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Taking intuitionistic fuzzy sets as the structures of truth values, we propose the notions of intuitionistic fuzzy context-free
grammars (IFCFGs, for short) and pushdown automata with final states (IFPDAs). Then we investigate algebraic characterization
of intuitionistic fuzzy recognizable languages including decomposition form and representation theorem. By introducing the
generalized subset constructionmethod, we show that IFPDAs are equivalent to their simple form, called intuitionistic fuzzy simple
pushdown automata (IF-SPDAs), and then prove that intuitionistic fuzzy recognizable step functions are the same as those accepted
by IFPDAs. It follows that intuitionistic fuzzy pushdown automatawith empty stack and IFPDAs are equivalent by classical automata
theory. Additionally, we introduce the concepts of Chomsky normal form grammar (IFCNF) and Greibach normal form grammar
(IFGNF) based on intuitionistic fuzzy sets.The results of our study indicate that intuitionistic fuzzy context-free languages generated
by IFCFGs are equivalent to those generated by IFGNFs and IFCNFs, respectively, and they are also equivalent to intuitionistic fuzzy
recognizable step functions.Then some operations on the family of intuitionistic fuzzy context-free languages are discussed. Finally,
pumping lemma for intuitionistic fuzzy context-free languages is investigated.

1. Introduction

Intuitionistic fuzzy set (IFS) introduced by Atanassov [1–
3], which emerges from the simultaneous consideration of
the degrees of membership and nonmembership with a
degree of hesitancy, has been found to be highly useful in
dealing with problems with vagueness and uncertainty. The
notion of vague set, proposed by Gau and Buehrer [4], is
another generalization of fuzzy sets. However, Burillo and
Bustince [5] showed that it is an equivalence of the IFS and
studied intuitionistic fuzzy relations. Recently, IFS theory
has supported a wealth of important applications in many
fields such as fuzzy multiple attribute decision making, fuzzy
pattern recognition, medical diagnosis, fuzzy control, and
fuzzy optimization [6–10].

In classical theoretical computer science, it is well known
that formal languages are very useful in the description of
natural languages and programming languages. But they are

not powerful in the processing of human languages. For this,
Lee and Zadeh [11] introduced the notion of fuzzy languages
and gave some characterizations, where fuzzy languages took
values in the unit interval [0, 1]. Malik and Mordeson [12–
14] studied algebraic properties of fuzzy languages. They
stated that fuzzy regular languages can be characterized by
fuzzy finite automata, fuzzy regular expressions, and fuzzy
regular grammars. Meanwhile, as one of the generators of
fuzzy languages, fuzzy automata have been used to solve
meaningful issues such as the model of computing with
words [15], clinicalmonitoring [16], neural networks [17], and
pattern recognition [18]. Also, fuzzy grammars, automata,
and languages tend to the improvement of lexical analysis and
simulating fuzzy discrete event dynamical systems andhybrid
systems [14, 19].

As is well known, quantum logic was proved by Birkhoff
and Von Neumann as a logic of quantum mechanics and
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is currently understood as a logic with truth values taken
from an orthomodular lattice. To study quantum compu-
tation, Ying [20, 21] first proposed automata theory based
on quantum logic where quantum automata are defined to
be orthomodular lattice-valued generalization of classical
automata.More systematic exposition of this theory appeared
in [22, 23]. Moore and Crutchfield [24] defined quantum
version of pushdown automata and regular and context-
free grammars. He showed that the corresponding languages
generated by quantumgrammars and recognized by quantum
automata have satisfactory properties in analogy to their
classical counterparts. A basic framework of grammar theory
on quantum logic was established by Cheng and Wang [25].
They proved that the set of lattice-valued quantum regular
languages generated by lattice-valued quantum regular gram-
mars coincides with that of lattice-valued quantum languages
recognized by lattice-valued quantum automata. Then some
algebraic properties of automata based on quantum logic
were discussed by Qiu [26, 27]. To enhance the processing
ability of fuzzy automata, the membership grades were
extended to many general algebraic structures. For example,
by combining the ideas in [20–23] and the idea in Ying’s
another work on topology based on residuated lattice-valued
logic [28], Qiu has primarily established automata theory
based on complete residuated lattice-valued logic [29–31].
And Li and Pedrycz [32] studied automata theory with mem-
bership values in lattice-ordered monoids. They showed that
lattice-valued finite automata have more power to recognize
fuzzy languages than that of classical fuzzy finite automata.
Recently, Li [33] studied automata theory with membership
values in lattices, introduced the technique of extended
subset construction to prove the equivalence between lattice-
valued finite automata and lattice-valued deterministic finite
automata, and then presented a minimization algorithm of
lattice-valued deterministic finite automata. On the basis of
breadth-first and depth-first ways, Jin and Li [34] established
a fundamental framework of fuzzy grammars based on
lattices, which provided a necessary tool for the analysis of
fuzzy automata.

Fuzzy context-free languages, more powerful than fuzzy
regular languages, have also been studied and can be char-
acterized by fuzzy pushdown automata with two distinct
ways and fuzzy context-free grammars, respectively [14, 35].
As a continuation of the work in [29–31], a fundamental
framework of fuzzy pushdown automata theory based on
complete residuated lattice-valued logic has been established
in recent years by Xing et al. [36], and the work generalizes
the previous fuzzy automata theory systematically studied by
Mordeson and Malik to some extent. The pumping lemma
for fuzzy context-free grammar theory in this setting was also
investigated by Xing and Qiu [37].

Using the notions of IFSs and fuzzy finite automata,
Jun [38, 39] presented the concept of intuitionistic fuzzy
finite state machines as a generalization of fuzzy finite state
machines, and Zhang and Li [40] discussed intuitionistic
fuzzy recognizers, intuitionistic fuzzy finite automata, and
intuitionistic fuzzy language.They showed that the languages
recognized by intuitionistic fuzzy recognizers are regular, and

the intuitionistic fuzzy languages recognized by the intuition-
istic fuzzy finite automata and the intuitionistic fuzzy lan-
guages recognized by deterministic intuitionistic fuzzy finite
automata are equivalent. Recently Chen et al. [41] utilized the
intuitionistic fuzzy automata to deal with consumers’ adver-
tising involvement when considering the expression of an IFS
characterized by a pair of membership degree and nonmem-
bership degree is similar to human thinking logic with pros
and cons. Due to pushdown automata being another kind of
important computational models [15] and also motivated by
the importance of grammars, languages and models theory
[14], it stands to reason that we ought consider the notions of
intuitionistic fuzzy pushdown automata, intuitionistic fuzzy
context-free grammars, and fuzzy context-free languages
because our discussion in this paper will provide a funda-
mental framework for studying intuitionistic fuzzy set theory
on fuzzy pushdown automata and generators as well. How to
characterize intuitionistic fuzzy context-free languages and
its pumping lemma in this setting becomes open problems;
however, there is no research on the algebraic character-
ization of intuitionistic fuzzy context-free languages. We
will try to solve the problems in this paper. Additionally,
some examples are given to illustrate the significance of the
results. In particular, Example 35 presented in this paper
will show that intuitionistic fuzzy pushdown automata have
more power than fuzzy pushdown automatawhen comparing
two distinct strings although the degrees of membership of
these strings recognized by the underlying fuzzy pushdown
automata are equal. Investigating intuitionistic fuzzy context-
free languages will reduce the gap between the precision of
formal languages and the imprecision of human languages.

The remaining parts of the paper are arranged as fol-
lows. Section 2 describes some basic concepts of IFSs. Sec-
tion 3 gives the definitions of intuitionistic fuzzy pushdown
automata with two distinct ways and their languages. It
is investigated that, for any intuitionistic fuzzy pushdown
automaton with final states (IFPDA, for short), there is
a cover, which consists of a collection of classical push-
down automata, equivalent to the IFPDA. By introducing
intuitionistic fuzzy recognizable step functions, it is shown
that intuitionistic fuzzy pushdown automata with final states
and empty stack are intuitionistic fuzzy recognizable step
functions, respectively, and conversely any intuitionistic
fuzzy recognizable step function can be recognized by an
intuitionistic fuzzy pushdown automaton with final states or
empty stack. It follows that intuitionistic fuzzy pushdown
automata with final states and empty stack are equivalent.
Section 4 studies intuitionistic fuzzy context-free grammars
(IFCFGs) as a type of generator of intuitionistic fuzzy
context-free languages (IFCFLs).The notions of intuitionistic
fuzzy Chomsky normal form (IFCNF) and Greibach nor-
mal form (IFGNF) are proposed. The results of our study
indicate that IFCFLs generated by IFCFGs are equivalent to
those generated by IFGNFs and IFCNFs, respectively, and
they are also equivalent to intuitionistic fuzzy recognizable
step functions. The algebraic properties of IFCFLs are also
discussed. Section 5 establishes pumping lemma for IFCFLs.
Some examples are then given to illustrate the application
of pumping lemma and the significance of IFCFLs. Finally,
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conclusions and directions for future work are presented in
Section 6.

2. Basic Concepts

Definition 1 (see [40]). An intuitionistic fuzzy set𝐴 in a non-
empty set𝑋 is an object having the form:

𝐴 = {(𝑥, 𝜇
𝐴 (𝑥) , 𝜈𝐴 (𝑥)) | 𝑥 ∈ 𝑋} , (1)

where the functions 𝜇
𝐴
: 𝑋 → [0, 1] and 𝜈

𝐴
: 𝑋 → [0, 1]

denote the degree of membership (i.e., 𝜇
𝐴
(𝑥)) and the degree

of nonmembership (𝜈
𝐴
(𝑥)) of each element 𝑥 ∈ 𝑋 to the set

𝐴, respectively, and the two quantities satisfy the following
inequalities:

0 ≤ 𝜇
𝐴 (𝑥) + 𝜈𝐴 (𝑥) ≤ 1, ∀𝑥 ∈ 𝑋. (2)

For the sake of simplicity, we use the notation 𝐴 = (𝜇
𝐴
, 𝜈
𝐴
)

instead of 𝐴 = {(𝑥, 𝜇
𝐴
(𝑥), 𝜈

𝐴
(𝑥)) | 𝑥 ∈ 𝑋}. An intuitionistic

fuzzy set will be abbreviated as an IFS.
Let {𝐴

𝑖
| 𝑖 ∈ 𝐼} be a family of IFSs in𝑋.Then the infimum

and supremum operations of IFSs are defined as follows:

⋂
𝑖∈𝐼

𝐴
𝑖
= {(𝑥,⋀

𝑖∈𝐼

𝜇
𝐴𝑖
(𝑥) ,⋁

𝑖∈𝐼

𝜈
𝐴𝑖
(𝑥)) | 𝑥 ∈ 𝑋} ,

⋃
𝑖∈𝐼

𝐴
𝑖
= {(𝑥,⋁

𝑖∈𝐼

𝜇
𝐴𝑖
(𝑥) ,⋀

𝑖∈𝐼

𝜈
𝐴𝑖
(𝑥)) | 𝑥 ∈ 𝑋} ,

(3)

where⋁ and⋀ denote supremum and infimum of real num-
bers in [0, 1], respectively.

For two IFSs 𝐴 = (𝜇
𝐴
, 𝜈
𝐴
) and 𝐵 = (𝜇

𝐵
, 𝜈
𝐵
), we say 𝐴 = 𝐵

if 𝜇
𝐴
= 𝜇

𝐵
and 𝜈

𝐴
= 𝜈

𝐵
. In addition, if the IFS𝐴 = (𝜇

𝐴
, 𝜈
𝐴
) in

𝑋 satisfies the condition that, for any 𝑥 ∈ 𝑋, 𝜇
𝐴
(𝑥) + 𝜈

𝐴
(𝑥) =

1, then 𝐴 reduces to a fuzzy set in 𝑋. The difference between
intuitionistic fuzzy sets and fuzzy sets is whether the sum
of the degrees of membership and nonmembership of an
element to a set equals one.

An IFR in𝑋×𝑌 is an intuitionistic fuzzy subset of𝑋×𝑌;
that is, it is an expression 𝐸 given by

𝐸 = {((𝑥, 𝑦) , 𝜇
𝐸
(𝑥, 𝑦) , 𝜈

𝐸
(𝑥, 𝑦)) | 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌} , (4)

where the mappings 𝜇
𝐸
: 𝑋 × 𝑌 → [0, 1] and 𝜈

𝐸
: 𝑋 × 𝑌 →

[0, 1] satisfy

0 ≤ 𝜇
𝐸
(𝑥, 𝑦) + 𝜈

𝐸
(𝑥, 𝑦) ≤ 1, ∀ (𝑥, 𝑦) ∈ 𝑋 × 𝑌. (5)

An IFBR over 𝑋 is an IFS of 𝑋 × 𝑋. Let 𝑃 = (𝜇
𝑃
, 𝜈
𝑃
) and

𝐸 = (𝜇
𝐸
, 𝜈
𝐸
) be IFRs in𝑋×𝑌 and 𝑌 ×𝑍, respectively. Define

the composition of IFRs, 𝑃 ∘ 𝐸 = (𝜇
𝑃∘𝐸
, 𝜈
𝑃∘𝐸
) in𝑋 × 𝑍, by

𝜇
𝑃∘𝐸 (𝑥, 𝑧) = ⋁

𝑦∈𝑌

(𝜇
𝑃
(𝑥, 𝑦) ∧ 𝜇

𝐸
(𝑦, 𝑧)) ,

𝜈
𝑃∘𝐸 (𝑥, 𝑧) = ⋀

𝑦∈𝑌

(𝜈
𝑃
(𝑥, 𝑦) ∨ 𝜈

𝐸
(𝑦, 𝑧)) ,

(6)

for all (𝑥, 𝑧) ∈ 𝑋 × 𝑍.

