝑈
1
𝑇
𝑖
𝑈
𝑇

1
𝐸 + 𝑈

2
𝑆
𝑖
)

+ (𝑈
1
𝑇
𝑖
𝑈
𝑇

1
𝐸 + 𝑈

2
𝑆
𝑖
)
𝑇

(𝐴 + 𝑐𝜆
𝑖
Γ) ≤ −𝜂

𝑖
𝐼,

(38)

where 𝜂
𝑖
> (4𝐿/𝑁)(𝑁 − 1) ‖ 𝑃

𝑖
‖, 𝑃
𝑖
= (𝑈
1
𝑇
𝑖
𝑈
𝑇

1
𝐸 + 𝑈

2
𝑆
𝑖
),

𝑖 = 2, . . . , 𝑁, 𝐿 = ∑
𝑁

𝑖=1
𝐿
𝑖
, and 𝐿

𝑖
= ∑
𝑁

𝑘=1,𝑘 ̸= 𝑖
𝐿
𝑖𝑘
, the singular

hybrid coupled network (1) can be synchronized to the average
state of all node states in the finite time.

Remark 15. In this paper, we study finite-time synchroniza-
tion of the singular hybrid coupled networks when the sin-
gular systems studied in this paper are assumed to be regular
and impulse-free.However, itmay bemore complicatedwhen
we do not assume in advance that the systems are regular and
impulse free. Synchronization or finite-time synchronization
of singular coupled systems is worth discussing without
the assumption that the considered systems are regular and
impulsive free.

4. An Illustrative Example

In this section, a numerical example will be given to verify the
theoretical results obtained earlier.
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Example 16. Consider the following singular hybrid coupled
network which is similar to one given in [18]:

𝐸𝑥̇
𝑖
(𝑡) = 𝐴𝑥

𝑖
(𝑡) + 𝑓 (𝑥

𝑖
(𝑡) , 𝑡) + 𝑐

6

∑

𝑗=1

𝑏
𝑖𝑗
Γ𝑥
𝑗
(𝑡) + 𝑢

𝑖
,

𝑖 = 1, 2, . . . , 6,

(39)

where 𝑥
𝑖
(𝑡) = (𝑥

1

𝑖
(𝑡), 𝑥
2

𝑖
(𝑡))
𝑇, 𝑓(𝑥

𝑖
(𝑡), 𝑡) = ((1/

15) tanh(𝑥1
𝑖
(𝑡)), tanh(𝑥2

𝑖
(𝑡)))
𝑇, 𝑠(𝑡) = (0, 0)

𝑇, 𝐿
𝑖

= 1/15,
𝐿 = 2/5, 𝑐 = 1, and

𝐸 = (
8 0

0 0
) , 𝐴 = (

−10 1

1 −10
) , Γ = (

1 0

0 1
) ,

𝐵 = (

(

−5 1 1 1 1 1

1 −4 1 1 1 0

1 1 −4 1 0 1

1 1 1 −4 1 0

1 1 0 1 −4 1

1 0 1 0 1 −3

)

)

.

(40)
Since 𝐵 is symmetric matrix and its six eigenvalues are 𝜆

1
=

0, 𝜆
2

= −3, 𝜆
3

= −4, 𝜆
4

= −5, 𝜆
5

= −6,and 𝜆
6

= −6,
there exists a unitary matrix

𝑊 = (𝑊
1
, . . . ,𝑊

6
)

=

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

−
1

√6

0 0 0 −
1

√6

−
2

√6

−
1

√6

1

√6

0 −
1

√2

1

√6

0

−
1

√6

0 −
1

√2

0 −
1

√6

1

√6

−
1

√6

1

√6

0
1

√2

1

√6

0

−
1

√6

0
1

√2

0 −
1

√6

1

√6

−
1

√6

−
2

√6

0 0
1

√6

0

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

(41)

such that 𝐵 = 𝑊Λ𝑊
𝑇 and Λ = diag(0, −3, −4, −5, −6, −6).

Choose

𝑀
𝑖
= (

1
1

10 − 𝜆
𝑖

0 1

) , 𝑄
𝑖
= (

1

8
0

1

8 (10 − 𝜆
𝑖
)

1

𝜆
𝑖
− 10

) ,

𝑃
𝑖
= (

1 0

0 1
) ,

(42)
𝜂
𝑖
> 4, 𝑖 = 1, 2, . . . , 6, and 𝛽 = 1/2 satisfying Assumptions

3, 4, and 5. Under the controllers 𝑢
𝑖
defined in Theorem 9,

the singular hybrid system (39) can be synchronized in the
finite time 𝑡

∗
= 7.1858 according toTheorem 9 if 𝑘 = 1. If the

controller gain 𝑘 = 5, 𝑡∗ = 1.4372. Corresponding simulation
results are shown in Figures 1 and 2 with initial conditions
𝑒(0) = (

1 3 2 0.7 2.5 0.3

0.5 −1 0.8 −2 1.5 −0.5
).

0 2 4 6 8 10

0

0.5

1

1.5

2

2.5

−0.5

−1

−1.5

𝑡

𝑒
1 𝑖
(
𝑡
)

Figure 1: Error variable 𝑒
1

𝑖
(𝑡) (𝑖 = 1, 2, . . . , 6) of system (39) with

𝑘 = 1.

0 2 4 6 8 10

0

0.05

0.1

0.15

0.2

0.25

𝑡

𝑒
2 𝑖
(
𝑡
)

−0.05

−1

Figure 2: Error variable 𝑒
2

𝑖
(𝑡) (𝑖 = 1, 2, . . . , 6) of system (39) with

𝑘 = 1.

5. Conclusions

In this paper, we discuss finite-time synchronization of the
singular hybrid coupled networks with the assumption that
the considered singular systems are regular and impulsive-
free. Some sufficient conditions are derived to ensure finite-
time synchronization of the singular hybrid coupled net-
works under a state feedback controller by finite-time stability
theory. A numerical example is finally exploited to show the
effectiveness of the obtained results. It will be an interesting
topic for the future researches to extend new methods to
study synchronization, robust control, pinning control, and
finite-time synchronization of singular hybrid coupled net-
works without the assumption that the considered singular
systems are regular and impulsive-free.



Journal of Applied Mathematics 7

Acknowledgments

This work was jointly supported by the National Natural
Science Foundation of China under Grant nos. 61272530
and 11072059 and the Jiangsu Provincial Natural Science
Foundation of China under Grant no. BK2012741.

References

[1] F. L. Lewis, “A survey of linear singular systems,” Circuits,
Systems, and Signal Processing, vol. 5, no. 1, pp. 3–36, 1986.
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