Furthermore, if𝑅 is an IFBR over𝑋, then its reflexive and
transitive closure is 𝑅∗ = ⋃∞

𝑛=0
𝑅
𝑛, where 𝑅𝑛+1 = 𝑅𝑛 ∘ 𝑅, 𝑛 ≥

0, and 𝑅0 = 𝑖𝑑 = (𝜇
𝑖𝑑
, 𝜈
𝑖𝑑
), that is,

𝜇
𝑖𝑑 (𝑢, 𝑣) = {

1, if 𝑢 = 𝑣
0, if 𝑢 ̸= 𝑣,

𝜈
𝑖𝑑 (𝑢, 𝑣) = {

0, if 𝑢 = 𝑣
1, if 𝑢 ̸= 𝑣,

(7)

for all (𝑢, 𝑣) ∈ 𝑋 × 𝑋.

Definition 2. Let𝐴 = (𝜇
𝐴
, 𝜈
𝐴
) be an IFS in𝑋.Then the image

set of 𝐴, denoted as Im(𝐴), is given as

Im (𝐴) = Im (𝜇
𝐴
) ∪ Im (𝜈

𝐴
) , (8)

where Im(𝜇
𝐴
) = {𝜇

𝐴
(𝑥) | 𝑥 ∈ 𝑋} and Im(𝜈

𝐴
) = {𝜈

𝐴
(𝑥) | 𝑥 ∈

𝑋}.
For any 𝜆, 𝜃 ∈ [0, 1], 𝜆 + 𝜃 ≤ 1, the (𝜆, 𝜃)-cut set of 𝐴 is

defined as

𝐴
(𝜆,𝜃)

= {𝑥 ∈ 𝑋 | 𝜇
𝐴 (𝑥) ≥ 𝜆, 𝜈𝐴 (𝑥) ≤ 𝜃} . (9)

And the support set of 𝐴, denoted as supp(𝐴), is defined by

supp (𝐴) = {𝑥 ∈ 𝑋 | 𝜇
𝐴 (𝑥) > 0, 𝜈𝐴 (𝑥) < 1} . (10)

If supp(𝐴) is finite, then 𝐴 is called a finite IFS in𝑋.

3. Intuitionistic Fuzzy Pushdown Automata

It is well known that any language accepted by a pushdown
automaton with final states can be accepted by a certain
pushdown automaton with empty stack, and vice versa. As
a natural generalization of pushdown automata, we give the
notions of intuitionistic fuzzy pushdown automata with final
states and empty stack, respectively, and then do research
in the algebraic characterization of their intuitionistic fuzzy
recognizable languages including decomposition form and
representation theorem. Note that Σ∗ is the free monoid
generated from the set Σ with the operator of concatenation,
where the empty string 𝜀 is identified with the identity of
Σ. And the length of the string 𝜔 ∈ Σ

∗ is denoted by |𝜔|.
𝑁
𝑘
= {1, . . . , 𝑘}.

Definition 3. An intuitionistic fuzzy pushdown automaton
with final states (IFPDA, for short) is a seven tuple M =

(𝑄, Σ, Γ, 𝛿, 𝐼, 𝑍
0
, 𝐹), where

(i) 𝑄 is a finite nonempty set of states;
(ii) Σ is a finite nonempty set of input symbols;
(iii) Γ is a finite nonempty set of stack symbols;
(iv) 𝛿 = (𝜇

𝛿
, 𝜈
𝛿
) is a finite IFS in𝑄× (Σ∪ {𝜀}) × Γ×𝑄×Γ∗;

(v) 𝑍
0
∈ Γ is called the start stack symbol;

(vi) 𝐼 = (𝜇
𝐼
, 𝜈
𝐼
) and 𝐹 = (𝜇

𝐹
, 𝜈
𝐹
) are intuitionistic fuzzy

subsets in 𝑄, which are called the intuitionistic fuzzy
subsets of initial and final states, respectively.
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Definition 4. An intuitionistic fuzzy pushdown automaton
with empty stack (IFPDA0, for short) is a seven tuple N =

(𝑄, Σ, Γ, 𝛿, 𝐼, 𝑍
0
, 0), where 𝑄, Σ, Γ, 𝛿, 𝐼 and 𝑍

0
are the same as

those in IFPDAM, and 0 represents an empty set.

Definition 5. Let M = (𝑄, Σ, Γ, 𝛿, 𝐼, 𝑍
0
, 𝐹) be an IFPDA.

Define an IFBR on𝑄×Σ∗ × Γ∗, ⊢M = (𝜇
⊢M
, 𝜈
⊢M
) in the form

of

𝜇
⊢M
((𝑞, 𝜔, 𝛽) , (𝑝, 𝑢, 𝛼))

=

{{{{{

{{{{{

{

𝜇
𝛿
(𝑞, 𝜀, head (𝛽) , 𝑝, 𝛼 \ tail (𝛽)) ,

if 𝑢 = 𝜔, tail (𝛽) ≤ 𝛼
𝜇
𝛿
(𝑞, head (𝜔) , head (𝛽) , 𝑝, 𝛼 \ tail (𝛽)) ,

if 𝑢 = tail (𝜔) , tail (𝛽) ≤ 𝛼
0, otherwise,

𝜈
⊢M
((𝑞, 𝜔, 𝛽) , (𝑝, 𝑢, 𝛼))

=

{{{{{

{{{{{

{

𝜈
𝛿
(𝑞, 𝜀, head (𝛽) , 𝑝, 𝛼 \ tail (𝛽)) ,

if 𝑢 = 𝜔, tail (𝛽) ≤ 𝛼
𝜈
𝛿
(𝑞, head (𝜔) , head (𝛽) , 𝑝, 𝛼 \ tail (𝛽)) ,

if 𝑢 = tail (𝜔) , tail (𝛽) ≤ 𝛼
0, otherwise

(11)

for any (𝑞, 𝜔, 𝛽), (𝑝, 𝑢, 𝛼) ∈ 𝑄 × Σ∗ × Γ∗. Here, for any non-
empty string 𝑢 = 𝑥

1
⋅ ⋅ ⋅ 𝑥

𝑛
, 𝑛 ≥ 1, head(𝑢) = 𝑥

1
, tail(𝑢) =

𝑥
2
⋅ ⋅ ⋅ 𝑥

𝑛
, and tail(𝑢) ≤ 𝑢. ⊢∗M is the reflexive and transitive

closure of ⊢M.
If no confusion, we denote ⊢ and ⊢∗ instead of ⊢M and

⊢
∗

M, respectively.

Definition 6. LetM = (𝑄, Σ, Γ, 𝛿, 𝐼, 𝑍
0
, 𝐹) be an IFPDA.Then

we callL(M) an intuitionistic fuzzy language accepted byM
with final states, whereL(M) = (𝜇L(M), 𝜈L(M)), 𝜇L(M), and
𝜈L(M) are functions from Σ

∗ to the unit interval [0, 1], and

𝜇L(M)(𝜔)= ⋁{𝜇
𝐼
(𝑞
0
) ∧ 𝜇

⊢
∗

M
((𝑞

0
, 𝜔, 𝑧

0
), (𝑝, 𝜀, 𝑟)) ∧

𝜇
𝐹
(𝑝) | 𝑞

0
, 𝑝 ∈ 𝑄, 𝑟 ∈ Γ

∗
},

𝜈L(M)(𝜔) = ⋀{𝜈
𝐼
(𝑞
0
) ∨ 𝜈

⊢
∗

M
((𝑞

0
, 𝜔, 𝑧

0
), (𝑝, 𝜀, 𝑟)) ∨

𝜈
𝐹
(𝑝) | 𝑞

0
, 𝑝 ∈ 𝑄, 𝑟 ∈ Γ

∗
}

for any 𝜔 ∈ Σ∗.

Definition 7. Let N = (𝑄, Σ, Γ, 𝛿, 𝐼, 𝑍
0
, 0) be an IFPDA0.

Then we callL(N) an intuitionistic fuzzy language accepted
by N with empty stack, where L(N) = (𝜇L(N), 𝜈L(N)),
𝜇L(N) and 𝜈L(N) are functions from Σ

∗ to the unit interval
[0, 1], and

𝜇L(N)(𝜔) = ⋁{𝜇
𝐼
(𝑞
0
) ∧ 𝜇

⊢
∗

N
((𝑞

0
, 𝜔, 𝑧

0
), (𝑝, 𝜀, 𝜀)) |

𝑞
0
,𝑝 ∈ 𝑄},

𝜈L(N)(𝜔) = ⋀{𝜈
𝐼
(𝑞
0
) ∨ 𝑣

⊢
∗

N
((𝑞

0
, 𝜔, 𝑧

0
), (𝑝, 𝜀, 𝜀)) |

𝑞
0
, 𝑝 ∈ 𝑄}

for any 𝜔 ∈ Σ∗.

Lemma 8 (see [33]). Let 𝑙 be a lattice and 𝑋 a finite subset of
𝑙. Then the ∧-semilattice of 𝑙 generated by 𝑋, written as 𝑋

∧
, is

finite, and the ∨-semilattice of 𝑙 generated by𝑋, denoted as𝑋
∨
,

is also finite, where 𝑋
∧
= {𝑥

1
∧ ⋅ ⋅ ⋅ ∧ 𝑥

𝑘
: 𝑘 ≥ 1, 𝑥

1
, . . . , 𝑥

𝑘
∈

𝑋}∪{1}, and𝑋
∨
= {𝑥

1
∨⋅ ⋅ ⋅∨𝑥

𝑘
: 𝑘 ≥ 1, 𝑥

1
, . . . , 𝑥

𝑘
∈ 𝑋}∪{0}.

Proposition 9. If 𝑓 can be accepted by some IFPDA M =

(𝑄, Σ, Γ, 𝛿, 𝐼, 𝑍
0
, 𝐹), then 𝑓 is an IFS in Σ∗, and the image set

of 𝑓 is finite.

Proof. We have the following.

Claim 1 (𝑓 = (𝜇
𝑓
, 𝜈
𝑓
) is an IFS in Σ∗).

It suffices to show that 0 ≤ 𝜇
𝑓
(𝜔) + 𝜈

𝑓
(𝜔) ≤ 1, for any

𝜔 = 𝑢
1
⋅ ⋅ ⋅ 𝑢

𝑛
, 𝑢
𝑖
∈ Σ ∪ {𝜀}, 𝑖 = 1, . . . , 𝑛.

Clearly, 𝜇
𝑓
(𝜔) = ⋁{𝜇

𝐼
(𝑞
0
) ∧ 𝜇

⊢
∗

M
((𝑞

0
, 𝜔, 𝑧

0
), (𝑝, 𝜀, 𝑟)) ∧

𝜇
𝐹
(𝑝) | 𝑞

0
, 𝑝 ∈ 𝑄, 𝑟 ∈ Γ

∗
} = ⋁{𝜇

𝐼
(𝑞
0
) ∧ 𝜇

⊢
((𝑞

0
, 𝜔, 𝑧

0
),

(𝑞
1
, 𝑢
2
⋅ ⋅ ⋅ 𝑢

𝑛
,𝑧
1
𝑟
1
)) ∧ 𝜇

⊢
((𝑞

1
,𝑢
2
⋅ ⋅ ⋅ 𝑢

𝑛
, 𝑧
1
𝑟
1
), (𝑞

2
, 𝑢
3
⋅ ⋅ ⋅ 𝑢

𝑛
,

𝑧
2
𝑟
2
)) ∧ ⋅ ⋅ ⋅ ∧ 𝜇

⊢
((𝑞

𝑛−1
, 𝑢

𝑛
, 𝑧
𝑛−1
𝑟
𝑛−1
), (𝑞

𝑛
, 𝜀, 𝑟

𝑛
)) ∧ 𝜇

𝐹
(𝑞
𝑛
) |

(𝑞
0
, 𝑞
1
, . . . , 𝑞

𝑛
) ∈ 𝑄

𝑛+1
, 𝑧

1
, . . . , 𝑧

𝑛−1
∈ Γ, 𝑟

1
, . . ., 𝑟

𝑛
∈ Γ

∗
},

and 𝜈
𝑓
(𝜔) = ⋀{𝜈

𝐼
(𝑞
0
) ∨ 𝜈

⊢
∗

M
((𝑞

0
, 𝜔, 𝑧

0
), (𝑝, 𝜀, 𝑟)) ∨ 𝜈

𝐹
(𝑝) |

𝑞
0
, 𝑝 ∈ 𝑄, 𝑟 ∈ Γ

∗
} = ⋀{𝜈

𝐼
(𝑞
0
) ∨ 𝜈

⊢
((𝑞

0
, 𝜔, 𝑧

0
), (𝑞

1
, 𝑢
2
⋅ ⋅ ⋅

𝑢
𝑛
, 𝑧
1
𝑟
1
)) ∨ 𝜈

⊢
((𝑞

1
, 𝑢
2
⋅ ⋅ ⋅ 𝑢

𝑛
, 𝑧
1
𝑟
1
), (𝑞

2
, 𝑢
3
⋅ ⋅ ⋅ 𝑢

𝑛
, 𝑧
2
𝑟
2
)) ∨ ⋅ ⋅ ⋅ ∨

𝜈
⊢
((𝑞

𝑛−1
, 𝑢
𝑛
, 𝑧
𝑛−1
𝑟
𝑛−1
), (𝑞

𝑛
, 𝜀, 𝑟

𝑛
)) ∨ 𝜈

𝐹
(𝑞
𝑛
) | (𝑞

0
, 𝑞
1
, . . . , 𝑞

𝑛
) ∈

𝑄
𝑛+1
, 𝑧

1
, . . . , 𝑧

𝑛−1
∈ Γ, 𝑟

1
, . . . , 𝑟

𝑛
∈ Γ

∗
}.

On the one hand, 0 ≤ 𝜇
𝑓
(𝜔) + 𝜈

𝑓
(𝜔); on the other

hand, there exists a sequence (𝑞
0
, 𝑞
1
, . . . , 𝑞

𝑛
) ∈ 𝑄

𝑛+1
, 𝑧

1
,

. . . , 𝑧
𝑛−1

∈ Γ, 𝑟
1
, . . . , 𝑟

𝑛
∈ Γ

∗ such that 𝜇
𝑓
(𝜔) = 𝜇

𝐼
(𝑞
0
) ∧

𝜇
⊢
((𝑞

0
, 𝜔, 𝑧

0
), (𝑞

1
, 𝑢
2
⋅ ⋅ ⋅ 𝑢

𝑛
, 𝑧

1
𝑟
1
)) ∧ 𝜇

⊢
((𝑞

1
, 𝑢
2
⋅ ⋅ ⋅ 𝑢

𝑛
, 𝑧

1
𝑟
1
),

(𝑞
2
, 𝑢
3
⋅ ⋅ ⋅ 𝑢

𝑛
, 𝑧
2
𝑟
2
)) ∧ ⋅ ⋅ ⋅ ∧𝜇

⊢
((𝑞

𝑛−1
, 𝑢
𝑛
, 𝑧
𝑛−1
𝑟
𝑛−1
), (𝑞

𝑛
, 𝜀, 𝑟

𝑛
))∧

𝜇
𝐹
(𝑞
𝑛
). Hence 𝜈

𝑓
(𝜔) ≤ 𝜈

𝐼
(𝑞
0
) ∨ 𝜈

⊢
((𝑞

0
, 𝜔, 𝑧

0
), (𝑞

1
, 𝑢
2
⋅ ⋅ ⋅ 𝑢

𝑛
,

𝑧
1
𝑟
1
)) ∨ 𝜈

⊢
((𝑞

1
, 𝑢
2
⋅ ⋅ ⋅ 𝑢

𝑛
, 𝑧
1
𝑟
1
), (𝑞

2
, 𝑢
3
⋅ ⋅ ⋅ 𝑢

𝑛
, 𝑧

2
𝑟
2
)) ∨ ⋅ ⋅ ⋅ ∨

𝜈
⊢
((𝑞

𝑛−1
, 𝑢
𝑛
, 𝑧
𝑛−1
𝑟
𝑛−1
), (𝑞

𝑛
, 𝜀, 𝑟

𝑛
)) ∨ 𝜈

𝐹
(𝑞
𝑛
).

Therefore, 𝜇
𝑓
(𝜔) + 𝜈

𝑓
(𝜔) ≤ (𝜇

𝐼
(𝑞
0
) + 𝜈

𝐼
(𝑞
0
)) ∨ (𝜇

⊢
((𝑞

0
,

𝜔, 𝑧
0
), (𝑞

1
, 𝑢
2
⋅ ⋅ ⋅ 𝑢

𝑛
, 𝑧
1
𝑟
1
)) + 𝜈

⊢
((𝑞

0
, 𝜔, 𝑧

0
), (𝑞

1
, 𝑢
2
⋅ ⋅ ⋅ 𝑢

𝑛
,

𝑧
1
𝑟
1
))) ∨ (𝜇

⊢
((𝑞

1
, 𝑢
2
⋅ ⋅ ⋅ 𝑢

𝑛
, 𝑧
1
𝑟
1
), (𝑞

2
, 𝑢
3
⋅ ⋅ ⋅ 𝑢

𝑛
, 𝑧
2
𝑟
2
)) + 𝜈

⊢
((𝑞

1
,

𝑢
2
⋅ ⋅ ⋅ 𝑢

𝑛
, 𝑧
1
𝑟
1
), (𝑞

2
, 𝑢
3
⋅ ⋅ ⋅ 𝑢

𝑛
, 𝑧
2
𝑟
2
))) ∨ ⋅ ⋅ ⋅ ∨ (𝜇

⊢
((𝑞

𝑛−1
, 𝑢
𝑛
,

𝑧
𝑛−1
𝑟
𝑛−1
), (𝑞

𝑛
, 𝜀, 𝑟

𝑛
)) + 𝜈

⊢
((𝑞

𝑛−1
, 𝑢
𝑛
, 𝑧
𝑛−1
𝑟
𝑛−1
), (𝑞

𝑛
, 𝜀, 𝑟

𝑛
))) ∨

(𝜇
𝐹
(𝑞
𝑛
) + 𝜈

𝐹
(𝑞
𝑛
)) ≤ 1 ∨ 1 ∨ ⋅ ⋅ ⋅ ∨ 1 = 1.

Claim 2 (Im(𝑓) is finite).

In fact, let 𝑋 = Im(𝜇
𝐼
) ∪ Im(𝜇

𝛿
) ∪ Im(𝜇

𝐹
) and 𝑌 =

Im(𝜈
𝐼
) ∪ Im(𝜈

𝛿
)∪Im(𝜈

𝐹
).Then𝑋

∧
= {𝑥

1
∧⋅ ⋅ ⋅∧𝑥

𝑘
| 𝑘 ≥ 1, 𝑥

1
,

. . . , 𝑥
𝑘
∈ 𝑋}∪ {1} and𝑋

∨
= {𝑥

1
∨ ⋅ ⋅ ⋅ ∨𝑥

𝑘
| 𝑘 ≥ 1, 𝑥

1
, . . . , 𝑥

𝑘
∈

𝑋} ∪ {0} are finite sets by Lemma 8. Since 𝛿 = (𝜇
𝛿
, 𝜈
𝛿
) is a

finite IFS, for any 𝜔 = 𝑢
1
⋅ ⋅ ⋅ 𝑢

𝑛
, 𝑢
𝑖
∈ Σ∪{𝜀}, 𝑖 = 1, . . . , 𝑛, there

exists a natural number 𝑑 ∈ 𝑁 such that 𝜇
𝑓
(𝜔) = ⋁{𝜇

𝐼
(𝑞
0
) ∧

𝜇
⊢
((𝑞

0
, 𝜔, 𝑧

0
), (𝑞

1
, 𝑢
2
⋅ ⋅ ⋅ 𝑢

𝑛
, 𝑧
1
𝑟
1
)) ∧ 𝜇

⊢
((𝑞

1
, 𝑢
2
⋅ ⋅ ⋅ 𝑢

𝑛
, 𝑧
1
𝑟
1
),

(𝑞
2
, 𝑢
3
⋅ ⋅ ⋅ 𝑢

𝑛
, 𝑧
2
𝑟
2
))∧⋅ ⋅ ⋅∧ 𝜇

⊢
((𝑞

𝑛−1
, 𝑢
𝑛
, 𝑧
𝑛−1
𝑟
𝑛−1
), (𝑞

𝑛
, 𝜀, 𝑟

𝑛
))∧

𝜇
𝐹
(𝑞
𝑛
) | (𝑞

0
, 𝑞
1
, . . . , 𝑞

𝑛
) ∈ 𝑄

𝑛+1, 𝑧
1
, . . . , 𝑧

𝑛−1
∈ Γ, 𝑟

1
, . . . , 𝑟

𝑛
∈

Γ
∗
}= (𝑎

10
∧⋅ ⋅ ⋅∧𝑎

1,𝑛−1
∧𝑎
1𝑛
)∨⋅ ⋅ ⋅∨(𝑎

𝑑0
∧⋅ ⋅ ⋅∧𝑎

𝑑,𝑛−1
∧𝑎
𝑑𝑛
)), where

𝑎
𝑖𝑗
∈ 𝑋, 𝑖 = 1, . . . , 𝑑; 𝑗 = 0, . . . , 𝑛. By Lemma 8, (𝑋

∧
)
∨
is also

finite. Since 𝜇
𝑓
(𝜔) ∈ (𝑋

∧
)
∨
for any 𝜔 ∈ Σ∗, Im(𝜇

𝑓
) ⊆ (𝑋

∧
)
∨
.

Hence Im(𝜇
𝑓
) is a finite subset of [0, 1].

Similarly, it follows that Im(𝜈
𝑓
) is also a finite subset of

[0, 1].
Therefore, Im(𝑓) = Im(𝜇

𝑓
) ∪ Im(𝜈

𝑓
) is finite.

If 𝑓 can be accepted by some IFPDA0 N = (𝑄, Σ, Γ, 𝛿,
𝐼, 𝑍

0
, 0), then, by Definition 7, for any 𝜔 = 𝑢

1
⋅ ⋅ ⋅ 𝑢

𝑛
, 𝑢

𝑖
∈

Σ ∪ {𝜀}, 𝑖 = 1, . . . , 𝑛, we have 𝜇
𝑓
(𝜔) = ⋁{𝜇

𝐼
(𝑞
0
)∧
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𝜇
⊢
∗

N
((𝑞

0
, 𝜔, 𝑧

0
), (𝑝, 𝜀, 𝜀)) | 𝑞

0
, 𝑝 ∈ 𝑄} = ⋁{𝜇

𝐼
(𝑞
0
) ∧

𝜇
⊢
((𝑞

0
, 𝜔, 𝑧

0
), (𝑞

1
, 𝑢

2
⋅ ⋅ ⋅ 𝑢

𝑛
, 𝑧
1
𝑟
1
)) ∧ 𝜇

⊢
((𝑞

1
, 𝑢
2
⋅ ⋅ ⋅ 𝑢

𝑛
, 𝑧
1
𝑟
1
),

(𝑞
2
, 𝑢
3
⋅ ⋅ ⋅ 𝑢

𝑛
, 𝑧
2
𝑟
2
)) ∧ ⋅ ⋅ ⋅ ∧ 𝜇

⊢
((𝑞

𝑛−1
, 𝑢
𝑛
, 𝑧
𝑛−1
𝑟
𝑛−1
), (𝑞

𝑛
, 𝜀, 𝜀)) |

(𝑞
0
, 𝑞
1
, . . . , 𝑞

𝑛
) ∈ 𝑄

𝑛+1, 𝑧
1
, . . . , 𝑧

𝑛−1
∈ Γ, 𝑟

1
, . . . , 𝑟

𝑛−1
∈

Γ
∗
}, and 𝜈

𝑓
(𝜔) = ⋀ {𝜈

𝐼
(𝑞
0
) ∨ 𝜈

⊢
∗

N
((𝑞

0
, 𝜔, 𝑧

0
), (𝑝, 𝜀, 𝜀)) | 𝑞

0
,

𝑝 ∈ 𝑄} = ⋀ {𝜈
𝐼
(𝑞
0
) ∨ 𝜈

⊢
((𝑞

0
, 𝜔, 𝑧

0
), (𝑞

1
, 𝑢
2
⋅ ⋅ ⋅ 𝑢

𝑛
, 𝑧
1
𝑟
1
)) ∨

𝜈
⊢
((𝑞

1
, 𝑢
2
⋅ ⋅ ⋅ 𝑢

𝑛
, 𝑧
1
𝑟
1
), (𝑞

2
, 𝑢
3
⋅ ⋅ ⋅ 𝑢

𝑛
, 𝑧

2
𝑟
2
)) ∨ ⋅ ⋅ ⋅ ∨ 𝜈

⊢
((𝑞

𝑛−1
,

𝑢
𝑛
, 𝑧
𝑛−1
𝑟
𝑛−1
), (𝑞

𝑛
, 𝜀, 𝜀)) | (𝑞

0
, 𝑞
1
, . . . , 𝑞

𝑛
) ∈ 𝑄

𝑛+1, 𝑧
1
, . . . , 𝑧

𝑛−1
∈

Γ, 𝑟
1
, . . ., 𝑟

𝑛−1
∈ Γ

∗
}.

In a similar manner, it is concluded that the following
must be true.

Proposition 10. If 𝑓 can be accepted by some IFPDA0 N =

(𝑄, Σ, Γ, 𝛿, 𝐼, 𝑍
0
, 0), then 𝑓 is an IFS in Σ∗, and the image set

of 𝑓 is finite.

Specially, the IFPDA M = (𝑄, Σ, Γ, 𝛿, 𝐼, 𝑍
0
, 𝐹) will be

abbreviated asM󸀠
= (𝑄, Σ, Γ, 𝛿, 𝑞

0
, 𝑍
0
, 𝐹), whenever Im(𝐼) ⊆

{0, 1} and supp(𝐼) = {𝑞
0
}. Moreover, if Im(𝐼) ∪ Im(𝐹) ∪

Im(𝛿) ⊆ {0, 1} and supp(𝐼) has only one element, then the
IFPDA is a classical PDA.

For two IFPDAsM
1
andM

2
, we say that they are equiv-

alent if they accept the same intuitionistic fuzzy language.

Proposition 11. Let 𝐴 be an IFS in a nonempty set Σ∗. Then
the following statements are equivalent:

(i) 𝐴 can be accepted by an IFPDA M = (𝑄, Σ, Γ, 𝛿, 𝐼,
𝑍
0
, 𝐹);

(ii) 𝐴 can be accepted by a certain IFPDA M󸀠
= (𝑄

󸀠
, Σ,

Γ
󸀠
, 𝛿
󸀠
, 𝑞
0
, 𝑋

0
, 𝐹
󸀠
), where 𝑞

0
∈ 𝑄

󸀠.

Proof. (i) implies (ii). Construct an IFPDA M󸀠
= (𝑄

󸀠
, Σ,

Γ
󸀠
, 𝛿
󸀠
, 𝐼
󸀠
, 𝑋

0
, 𝐹
󸀠
) as follows: 𝑄󸀠 = 𝑄 ∪ {𝑞

0
}, Γ󸀠 = Γ ∪ {𝑋

0
},

where 𝑞
0
∉ 𝑄,𝑋

0
∉ Γ. Define an IFS 𝐼󸀠 in 𝑄󸀠 by

𝜇
𝐼
󸀠 (𝑞) = {

1, if 𝑞 = 𝑞
0

0, if 𝑞 ̸= 𝑞
0
,

𝜈
𝐼
󸀠 (𝑞) = {

0, if 𝑞 = 𝑞
0

1, if 𝑞 ̸= 𝑞
0
.

(12)

Define an IFS 𝐹󸀠 in 𝑄󸀠 by

𝜇
𝐹
󸀠 (𝑞) = {

0, if 𝑞 = 𝑞
0

𝜇
𝐹
(𝑞) , if 𝑞 ̸= 𝑞

0
,

𝜈
𝐹
󸀠 (𝑞) = {

1, if 𝑞 = 𝑞
0

𝜈
𝐹
(𝑞) , if 𝑞 ̸= 𝑞

0
.

(13)

Define an IFS 𝛿󸀠 in 𝑄󸀠 × (Σ ∪ {𝜀}) × Γ󸀠 × 𝑄󸀠 × Γ󸀠∗ by
mappings 𝜇

𝛿
󸀠 , 𝜈

𝛿
󸀠 : 𝑄

󸀠
× (Σ ∪ {𝜀}) × Γ

󸀠
× 𝑄

󸀠
× Γ

󸀠∗
→ [0, 1],

𝜇
𝛿
󸀠(𝑞

0
, 𝜀, 𝑋

0
, 𝑝, 𝑍

0
) = 𝜇

𝐼
(𝑝), 𝜈

𝛿
󸀠(𝑞

0
, 𝜀, 𝑋

0
, 𝑝, 𝑍

0
) = 𝜈

𝐼
(𝑝),

𝜇
𝛿
󸀠(𝑞, 𝜏, 𝑧, 𝑝, 𝛾) = 𝜇

𝛿
(𝑞, 𝜏, 𝑧, 𝑝, 𝛾), 𝜈

𝛿
󸀠(𝑞, 𝜏, 𝑧, 𝑝, 𝛾) = 𝜈

𝛿
(𝑞, 𝜏,

𝑧, 𝑝, 𝛾), where 𝑞, 𝑝 ∈ 𝑄, 𝜏 ∈ Σ ∪ {𝜀}, 𝑧 ∈ Γ, 𝛾 ∈ Γ∗; otherwise,
𝜇
𝛿
󸀠(𝑞

0
, 𝜏, 𝑧, 𝑝, 𝛾) = 0 and 𝜈

𝛿
󸀠(𝑞

0
, 𝜏, 𝑧, 𝑝, 𝛾) = 1.

Then for any 𝜔 = 𝑢
1
⋅ ⋅ ⋅ 𝑢

𝑛
∈ Σ

∗, 𝑢
𝑖
∈ Σ ∪ {𝜀}, 𝑖=

1, . . . , 𝑛, we have 𝜇L(M󸀠)(𝜔) = ⋁{𝜇
𝐼
󸀠(𝑞) ∧ 𝜇

⊢
M󸀠
((𝑞, 𝜔,𝑋

0
),

(𝑝
0
, 𝜔, 𝑍

0
)) ∧ 𝜇

⊢
M󸀠
((𝑝

0
, 𝜔, 𝑍

0
), (𝑞

1
, 𝑢
2
⋅ ⋅ ⋅ 𝑢

𝑛
, 𝑧
1
𝑟
1
)) ∧ 𝜇

⊢
M󸀠

((𝑞
1
, 𝑢
2
⋅ ⋅ ⋅ 𝑢

𝑛
, 𝑧
1
𝑟
1
), (𝑞

2
, 𝑢
3
⋅ ⋅ ⋅ 𝑢

𝑛
, 𝑧
2
𝑟
2
)) ∧ ⋅ ⋅ ⋅ ∧ 𝜇

⊢
M󸀠
((𝑞

𝑛−1
,

𝑢
𝑛
, 𝑧
𝑛−1
𝑟
𝑛−1
), (𝑞

𝑛
, 𝜀, 𝑟

𝑛
)) ∧ 𝜇

𝐹
󸀠(𝑞

𝑛
) | 𝑞 ∈ 𝑄

󸀠, (𝑝
0
, 𝑞
1
, . . . , 𝑞

𝑛
) ∈

𝑄
󸀠𝑛+1

, 𝑧
1
, . . . , 𝑧

𝑛−1
∈ Γ

󸀠, 𝑟
1
, . . . , 𝑟

𝑛
∈ Γ

󸀠∗
} = ⋁{1 ∧ 𝜇

𝐼
(𝑝
0
)∧

𝜇
⊢M
((𝑝

0
, 𝜔, 𝑍

0
), (𝑞

1
, 𝑢
2
⋅ ⋅ ⋅ 𝑢

𝑛
, 𝑧
1
𝑟
1
)) ∧ 𝜇

⊢M
((𝑞

1
, 𝑢
2
⋅ ⋅ ⋅ 𝑢

𝑛
,

𝑧
1
𝑟
1
), (𝑞

2
, 𝑢
3
⋅ ⋅ ⋅ 𝑢

𝑛
, 𝑧
2
𝑟
2
)) ∧ ⋅ ⋅ ⋅ ∧ 𝜇

⊢M
((𝑞

𝑛−1
, 𝑢
𝑛
, 𝑧

𝑛−1
𝑟
𝑛−1
),

(𝑞
𝑛
, 𝜀, 𝑟

𝑛
)) ∧ 𝜇

𝐹
(𝑞
𝑛
) | (𝑝

0
, 𝑞
1
, . . . , 𝑞

𝑛
) ∈ 𝑄

𝑛+1, 𝑧
1
, . . ., 𝑧

𝑛−1
∈

Γ, 𝑟
1
, . . . , 𝑟

𝑛
∈ Γ

∗
} = 𝜇L(M)(𝜔), and 𝜈L(M󸀠)(𝜔)=

⋀{𝜈
𝐼
󸀠(𝑞) ∨ 𝜈

⊢
M󸀠
((𝑞, 𝜔,𝑋

0
), (𝑝

0
, 𝜔, 𝑍

0
)) ∨ 𝜈

⊢
M󸀠
((𝑝

0
, 𝜔, 𝑍

0
),

(𝑞
1
, 𝑢
2
⋅ ⋅ ⋅ 𝑢

𝑛
, 𝑧
1
𝑟
1
)) ∨ 𝜈

⊢
M󸀠
((𝑞

1
, 𝑢
2
⋅ ⋅ ⋅ 𝑢

𝑛
, 𝑧

1
𝑟
1
), (𝑞

2
, 𝑢
3
⋅ ⋅ ⋅

𝑢
𝑛
, 𝑧
2
𝑟
2
))∨⋅ ⋅ ⋅∨𝜈

⊢
M󸀠
((𝑞

𝑛−1
, 𝑢
𝑛
, 𝑧
𝑛−1
𝑟
𝑛−1
), (𝑞

𝑛
, 𝜀, 𝑟

𝑛
))∨𝜈

𝐹
󸀠(𝑞

𝑛
) |

𝑞 ∈ 𝑄
󸀠, (𝑝

0
, 𝑞
1
, . . . , 𝑞

𝑛
) ∈ 𝑄

󸀠𝑛+1
, 𝑧
1
, . . . , 𝑧

𝑛−1
∈ Γ

󸀠, 𝑟
1
, . . .,

𝑟
𝑛
∈ Γ

󸀠∗
} = ⋀{1 ∨ 𝜈

𝐼
(𝑝
0
) ∨ 𝜈

⊢M
((𝑝

0
, 𝜔,𝑍

0
), (𝑞

1
, 𝑢
2
⋅ ⋅ ⋅

𝑢
𝑛
, 𝑧

1
𝑟
1
)) ∨ 𝜈

⊢M
((𝑞

1
, 𝑢
2
⋅ ⋅ ⋅ 𝑢

𝑛
, 𝑧
1
𝑟
1
), (𝑞

2
, 𝑢
3
⋅ ⋅ ⋅ 𝑢

𝑛
, 𝑧
2
𝑟
2
)) ∨

⋅ ⋅ ⋅ ∨ 𝜈
⊢M
((𝑞

𝑛−1
, 𝑢
𝑛
, 𝑧
𝑛−1
𝑟
𝑛−1
), (𝑞

𝑛
, 𝜀, 𝑟

𝑛
)) ∨ 𝜈

𝐹
(𝑞
𝑛
) | (𝑝

0
, 𝑞
1
, . . .,

𝑞
𝑛
) ∈ 𝑄

𝑛+1
, 𝑧

1
, . . . , 𝑧

𝑛−1
∈ Γ, 𝑟

1
, . . ., 𝑟

𝑛
∈ Γ

∗
} = 𝜈L(M)(𝜔).

Therefore,L(M󸀠
) =L(M).

From the construction, it is clearly that M󸀠 can be
denoted asM󸀠

= (𝑄
󸀠
, Σ, Γ

󸀠
, 𝛿
󸀠
, 𝑞
0
, 𝑋

0
, 𝐹
󸀠
).

(ii) implies (i). Suppose the IFS 𝐴 is accepted by the
IFPDA M󸀠

= (𝑄
󸀠
, Σ, Γ

󸀠
, 𝛿
󸀠
, 𝑞
0
, 𝑋

0
, 𝐹
󸀠
). Then we construct an

IFS 𝐼 in 𝑄󸀠 by

𝜇
𝐼
(𝑞) = {

1, if 𝑞 = 𝑞
0

0, if 𝑞 ̸= 𝑞
0
,

𝜈
𝐼
(𝑞) = {

0, if 𝑞 = 𝑞
0

1, if 𝑞 ̸= 𝑞
0
.

(14)

It follows that the IFPDA M = (𝑄
󸀠
, Σ, Γ

󸀠
, 𝛿
󸀠
, 𝐼, 𝑋

0
, 𝐹
󸀠
)

accepts 𝐴.
Similarly, it is easily concluded that the following must be

true.

Proposition 12. Let 𝐴 be an IFS in a nonempty set Σ∗. Then
the following statements are equivalent:

(i) 𝐴 can be accepted by an IFPDA0 M = (𝑄, Σ,
Γ, 𝛿, 𝐼, 𝑍

0
, 0);

(ii) There exists an IFPDA0 M󸀠
= (𝑄

󸀠
, Σ, Γ

󸀠
, 𝛿
󸀠
, 𝑞
0
, 𝑋

0
, 0)

recognizing 𝐴, where 𝑞
0
∈ 𝑄

󸀠.

There is especially a simple type of intuitionistic fuzzy
pushdown automata, which is called intuitionistic fuzzy
simple pushdown automata.Thedefinition is given as follows.

Definition 13. An IFPDA M = (𝑄, Σ, Γ, 𝛿, 𝑞
0
, 𝑍
0
, 𝐹) is called

an intuitionistic fuzzy simple pushdown automaton
(IFSPDA) if the image set of 𝛿 is contained in the set
{0, 1}.

Next any IFPDA is proven to be an equivalence of a cer-
tain IFSPDA by utilizing the generalized subset construction
method. Noting that an IFS requires that the sum of the
degrees of membership and nonmembership of an element
to a set is no more than the natural number 1. So the proof
technique is to some extent different from the technique of
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extended subset construction introduced by Li in [33], and it
is not an easy task to conduct reasoning in the realm of the
modified techniques.

Proposition 14. Let M be an IFPDA. Then there exists an
IFSPDAM󸀠 such thatL(M󸀠

) =L(M).

Proof. Let M = (𝑄, Σ, Γ, 𝛿, 𝑞
0
, 𝑍
0
, 𝐹) be an IFPDA. Then we

construct an IFSPDA M󸀠
= (𝑄

󸀠
, Σ, Γ, 𝛿

󸀠
, 𝑞
󸀠

0
, 𝑍
0
, 𝐹
󸀠
) as fol-

lows:

(i) 𝑄󸀠 = 𝑄× (𝐿
1
− {0}) × (𝐿

2
− {1}), where 𝐿

1
= 𝑋

∧
, 𝐿
2
=

𝑌
∨
,𝑋 = Im(𝜇

𝛿
) ∪ Im(𝜇

𝐹
) and 𝑌 = Im(𝜈

𝛿
) ∪ Im(𝜈

𝐹
);

(ii) 𝑞󸀠
0
= (𝑞

0
, 1, 0) ∈ 𝑄

󸀠;
(iii) 𝛿󸀠 = (𝜇

𝛿
󸀠 , 𝜈

𝛿
󸀠) is an IFS in 𝑄󸀠 × (Σ ∪ {𝜀}) × Γ ×

𝑄
󸀠
× Γ

∗, where the mappings 𝜇
𝛿
󸀠 , 𝜈

𝛿
󸀠 : 𝑄

󸀠
× (Σ ∪

{𝜀}) × Γ × 𝑄
󸀠
× Γ

∗
→ {0, 1} are given as follows.

For any (𝑞, 𝑎, 𝑏), (𝑞󸀠, 𝑐, 𝑑) ∈ 𝑄
󸀠, 𝜏 ∈ Σ ∪ {𝜀}, 𝑋 ∈

Γ and 𝛾 ∈ Γ
∗, 𝜇

𝛿
󸀠((𝑞, 𝑎, 𝑏), 𝜏, 𝑋, (𝑞

󸀠
, 𝑐, 𝑑), 𝛾) = 1,

and 𝜈
𝛿
󸀠((𝑞, 𝑎, 𝑏), 𝜏, 𝑋, (𝑞

󸀠
, 𝑐, 𝑑), 𝛾) = 0 whenever there

exist 𝑎󸀠 and 𝑏󸀠 such that 𝜇
𝛿
(𝑞, 𝜏, 𝑋, 𝑞

󸀠
, 𝛾) = 𝑎

󸀠
> 0,

𝜈
𝛿
(𝑞, 𝜏, 𝑋, 𝑞

󸀠
, 𝛾) = 𝑏

󸀠
< 1, 𝑐 = 𝑎 ∧ 𝑎

󸀠 and 𝑑 =

𝑏 ∨ 𝑏
󸀠. Otherwise, 𝜇

𝛿
󸀠((𝑞, 𝑎, 𝑏), 𝜏, 𝑋, (𝑞

󸀠
, 𝑐, 𝑑), 𝛾) = 0

and 𝜈
𝛿
󸀠((𝑞, 𝑎, 𝑏), 𝜏, 𝑋, (𝑞

󸀠
, 𝑐, 𝑑), 𝛾) = 1;

(iv) 𝐹󸀠 = (𝜇
𝐹
󸀠 , 𝜈

𝐹
󸀠) is an IFS in 𝑄󸀠. For any (𝑞, 𝑎, 𝑏) ∈ 𝑄󸀠,

𝜇
𝐹
󸀠 ((𝑞, 𝑎, 𝑏)) = {

𝑎 ∧ 𝜇
𝐹
(𝑞) , if 0 ≤ 𝑎 + 𝑏 ≤ 1

0, if 𝑎 + 𝑏 > 1,

𝜈
𝐹
󸀠 ((𝑞, 𝑎, 𝑏)) = {

𝑏 ∨ 𝜈
𝐹
(𝑞) , if 0 ≤ 𝑎 + 𝑏 ≤ 1

1, if 𝑎 + 𝑏 > 1.

(15)

Now, it is claimed that, for any 𝜔 = 𝜏
1
⋅ ⋅ ⋅ 𝜏

𝑛
∈ Σ

∗,
𝜏
𝑖
∈ Σ ∪ {𝜀}, 𝑖 ∈ {1, . . . , 𝑛} and for any (𝑞

𝑛
, 𝑎
𝑛
, 𝑏
𝑛
) ∈

𝑄
󸀠, 𝑍

𝑛
, 𝛾
𝑛
∈ Γ

∗, 𝜇
⊢
∗

M󸀠
((𝑞

󸀠

0
, 𝜔, 𝑍

0
), ((𝑞

𝑛
, 𝑎
𝑛
, 𝑏
𝑛
), 𝜀, 𝑍

𝑛
𝛾
𝑛
)) = 1

and 𝜈
⊢
∗

M󸀠
((𝑞

󸀠

0
, 𝜔, 𝑍

0
), ((𝑞

𝑛
, 𝑎
𝑛
, 𝑏
𝑛
), 𝜀, 𝑍

𝑛
𝛾
𝑛
)) = 0 whenever the

following condition is satisfied.
(P1)There exist 𝑞

1
, . . . , 𝑞

𝑛−1
∈ 𝑄, 𝑍

1
, . . . , 𝑍

𝑛−1
∈ Γ and 𝛾

1
,

. . . , 𝛾
𝑛−1

∈ Γ
∗ such that 𝑎

𝑛
= 𝜇

⊢M
((𝑞

0
, 𝜔, 𝑍

0
), (𝑞

1
, 𝜏
2
⋅ ⋅ ⋅

𝜏
𝑛
, 𝑍
1
𝛾
1
)) ∧ 𝜇

⊢M
((𝑞

1
, 𝜏
2
⋅ ⋅ ⋅ 𝜏

𝑛
, 𝑍
1
𝛾
1
), (𝑞

2
, 𝜏
3
⋅ ⋅ ⋅ 𝜏

𝑛
, 𝑍
2
𝛾
2
)) ∧

⋅ ⋅ ⋅ ∧ 𝜇
⊢M
((𝑞

𝑛−1
, 𝜏
𝑛
, 𝑍
𝑛−1
𝛾
𝑛−1
), (𝑞

𝑛
, 𝜀, 𝑍

𝑛
𝛾
𝑛
)) and 𝑏

𝑛
=

𝜈
⊢M
((𝑞

0
, 𝜔, 𝑍

0
), (𝑞

1
, 𝜏
2
⋅ ⋅ ⋅ 𝜏

𝑛
, 𝑍
1
𝛾
1
)) ∨ 𝜈

⊢M
((𝑞

1
, 𝜏
2
⋅ ⋅ ⋅ 𝜏

𝑛
,

𝑍
1
𝛾
1
), (𝑞

2
, 𝜏
3
⋅ ⋅ ⋅ 𝜏

𝑛
, 𝑍
2
𝛾
2
)) ∨ ⋅ ⋅ ⋅ ∨ 𝜈

⊢M
((𝑞

𝑛−1
, 𝜏
𝑛
,

𝑍
𝑛−1
𝛾
𝑛−1
), (𝑞

𝑛
, 𝜀, 𝑍

𝑛
𝛾
𝑛
)). Otherwise, 𝜇

⊢
∗

M󸀠
((𝑞

󸀠

0
, 𝜔, 𝑍

0
), ((𝑞

𝑛
,

𝑎
𝑛
, 𝑏
𝑛
), 𝜀, 𝑍

𝑛
𝛾
𝑛
)) = 0 and 𝜈

⊢
∗

M󸀠
((𝑞

󸀠

0
, 𝜔, 𝑍

0
), ((𝑞

𝑛
, 𝑎
𝑛
, 𝑏
𝑛
), 𝜀,

𝑍
𝑛
𝛾
𝑛
)) = 1.
It is proved by induction. In fact, if |𝜔| = 0, then 𝜔 =

𝜀, 𝜇
⊢
∗

M󸀠
((𝑞

0
, 𝜀, 𝑍

0
), (𝑞

0
, 𝜀, 𝑍

0
)) = 1 and 𝜈

⊢
∗

M
((𝑞

0
, 𝜀, 𝑍

0
), (𝑞

0
, 𝜀,

𝑍
0
)) = 0. Hence 𝜇

⊢
∗

M
(((𝑞

0
, 1, 0), 𝜀, 𝑍

0
), ((𝑞

0
, 1, 0), 𝜀, 𝑍

0
)) = 1

and 𝜈
⊢
∗

M󸀠
(((𝑞

0
, 1, 0), 𝜀, 𝑍

0
), ((𝑞

0
, 1, 0), 𝜀, 𝑍

0
)) = 0.

Suppose the result still holds whenever |𝜔| ≤ 𝑛, 𝑛 ∈ 𝑁.
If |𝜔| = 𝑛 + 1, 𝜔 = 𝜏

1
⋅ ⋅ ⋅ 𝜏

𝑘
𝜏
𝑘+1

= 𝑥𝜏
𝑘+1

and 𝜏
𝑘+1

∈ Σ, then
|𝑥| = 𝑛 and 𝑥 = 𝜏

1
⋅ ⋅ ⋅ 𝜏

𝑘
.

Next, for any (𝑞
𝑘+1
, 𝑎
𝑘+1
, 𝑏
𝑘+1
) ∈ 𝑄

󸀠, 𝑍
𝑘+1
, 𝛾
𝑘+1

∈ Γ
∗,

whenever (P1) is satisfied; that is, there exists a sequence of
states 𝑞

1
, . . . , 𝑞

𝑘
∈ 𝑄, 𝑍

1
, . . . , 𝑍

𝑘
∈ Γ, 𝛾

1
, . . . , 𝛾

𝑘
∈ Γ

∗ such that

𝜇
⊢M
((𝑞

𝑖
, 𝜏
𝑖+1
⋅ ⋅ ⋅ 𝜏

𝑘+1
, 𝑍
𝑖
𝛾
𝑖
), (𝑞

𝑖+1
, 𝜏
𝑖+2
⋅ ⋅ ⋅ 𝜏

𝑘+1
,

𝑍
𝑖+1
𝛾
𝑖+1
)) = 𝑐

𝑖+1
> 0,

𝜈
⊢M
((𝑞

𝑖
, 𝜏
𝑖+1
⋅ ⋅ ⋅ 𝜏

𝑘+1
, 𝑍
𝑖
𝛾
𝑖
), (𝑞

𝑖+1
, 𝜏
𝑖+2
⋅ ⋅ ⋅ 𝜏

𝑘+1
,

𝑍
𝑖+1
𝛾
𝑖+1
)) = 𝑑

𝑖+1
< 1,

𝜇
𝛿
(𝑞
𝑘
, 𝜏
𝑘+1
, 𝑍
𝑘
, 𝑞
𝑘+1
, 𝑍
𝑘+1
) = 𝑐

𝑘+1
> 0,

𝜈
𝛿
(𝑞
𝑘
, 𝜏
𝑘+1
, 𝑍
𝑘
, 𝑞
𝑘+1
, 𝑍
𝑘+1
) = 𝑑

𝑘+1
< 1,

where 𝛾
0
= 𝜀, 𝑖 = 0, 1, . . . , 𝑘 − 1.

Let 𝑎
𝑙
= 𝑐

1
∧ ⋅ ⋅ ⋅ ∧ 𝑐

𝑙
, 𝑏
𝑙
= 𝑑

1
∨ ⋅ ⋅ ⋅ ∨ 𝑑

𝑙
, 𝑙 ∈ {1, . . . , 𝑘 + 1}.

Then

𝜇
⊢
M󸀠
(((𝑞

𝑖
, 𝑎
𝑖
, 𝑏
𝑖
), 𝜏

𝑖+1
⋅ ⋅ ⋅ 𝜏

𝑘+1
, 𝑍
𝑖
𝛾
𝑖
), ((𝑞

𝑖+1
, 𝑎
𝑖+1
, 𝑏
𝑖+1
),

𝜏
𝑖+2
⋅ ⋅ ⋅ 𝜏

𝑘+1
, 𝑍
𝑖+1
𝛾
𝑖+1
)) = 1,

𝜈
⊢
M󸀠
(((𝑞

𝑖
, 𝑎
𝑖
, 𝑏
𝑖
), 𝜏

𝑖+1
⋅ ⋅ ⋅ 𝜏

𝑘+1
, 𝑍
𝑖
𝛾
𝑖
), ((𝑞

𝑖+1
, 𝑎
𝑖+1
, 𝑏
𝑖+1
),

𝜏
𝑖+2
⋅ ⋅ ⋅ 𝜏

𝑘+1
, 𝑍
𝑖+1
𝛾
𝑖+1
)) = 0,

𝜇
⊢
M󸀠
(((𝑞

𝑘
, 𝑎
𝑘
, 𝑏
𝑘
), 𝜏

𝑘+1
, 𝑍
𝑘
𝛾
𝑘
), ((𝑞

𝑘+1
, 𝑎
𝑘+1
, 𝑏
𝑘+1
),

𝜀, 𝑍
𝑘+1
𝛾
𝑘+1
)) = 1, and

𝜈
⊢
M󸀠
(((𝑞

𝑘
, 𝑎
𝑘
, 𝑏
𝑘
), 𝜏

𝑘+1
, 𝑍
𝑘
𝛾
𝑘
), ((𝑞

𝑘+1
, 𝑎
𝑘+1
, 𝑏
𝑘+1
),

𝜀, 𝑍
𝑘+1
𝛾
𝑘+1
)) = 0,

where 𝑎
0
= 1, 𝑏

0
= 0, 𝛾

0
= 𝜀, 𝑖 = 0, 1, . . . , 𝑘 − 1.

By assumption, 𝜇
⊢
∗

M󸀠
((𝑞

󸀠

0
, 𝑥, 𝑍

0
), ((𝑞

𝑘
, 𝑎
𝑘
, 𝑏
𝑘
), 𝜀, 𝑍

𝑘
𝛾
𝑘
)) =

1, 𝜈
⊢
∗

M󸀠
((𝑞

󸀠

0
, 𝑥, 𝑍

0
), ((𝑞

𝑘
, 𝑎
𝑘
, 𝑏
𝑘
), 𝜀, 𝑍

𝑘
𝛾
𝑘
)) = 0, and so 𝜇

⊢
∗

M󸀠
((𝑞

󸀠

0
,

𝑥𝜏
𝑘+1
, 𝑍
0
), ((𝑞

𝑘
, 𝑎
𝑘
, 𝑏
𝑘
), 𝜏

𝑘+1
, 𝑍
𝑘
𝛾
𝑘
)) = 1, 𝜈

⊢
∗

M󸀠
((𝑞

󸀠

0
, 𝑥𝜏

𝑘+1
, 𝑍
0
),

((𝑞
𝑘
, 𝑎
𝑘
, 𝑏
𝑘
), 𝜏

𝑘+1
, 𝑍
𝑘
𝛾
𝑘
)) = 0.

Therefore, 𝜇
⊢
∗

M󸀠
((𝑞

󸀠

0
, 𝜔, 𝑍

0
), ((𝑞

𝑘+1
, 𝑎
𝑘+1
, 𝑏
𝑘+1
), 𝜀,

𝑍
𝑘+1
𝛾
𝑘+1
)) = ⋁{𝜇

⊢
∗

M󸀠
((𝑞

󸀠

0
, 𝜔, 𝑍

0
), ((𝑞

𝑘
, 𝑎
𝑘
, 𝑏
𝑘
), 𝜏

𝑘+1
, 𝑍
𝑘
𝛾
𝑘
)) ∧

𝜇
⊢
M󸀠
(((𝑞

𝑘
, 𝑎
𝑘
, 𝑏
𝑘
), 𝜏

𝑘+1
, 𝑍
𝑘
𝛾
𝑘
), ((𝑞

𝑘+1
, 𝑎
𝑘+1
, 𝑏
𝑘+1
), 𝜀,

𝑍
𝑘+1
𝛾
𝑘+1
)) | (𝑞

𝑘
, 𝑎
𝑘
, 𝑏
𝑘
) ∈ 𝑄

󸀠, 𝑍
𝑘
∈ Γ, 𝛾

𝑘
∈ Γ

∗
} = 1 ∧ 1 = 1.

𝜈
⊢
∗

M󸀠
((𝑞

󸀠

0
, 𝜔, 𝑍

0
), ((𝑞

𝑘+1
, 𝑎
𝑘+1
, 𝑏
𝑘+1
), 𝜀, 𝑍

𝑘+1
𝛾
𝑘+1
)) =

⋀{𝜈
⊢
∗

M󸀠
((𝑞

󸀠

0
, 𝜔, 𝑍

0
), ((𝑞

𝑘
, 𝑎
𝑘
, 𝑏
𝑘
), 𝜏

𝑘+1
, 𝑍
𝑘
𝛾
𝑘
)) ∨ 𝜈

⊢
M󸀠
(((𝑞

𝑘
, 𝑎
𝑘
,

𝑏
𝑘
), 𝜏

𝑘+1
, 𝑍
𝑘
𝛾
𝑘
), ((𝑞

𝑘+1
, 𝑎
𝑘+1
, 𝑏
𝑘+1
), 𝜀, 𝑍

𝑘+1
𝛾
𝑘+1
)) | (𝑞

𝑘
, 𝑎
𝑘
, 𝑏
𝑘
) ∈

𝑄
󸀠
, 𝑍
𝑘
∈ Γ, 𝛾

𝑘
∈ Γ

∗
} = 0 ∨ 0 = 0.

For any (𝑞
𝑘+1
, 𝑎
𝑘+1
, 𝑏
𝑘+1
) ∈ 𝑄

󸀠, 𝑍
𝑘+1
, 𝛾
𝑘+1

∈ Γ
∗, if (P1) is

not satisfied, then it follows that

𝜇
⊢
∗

M󸀠
((𝑞

󸀠

0
, 𝜔, 𝑍

0
), ((𝑞

𝑘+1
, 𝑎
𝑘+1
, 𝑏
𝑘+1
), 𝜀, 𝑍

𝑘+1
𝛾
𝑘+1
)) = 0,

𝜈
⊢
∗

M󸀠
((𝑞

󸀠

0
, 𝜔, 𝑍

0
), ((𝑞

𝑘+1
, 𝑎
𝑘+1
, 𝑏
𝑘+1
), 𝜀, 𝑍

𝑘+1
𝛾
𝑘+1
)) = 1.

Hence, for any 𝜔 = 𝜏
1
⋅ ⋅ ⋅ 𝜏

𝑛
∈ Σ

∗, 𝜏
𝑖
∈ Σ ∪ {𝜀}, 𝑖 ∈

{1, . . . , 𝑛}, we have 𝜇L(M󸀠)(𝜔) = ⋁{𝜇⊢∗
M󸀠
((𝑞

󸀠

0
, 𝜔, 𝑍

0
), ((𝑞

𝑛
, 𝑎
𝑛
,

𝑏
𝑛
), 𝜀, 𝛾)) ∧ 𝜇

𝐹
󸀠((𝑞

𝑛
, 𝑎
𝑛
, 𝑏
𝑛
)) | (𝑞

𝑛
, 𝑎

𝑛
, 𝑏
𝑛
) ∈ 𝑄

󸀠
, 𝛾 ∈ Γ

∗
}

= ⋁{𝑎
𝑛
∧ 𝜇

𝐹
(𝑞
𝑛
) | 𝑞

1
, . . . , 𝑞

𝑛−1
∈ 𝑄, 𝑍

1
, . . . , 𝑍

𝑛−1
∈ Γ,

𝛾
1
, . . . , 𝛾

𝑛−1
∈ Γ

∗, 𝑎
𝑛

= 𝜇
⊢M
((𝑞

0
, 𝜔, 𝑍

0
), (𝑞

1
, 𝜏
2
⋅ ⋅ ⋅ 𝜏

𝑛
,

𝑍
1
𝛾
1
)) ∧ 𝜇

⊢M
((𝑞

1
, 𝜏
2
⋅ ⋅ ⋅ 𝜏

𝑛
, 𝑍
1
𝛾
1
), (𝑞

2
, 𝜏
3
⋅ ⋅ ⋅ 𝜏

𝑛
, 𝑍
2
𝛾
2
)) ∧ ⋅ ⋅ ⋅ ∧

𝜇
⊢M
((𝑞

𝑛−1
, 𝜏

𝑛
, 𝑍
𝑛−1
𝛾
𝑛−1
),(𝑞

𝑛
, 𝜀, 𝛾)), 𝑏

𝑛
= 𝜈

⊢M
((𝑞

0
, 𝜔, 𝑍

0
),

(𝑞
1
, 𝜏
2
⋅ ⋅ ⋅ 𝜏

𝑛
, 𝑍
1
𝛾
1
)) ∨ 𝜈

⊢M
((𝑞

1
, 𝜏
2
⋅ ⋅ ⋅ 𝜏

𝑛
, 𝑍
1
𝛾
1
), (𝑞

2
, 𝜏
3
⋅ ⋅ ⋅ 𝜏

𝑛
,

𝑍
2
𝛾
2
)) ∨ ⋅ ⋅ ⋅ ∨ 𝜈

⊢M
((𝑞

𝑛−1
, 𝜏
𝑛
, 𝑍
𝑛−1
𝛾
𝑛−1
), (𝑞

𝑛
, 𝜀, 𝛾))}=

⋁{𝜇
⊢M
((𝑞

0
, 𝜔, 𝑍

0
),(𝑞

1
, 𝜏
2
⋅ ⋅ ⋅ 𝜏

𝑛
, 𝑍
1
𝛾
1
)) ∧ 𝜇

⊢M
((𝑞

1
, 𝜏
2
⋅ ⋅ ⋅ 𝜏

𝑛
,

𝑍
1
𝛾
1
)(𝑞

2
, 𝜏
3
⋅ ⋅ ⋅ 𝜏

𝑛
, 𝑍

2
𝛾
2
)) ∧ ⋅ ⋅ ⋅ ∧ 𝜇

⊢M
((𝑞

𝑛−1
, 𝜏
𝑛
,

𝑍
𝑛−1
𝛾
𝑛−1
), (𝑞

𝑛
, 𝜀, 𝛾)) ∧ 𝜇

𝐹
(𝑞
𝑛
) | 𝑞

1
, . . . , 𝑞

𝑛−1
∈ 𝑄,𝑍

1
, . . .,

𝑍
𝑛−1

∈ Γ, 𝛾
1
, . . . , 𝛾

𝑛−1
∈ Γ

∗
} = 𝜇L(M)(𝜔), 𝜈L(M󸀠)(𝜔) =

⋀{𝜈
⊢
∗

M󸀠
((𝑞

󸀠

0
, 𝜔, 𝑍

0
), ((𝑞

𝑛
, 𝑎
𝑛
, 𝑏
𝑛
), 𝜀, 𝛾)) ∨ 𝜈

𝐹
󸀠((𝑞

𝑛
, 𝑎
𝑛
,
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𝑏
𝑛
)) | (𝑞

𝑛
, 𝑎
𝑛
, 𝑏
𝑛
) ∈ 𝑄

󸀠, 𝛾 ∈ Γ
∗
} = ⋀{𝑏

𝑛
∨ 𝜈

𝐹
(𝑞
𝑛
) | 𝑞

1
,

. . . , 𝑞
𝑛−1

∈ 𝑄, 𝑍
1
, . . . , 𝑍

𝑛−1
∈ Γ, 𝛾

1
, . . . , 𝛾

𝑛−1
∈ Γ

∗,
𝑎
𝑛
= 𝜇

⊢M
((𝑞

0
, 𝜔, 𝑍

0
),(𝑞

1
, 𝜏
2
⋅ ⋅ ⋅ 𝜏

𝑛
, 𝑍
1
𝛾
1
)) ∧ 𝜇

⊢M
((𝑞

1
, 𝜏
2
⋅ ⋅ ⋅ 𝜏

𝑛
,

𝑍
1
𝛾
1
), (𝑞

2
, 𝜏
3
⋅ ⋅ ⋅ 𝜏

𝑛
, 𝑍
2
𝛾
2
)) ∧ ⋅ ⋅ ⋅ ∧ 𝜇

⊢M
((𝑞

𝑛−1
, 𝜏

𝑛
, 𝑍
𝑛−1
𝛾
𝑛−1
),

(𝑞
𝑛
, 𝜀, 𝛾)), 𝑏

𝑛
= 𝜈

⊢M
((𝑞

0
, 𝜔, 𝑍

0
), (𝑞

1
, 𝜏
2
⋅ ⋅ ⋅ 𝜏

𝑛
, 𝑍
1
𝛾
1
))∨𝜈

⊢M
((𝑞

1
,

𝜏
2
⋅ ⋅ ⋅ 𝜏

𝑛
, 𝑍
1
𝛾
1
), (𝑞

2
, 𝜏
3
⋅ ⋅ ⋅ 𝜏

𝑛
, 𝑍
2
𝛾
2
)) ∨ ⋅ ⋅ ⋅ ∨ 𝜈

⊢M
((𝑞

𝑛−1
, 𝜏

𝑛
,

𝑍
𝑛−1
𝛾
𝑛−1
), (𝑞

𝑛
, 𝜀, 𝛾))} = ⋀{𝜈

⊢M
((𝑞

0
, 𝜔, 𝑍

0
), (𝑞

1
, 𝜏
2
⋅ ⋅ ⋅ 𝜏

𝑛
,

𝑍
1
𝛾
1
)) ∨ 𝜈

⊢M
((𝑞

1
, 𝜏
2
⋅ ⋅ ⋅ 𝜏

𝑛
, 𝑍

1
𝛾
1
), (𝑞

2
, 𝜏
3
⋅ ⋅ ⋅ 𝜏

𝑛
, 𝑍

2
𝛾
2
)) ∨ ⋅ ⋅ ⋅

∨𝜈
⊢M
((𝑞

𝑛−1
, 𝜏
𝑛
, 𝑍
𝑛−1
𝛾
𝑛−1
), (𝑞

𝑛
, 𝜀, 𝛾)) ∨ 𝜈

𝐹
(𝑞
𝑛
) | 𝑞

1
, . . . , 𝑞

𝑛−1
∈

𝑄, 𝑍
1
, . . . , 𝑍

𝑛−1
∈ Γ, 𝛾

1
, . . .,𝛾

𝑛−1
∈ Γ

∗
} = 𝜈L(M)(𝜔).

Therefore,L(M󸀠
) =L(M).

Clearly, an IFPDA is a generalization of a classical push-
down automaton (PDA). Next, it will be shown that any
IFPDA can be characterized by a collection of pushdown
automata. To describe the behavior of a pushdown automaton
M = (𝑄, Σ, Γ, 𝛿, 𝑞

0
, 𝑍
0
, 𝐹), we need to introduce the concept

of instantaneous description. An instantaneous description is
a three-tuple (𝑞, 𝜔, 𝛾) ∈ 𝑄 × Σ∗ × Γ∗, which means that the
automaton is in the state 𝑞 and has unexpended input 𝜔 and
stack contents 𝛾. An instantaneous description represents the
configuration of a pushdown automaton at a given instant. To
introduce the transition in a pushdown automaton in terms of
instantaneous descriptions, we define ≻M as a binary relation
on 𝑄 × Σ∗ × Γ∗. We say (𝑞, 𝑎𝜔, 𝑍𝛾) ≻M (𝑝, 𝜔, 𝜎𝛾) if 𝛿(𝑞, 𝑎, 𝑍)
contains (𝑝, 𝜎), where 𝑝, 𝑞 ∈ 𝑄, 𝑎 ∈ Σ ∪ {𝜀}, 𝜔 ∈ Σ∗, 𝑍 ∈ Γ,
and 𝛾, 𝜎 ∈ Γ

∗. Furthermore, we define ≻∗M as the reflexive
and transitive closure of ≻M. Then the language accepted by
M with final states is defined as

L (M) = {𝜔 ∈ Σ
∗
| (𝑞

0
, 𝜔, 𝑍

0
) ≻

∗

M (𝑝, 𝜀, 𝛾) , 𝑝 ∈ 𝐹, 𝛾 ∈ Γ
∗
} .

(16)

Definition 15. A collection of classical pushdown automata
with final states

𝑆 = {M
𝑎𝑏
|M

𝑎𝑏
= (𝑄, Σ, Γ, 𝛿, 𝑞

0
, 𝑍
0
, 𝐹
𝑎𝑏
) ,

0 ≤ 𝑎 + 𝑏 ≤ 1, 𝑎, 𝑏 ∈ [0, 1] }
(17)

is called a cover if the following conditions hold:
(i) 𝑎

1
≤ 𝑎

2
and 𝑏

2
≤ 𝑏

1
imply 𝐹

𝑎2𝑏2
⊆ 𝐹

𝑎1𝑏1
;

(ii) 𝐹
01
= 𝑄.

For a cover 𝑆, its recognized intuitionistic fuzzy language
𝑓
𝑆
= (𝜇

𝑓𝑆
, 𝜈
𝑓𝑆
) in Σ∗ is given by

𝜇
𝑓𝑆
(𝜔) = ⋁{𝑎 ∈ [0, 1] |M

𝑎𝑏
accepts 𝜔,M

𝑎𝑏
∈ 𝑆},

𝜈
𝑓𝑆
(𝜔) = ⋀{𝑏 ∈ [0, 1] | M

𝑎𝑏
accepts 𝜔,M

𝑎𝑏
∈ 𝑆}, for

all 𝜔 ∈ Σ∗.

Theorem 16. Let 𝑓 be an IFS in Σ∗. Then 𝑓 can be accepted
by an IFPDA if and only if 𝑓 can be recognized by a cover 𝑆.

Proof. If 𝑓 can be accepted by an IFPDA, then there exists an
IFSPDAM = (𝑄, Σ, Γ, 𝛿, 𝑞

0
, 𝑍
0
, 𝐹) such thatM accepts 𝑓 by

Proposition 14. Next we construct a cover

𝑆 = {M
𝑎𝑏
|M

𝑎𝑏
= (𝑄, Σ, Γ, 𝛿

󸀠
, 𝑞
0
, 𝑍
0
, 𝐹
𝑎𝑏
) ,

0 ≤ 𝑎 + 𝑏 ≤ 1, 𝑎, 𝑏 ∈ [0, 1] } ,

(18)

where 𝐹
𝑎𝑏
= {𝑞 ∈ 𝑄 | 𝜇

𝐹
(𝑞) ≥ 𝑎, 𝜈

𝐹
(𝑞) ≤ 𝑏}; the mapping

𝛿
󸀠
: 𝑄 × (Σ ∪ {𝜀}) × Γ → 2

𝑄×Γ
∗

is given by

𝛿
󸀠
(𝑞, 𝜏, 𝑍) = {(𝑝, 𝛾) | 𝜇

𝛿
(𝑞, 𝜏, 𝑍, 𝑝, 𝛾) = 1, 𝑝 ∈ 𝑄, 𝛾 ∈

Γ
∗
}, for all (𝑞, 𝜏, 𝑍) ∈ 𝑄 × (Σ ∪ {𝜀}) × Γ.

Clearly, the cover 𝑆 is well defined.
Next, we will show that 𝑓 can be recognized by the cover

𝑆. In fact, we have

(𝑞
0
, 𝜔, 𝑍

0
)≻
∗

M𝑎𝑏
(𝑞, 𝜀, 𝛾) if and only if 𝜇

⊢
∗

M
((𝑞

0
,

𝜔,𝑍
0
), (𝑞, 𝜀, 𝛾)) = 1,

for all 𝑎, 𝑏 ∈ [0, 1] with 𝑎 + 𝑏 ≤ 1, for all 𝜔 ∈ Σ
∗
, 𝛾 ∈ Γ

∗.
𝜇
𝑓𝑆
(𝜔) = ⋁{𝑎 ∈ [0, 1] | M

𝑎𝑏
accepts 𝜔,M

𝑎𝑏
∈ 𝑆} = ⋁{𝑎 ∈

[0, 1] | 𝑞 ∈ 𝐹
𝑎𝑏
, (𝑞

0
, 𝜔, 𝑍

0
) ≻

∗

M𝑎𝑏
(𝑞, 𝜀, 𝛾), 𝛾 ∈ Γ

∗
} = ⋁{𝑎 ∈

[0, 1] | 𝜇
𝐹
(𝑞) ≥ 𝑎, 𝜈

𝐹
(𝑞) ≤ 𝑏, (𝑞

0
, 𝜔, 𝑍

0
) ≻

∗

M𝑎𝑏
(𝑞, 𝜀, 𝛾), 𝛾 ∈

Γ
∗
} = ⋁{𝑎 ∈ [0, 1] | 𝜇

𝐹
(𝑞) ≥ 𝑎, (𝑞

0
, 𝜔, 𝑍

0
) ≻

∗

M𝑎𝑏
(𝑞, 𝜀, 𝛾), 𝑞 ∈

𝑄, 𝛾 ∈ Γ
∗
} = ⋁{𝜇

𝐹
(𝑞) | 𝜇

⊢
∗

M
((𝑞

0
, 𝜔, 𝑍

0
), (𝑞, 𝜀, 𝛾)) = 1, 𝑞 ∈

𝑄, 𝛾 ∈ Γ
∗
} = 𝜇

𝑓
(𝜔) = 𝜇L(M)(𝜔), 𝜈𝑓𝑆(𝜔) = ⋀{𝑏 ∈ [0, 1] |

M
𝑎𝑏

accepts 𝜔,M
𝑎𝑏

∈ 𝑆} = ⋀{𝑏 ∈ [0, 1] | 𝑞 ∈ 𝐹
𝑎𝑏
,

(𝑞
0
, 𝜔, 𝑍

0
) ≻

∗

M𝑎𝑏
(𝑞, 𝜀, 𝛾), 𝛾 ∈ Γ

∗
} = ⋀{𝑏 ∈ [0, 1] | 𝜇

𝐹
(𝑞) ≥

𝑎, 𝜈
𝐹
(𝑞) ≤ 𝑏, (𝑞

0
, 𝜔, 𝑍

0
) ≻

∗

M𝑎𝑏
(𝑞, 𝜀, 𝛾), 𝛾 ∈ Γ

∗
} = ⋀{𝑏 ∈

[0, 1] | 𝜈
𝐹
(𝑞) ≤ 𝑏, (𝑞

0
, 𝜔, 𝑍

0
) ≻

∗

M𝑎𝑏
(𝑞, 𝜀, 𝛾), 𝑞 ∈ 𝑄, 𝛾 ∈ Γ

∗
} =

⋀{𝜈
𝐹
(𝑞) | 𝜇

⊢
∗

M
((𝑞

0
, 𝜔, 𝑍

0
), (𝑞, 𝜀, 𝛾)) = 1, 𝑞 ∈ 𝑄, 𝛾 ∈ Γ

∗
} =

𝜈
𝑓
(𝜔) = 𝜈L(M)(𝜔).
Therefore, 𝑓

𝑆
=L(M) = 𝑓.

Conversely, suppose 𝑓 can be recognized by a cover

𝑆 = {M
𝑎𝑏
|M

𝑎𝑏
= (𝑄, Σ, Γ, 𝛿

󸀠
, 𝑞
0
, 𝑍
0
, 𝐹
𝑎𝑏
) ,

0 ≤ 𝑎 + 𝑏 ≤ 1, 𝑎, 𝑏 ∈ [0, 1] } .

(19)

Then we construct an IFSPDA M = (𝑄, Σ, Γ, 𝜂, 𝑞
0
, 𝑍
0
, 𝐹),

where 𝜂 = (𝜇
𝜂
, 𝜈
𝜂
) is an IFS in 𝑄 × (Σ ∪ {𝜀}) × Γ × 𝑄 × Γ∗,

and the mappings 𝜇
𝜂
, 𝜈
𝜂
: 𝑄 × (Σ∪ {𝜀}) × Γ ×𝑄×Γ

∗
→ {0, 1}

are defined as

𝜇
𝜂
(𝑞, 𝜏, 𝑍, 𝑝, 𝛾) = {

1, if (𝑝, 𝛾) ∈ 𝛿󸀠 (𝑞, 𝜏, 𝑍)
0, otherwise,

𝜈
𝜂
(𝑞, 𝜏, 𝑍, 𝑝, 𝛾) = {

0, if (𝑝, 𝛾) ∈ 𝛿󸀠 (𝑞, 𝜏, 𝑍)
1, otherwise,

(20)

for any (𝑞, 𝜏, 𝑍, 𝑝, 𝛾) ∈ 𝑄 × (Σ ∪ {𝜀}) × Γ × 𝑄 × Γ∗.
𝐹 = (𝜇

𝐹
, 𝜈
𝐹
) is an IFS in 𝑄, where 𝜇

𝐹
(𝑞) = ⋁{𝑎 ∈ [0,

1] | 𝑞 ∈ 𝐹
𝑎𝑏
} and 𝜈

𝐹
(𝑞) = ⋀{𝑏 ∈ [0, 1]𝑞 ∈ 𝐹

𝑎𝑏
}, for all

𝑞 ∈ 𝑄. Then L(M) = 𝑓
𝑆
. In fact, for any 𝜔 ∈ Σ

∗,
𝜇L(M)(𝜔) = ⋁{𝜇

𝐹
(𝑞) | 𝜇

⊢
∗

M
((𝑞

0
, 𝜔, 𝑍

0
), (𝑞, 𝜀, 𝛾)) = 1, 𝑞 ∈

𝑄, 𝛾 ∈ Γ
∗
} = ⋁{⋁{𝑎 ∈ [0, 1] | 𝑞 ∈ 𝐹

𝑎𝑏
} | 𝜇

⊢
∗

M
((𝑞

0
, 𝜔,

𝑍
0
), (𝑞, 𝜀, 𝛾)) = 1, 𝑞 ∈ 𝑄, 𝛾 ∈ Γ

∗
} = ⋁{𝑎 ∈ [0, 1] |

𝑞 ∈ 𝐹
𝑎𝑏
, 𝜇
⊢
∗

M
((𝑞

0
, 𝜔, 𝑍

0
), (𝑞, 𝜀, 𝛾)) = 1, 𝑞 ∈ 𝑄, 𝛾 ∈ Γ

∗
} =

⋁{𝑎 ∈ [0, 1] | 𝑞 ∈ 𝐹
𝑎𝑏
, (𝑞

0
, 𝜔, 𝑍

0
) ≻

∗

M𝑎𝑏
(𝑞, 𝜀, 𝛾), 𝛾 ∈ Γ

∗
} =

⋁{𝑎 ∈ [0, 1] | M
𝑎𝑏

accepts 𝜔,M
𝑎𝑏

∈ 𝑆} = 𝜇
𝑓𝑆
(𝜔),

𝜈L(M)(𝜔) = ⋀{𝜈𝐹(𝑞) | 𝜇⊢∗
M
((𝑞

0
, 𝜔, 𝑍

0
), (𝑞, 𝜀, 𝛾)) = 1, 𝑞 ∈ 𝑄,

𝛾 ∈ Γ
∗
} = ⋀{⋀{𝑏 ∈ [0, 1] | 𝑞 ∈ 𝐹

𝑎𝑏
} | 𝜇

⊢
∗

M
((𝑞

0
, 𝜔,

𝑍
0
), (𝑞, 𝜀, 𝛾)) = 1, 𝑞 ∈ 𝑄, 𝛾 ∈ Γ

∗
} = ⋀{𝑏 ∈ [0, 1] | 𝑞 ∈ 𝐹

𝑎𝑏
,
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(𝑞
0
, 𝜔, 𝑍

0
) ≻

∗

M𝑎𝑏
(𝑞, 𝜀, 𝛾), 𝛾 ∈ Γ

∗
} = ⋀{𝑏 ∈ [0, 1] | M

𝑎𝑏

accepts 𝜔,M
𝑎𝑏
∈ 𝑆} = 𝜈

𝑓𝑆
(𝜔).

Therefore, the IFSPDAM accepts 𝑓.

Theorem 16 shows that every IFPDA is equivalent to a
certain cover; however, the cover may have infinite classical
pushdown automata elements. Is there a finite cover who
is equivalent to the IFPDA? To solve the problem, we
introduce the notion of an intuitionistic fuzzy recognizable
step function as follows.

Definition 17. An IFS 𝐴 over Σ∗ is called an intuitionistic
fuzzy recognizable step function if there are a finite nat-
ural number 𝑛 ∈ 𝑁, recognizable context-free languages
L
1
, . . . ,L

𝑛
⊆ Σ

∗, and (𝑎
𝑖
, 𝑏
𝑖
) ∈ (0, 1]×[0, 1)with 0 ≤ 𝑎

𝑖
+𝑏
𝑖
≤

1 for 𝑖 = 1, . . . , 𝑛 such that

𝐴 = (𝜇
𝐴
, 𝜈
𝐴
) =

𝑛

∐
𝑖=1

(𝑎
𝑖
, 𝑏
𝑖
) ⋅ 1Li

, (⋆)

where 1Li
= (𝜇1Li

, 𝜈1Li
) represents the intuitionistic charac-

terized function ofL
𝑖
, 𝑖 = 1, . . . , 𝑛, that is,

𝜇1Li
(𝜔) = {

1, if 𝜔 ∈L
𝑖

0, if 𝜔 ∉L
𝑖
,

𝜈1Li
(𝜔) = {

0, if 𝜔 ∈L
𝑖

1, if 𝜔 ∉L
𝑖
.

(21)

And the equation (⋆) means that the following equations
hold:

𝜇
𝐴 (𝜔) =

𝑛

⋁
𝑖=1

𝑎
𝑖
∧ 𝜇1Li

(𝜔) , 𝜈
𝐴 (𝜔) =

𝑛

⋀
𝑖=1

𝑏
𝑖
∨ 𝜈1Li

(𝜔) ,

∀𝜔 ∈ Σ
∗
.

(22)

Noting that the family of all the intuitionistic fuzzy
recognizable step functions over Σ∗ is denoted by Step𝐶(Σ).

Proposition 18. Let M󸀠

1
= (𝑄

1
, Σ, Γ

1
, 𝛿
1
, 𝑞
01
, 𝑍
01
, 𝐹
1
) be an

IFPDA.Then the language recognized byM󸀠

1
is an intuitionistic

fuzzy recognizable step function over Σ∗, that is, L(M󸀠

1
) ∈

Step𝐶(Σ).

Proof. By Proposition 14, there is an IFSPDA M = (𝑄, Σ, Γ,
𝛿, 𝑞

0
, 𝑍
0
, 𝐹) equivalent toM󸀠

1
.

Let 𝑅 = {(𝜇
𝐹
(𝑞), 𝜈

𝐹
(𝑞)) | 𝑞 ∈ 𝑄} \ {(0, 1)} = {(𝑎

𝑖
, 𝑏
𝑖
) |

𝑖 ∈ 𝑁
𝑘
}, 𝑁

𝑘
= {1, . . . , 𝑘}. Put 𝐹

𝑖
= {𝑞 ∈ 𝑄 | 𝜇

𝐹
(𝑞) =

𝑎
𝑖
, 𝜈
𝐹
(𝑞) = 𝑏

𝑖
}, for all 𝑖 ∈ 𝑁

𝑘
. Then we construct a PDA

M
𝑖
= (𝑄, Σ, Γ, 𝛿

󸀠
, 𝑞
0
, 𝑍
0
, 𝐹
𝑖
), where the mapping 𝛿󸀠 : 𝑄 × (Σ∪

{𝜀}) × Γ → 2
𝑄×Γ
∗

is defined by

𝛿
󸀠
(𝑞, 𝜏, 𝑋) = {(𝑝, 𝛾) | 𝜇

𝛿
(𝑞, 𝜏, 𝑋, 𝑝, 𝛾) = 1, 𝑝 ∈ 𝑄, 𝛾 ∈

Γ
∗
}, for all (𝑞, 𝜏, 𝑋) ∈ 𝑄 × (Σ ∪ {𝜀}) × Γ.

Then L(M
𝑖
) = L

𝑖
= {𝜔 ∈ Σ

∗
| (𝑞

0
, 𝜔, 𝑍

0
) ≻

∗

M𝑖
(𝑞, 𝜀, 𝛾),

𝑞 ∈ 𝐹
𝑖
, 𝛾 ∈ Γ

∗
}.

Therefore, for any𝜔 ∈ Σ∗, we have 𝜇L(M󸀠
1
)
(𝜔) = 𝜇L(M)(𝜔)

= ⋁{𝜇
𝐹
(𝑞) | 𝜇

⊢
∗

M
((𝑞

0
, 𝜔, 𝑍

0
), (𝑞, 𝜀, 𝛾)) = 1, 𝑞 ∈ 𝑄, 𝛾 ∈ Γ∗} =

⋁{𝑎
𝑖
| 𝜇

⊢
∗

M
((𝑞

0
, 𝜔, 𝑍

0
), (𝑞, 𝜀, 𝛾)) = 1, 𝜇

𝐹
(𝑞) = 𝑎

𝑖
, 𝜈
𝐹
(𝑞) = 𝑏

𝑖
,

𝑖 ∈ 𝑁
𝑘
, 𝛾 ∈ Γ

∗
} = ⋁{𝑎

𝑖
| (𝑞

0
, 𝜔, 𝑍

0
) ≻

∗

M𝑖
(𝑞, 𝜀, 𝛾), 𝑞 ∈ 𝐹

𝑖
,

𝑖 ∈ 𝑁
𝑘
, 𝛾 ∈ Γ

∗
} = ⋁{𝑎

𝑖
| 𝜔 ∈ L(M

𝑖
), 𝑖 ∈ 𝑁

𝑘
} = ⋁

𝑖∈𝑁𝑘
𝑎
𝑖
∧

𝜇1L(Mi)
(𝜔), and 𝜈L(M󸀠

1
)
(𝜔) = 𝜈L(M)(𝜔) = ⋀{𝜈𝐹(𝑞) | 𝜈⊢∗

M
((𝑞

0
,

𝜔,𝑍
0
), (𝑞, 𝜀, 𝛾)) = 0, 𝑞 ∈ 𝑄, 𝛾 ∈ Γ

∗
} = ⋀{𝑏

𝑖
|

𝜇
⊢
∗

M
((𝑞

0
, 𝜔, 𝑍

0
), (𝑞, 𝜀, 𝛾)) = 1, 𝜇

𝐹
(𝑞) = 𝑎

𝑖
, 𝜈
𝐹
(𝑞) = 𝑏

𝑖
, 𝑖 ∈

𝑁
𝑘
, 𝛾 ∈ Γ

∗
} = ⋀{𝑏

𝑖
| (𝑞

0
, 𝜔, 𝑍

0
) ≻

∗

M𝑖
(𝑞, 𝜀, 𝛾), 𝑞 ∈ 𝐹

𝑖
, 𝑖 ∈ 𝑁

𝑘
,

𝛾 ∈ Γ
∗
} = ⋀{𝑏

𝑖
| 𝜔 ∈L(M

𝑖
), 𝑖 ∈ 𝑁

𝑘
} = ⋀

𝑖∈𝑁𝑘
𝑏
𝑖
∨ 𝜈1L(Mi)

(𝜔).
SoL(M) = ∐

𝑖∈𝑁𝑘
(𝑎
𝑖
, 𝑏
𝑖
) ⋅ 1Li

.

Proposition 18 shows that the set of the languages rec-
ognized by all the IFPDAs is a subset of Step𝐶(Σ). In fact,
Step𝐶(Σ) is also a subset of the set of the languages recognized
by all the IFPDAs. We will prove the decomposition form in
the following.

Theorem 19. Let 𝐴 be an IFS over Σ∗. Then the following
statements are equivalent:

(i) 𝐴 ∈ Step𝐶(Σ);
(ii) there is an IFPDAM such that 𝐴 =L(M);
(iii) there is an IFSPDAM such that 𝐴 =L(M).

Proof. (i) implies (iii). Suppose 𝐴 ∈ Step𝐶(Σ). Then there is
a finite natural number 𝑛 ∈ 𝑁, recognizable context-free
languages L

1
, . . . ,L

𝑛
⊆ Σ

∗, and (𝑎
𝑖
, 𝑏
𝑖
) ∈ (0, 1] × [0, 1)

with 0 ≤ 𝑎
𝑖
+ 𝑏

𝑖
≤ 1 for 𝑖 = 1, . . . , 𝑛 such that 𝐴 =

(𝜇
𝐴
, 𝜈
𝐴
) = ∐

𝑛

𝑖=1
(𝑎
𝑖
, 𝑏
𝑖
) ⋅ 1Li

. Let L
𝑖
be recognized by a PDA

M
𝑖
= (𝑄

𝑖
, Σ, Γ

𝑖
, 𝛿
𝑖
, 𝑞
0𝑖
, 𝑍
0𝑖
, 𝐹
𝑖
), and𝑄

𝑖
∩𝑄

𝑗
= 0whenever 𝑖 ̸= 𝑗,

𝑖, 𝑗 ∈ 𝑁
𝑛
.

Next, construct an IFSPDA M = (𝑄, Σ, Γ, 𝛿, 𝑞
0
, 𝑍
0
, 𝐹)

as follows: 𝑄 = ⋃
𝑛

𝑖=1
𝑄
𝑖
∪ {𝑞

0
}, Γ = ⋃

𝑛

𝑖=1
Γ
𝑖
∪ {𝑍

0
}, where

𝑞
0
∉ ⋃

𝑛

𝑖=1
𝑄
𝑖
, 𝑍

0
∉ ⋃

𝑛

𝑖=1
Γ
𝑖
. 𝛿 = (𝜇

𝛿
, 𝜈
𝛿
) is an IFS over

𝑄 × (Σ ∪ {𝜀}) × Γ × 𝑄 × Γ
∗, where the mappings 𝜇

𝛿
, 𝜈
𝛿
:

𝑄 × (Σ ∪ {𝜀}) × Γ × 𝑄 × Γ
∗
→ {0, 1} are defined by 𝜇

𝛿
(𝑞
0
,

𝜀, 𝑍
0
, 𝑝, 𝛾) = 1 and 𝜈

𝛿
(𝑞
0
, 𝜀, 𝑍

0
, 𝑝, 𝛾) = 0 if (𝑝, 𝛾) = (𝑞

0𝑖
,

𝑍
0𝑖
), 𝑖 ∈ 𝑁

𝑛
; 𝜇

𝛿
(𝑞, 𝜏, 𝑍, 𝑝, 𝛾) = 𝜇

𝛿𝑖
(𝑞, 𝜏, 𝑍, 𝑝, 𝛾) and 𝜈

𝛿
(𝑞,

𝜏, 𝑍, 𝑝, 𝛾) = 𝜈
𝛿𝑖
(𝑞, 𝜏, 𝑍, 𝑝, 𝛾) if 𝑝, 𝑞 ∈ 𝑄

𝑖
, 𝑍 ∈ Γ

𝑖
, 𝛾 ∈ Γ

∗

𝑖
,

𝜏 ∈ Σ ∪ {𝜀}, 𝑖 ∈ 𝑁
𝑛
. Otherwise, 𝜇

𝛿
(𝑞, 𝜏, 𝑍, 𝑝, 𝛾) = 0 and

𝜈
𝛿
(𝑞, 𝜏, 𝑍, 𝑝, 𝛾) = 1.
𝐹 = (𝜇

𝐹
, 𝜈
𝐹
) is an IFS in 𝑄, where

𝜇
𝐹
(𝑞
0
) = ⋁{𝑎

𝑖
∈ [0, 1] | 𝑞0𝑖 ∈ 𝐹𝑖, 𝑖 ∈ 𝑁𝑛} ,

𝜈
𝐹
(𝑞
0
) = ⋀{𝑏

𝑖
∈ [0, 1] | 𝑞0𝑖 ∈ 𝐹𝑖, 𝑖 ∈ 𝑁𝑛} ,

𝜇
𝐹
(𝑞) = {

𝑎
𝑖
, if 𝑞 ∈ 𝐹

𝑖

0, if 𝑞 ∉ 𝐹
𝑖
∪ {𝑞

0
} ,

𝜈
𝐹
(𝑞) = {

𝑏
𝑖
, if 𝑞 ∈ 𝐹

𝑖

1, if 𝑞 ∉ 𝐹
𝑖
∪ {𝑞

0
} .

(23)

Therefore, for any 𝜔 ∈ Σ∗, we have
𝜇L(M)(𝜔) = ⋁{𝜇⊢∗

M
((𝑞

0
, 𝜔, 𝑍

0
), (𝑞, 𝜀, 𝛾)) ∧ 𝜇

𝐹
(𝑞) | 𝑞 ∈

𝑄, 𝛾 ∈ Γ
∗
},

𝜈L(M)(𝜔) = ⋀{𝜈⊢∗
M
((𝑞

0
, 𝜔, 𝑍

0
), (𝑞, 𝜀, 𝛾)) ∨ 𝜈

𝐹
(𝑞) | 𝑞 ∈

𝑄, 𝛾 ∈ Γ
∗
}.
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If 𝜔 = 𝜀, then 𝜇L(M)(𝜀) = (𝜇⊢∗
M
((𝑞

0
, 𝜀, 𝑍

0
), (𝑞

0
, 𝜀, 𝑍

0
)) ∧

𝜇
𝐹
(𝑞
0
)) ∨ (⋁{𝜇

⊢
∗

M
((𝑞

0
, 𝜀, 𝑍

0
), (𝑞

0𝑖
, 𝜀, 𝑍

0𝑖
)) ∧ 𝜇

𝐹
(𝑞
0𝑖
) | 𝑞

0𝑖
∈

𝑄
𝑖
, 𝑍
0𝑖
∈ Γ

𝑖
, 𝑖 ∈ 𝑁

𝑛
}) = 𝜇

𝐹
(𝑞
0
) ∨ (⋁{𝜇

𝐹
(𝑞
0𝑖
) | 𝑞

0𝑖
∈ 𝑄

𝑖
, 𝑍
0𝑖
∈

Γ
𝑖
, 𝑖 ∈ 𝑁

𝑛
}) = ⋁{𝑎

𝑖
∈ [0, 1] | 𝑞

0𝑖
∈ 𝐹

𝑖
, 𝑖 ∈ 𝑁

𝑛
} =

⋁
𝑛

𝑖=1
𝑎
𝑖
∧ 𝜇1Li

(𝜀); 𝜈L(M)(𝜀) = (𝜈
⊢
∗

M
((𝑞

0
, 𝜀, 𝑍

0
), (𝑞

0
, 𝜀, 𝑍

0
)) ∨

𝜈
𝐹
(𝑞
0
)) ∧ (⋀{𝜈

⊢
∗

M
((𝑞

0
, 𝜀, 𝑍

0
), (𝑞

0𝑖
, 𝜀, 𝑍

0𝑖
)) ∨ 𝜈

𝐹
(𝑞
0𝑖
) | 𝑞

0𝑖
∈ 𝑄

𝑖
,

𝑍
0𝑖
∈ Γ

𝑖
, 𝑖 ∈ 𝑁

𝑛
}) = 𝜈

𝐹
(𝑞
0
)∧(⋀{𝜈

𝐹
(𝑞
0𝑖
) | 𝑞

0𝑖
∈ 𝑄

𝑖
,𝑍

0𝑖
∈ Γ

𝑖
, 𝑖 ∈

𝑁
𝑛
}) = ⋀{𝑏

𝑖
∈ [0, 1] | 𝑞

0𝑖
∈ 𝐹

𝑖
, 𝑖 ∈ 𝑁

𝑛
} = ⋀

𝑛

𝑖=1
𝑏
𝑖
∨ 𝜈1Li

(𝜀). If
𝜔 ∈ Σ

∗
\{𝜀}, then 𝜇L(M)(𝜔) = ⋁{𝜇⊢∗

M
((𝑞

0𝑖
, 𝜔, 𝑍

0𝑖
), (𝑞, 𝜀, 𝛾))∧

𝜇
𝐹
(𝑞) | 𝑞

0𝑖
∈ 𝑄

𝑖
, 𝛾 ∈ Γ∗, 𝑞 ∈ 𝑄, 𝑖 ∈ 𝑁

𝑛
} = ⋁{𝜇

𝐹
(𝑞) | 𝑞

0𝑖
∈ 𝑄

𝑖
,

𝛾 ∈ Γ
∗

𝑖
, 𝑞 ∈ 𝑄, 𝑖 ∈ 𝑁

𝑛
, 𝜇
⊢
∗

M
((𝑞

0𝑖
, 𝜔, 𝑍

0𝑖
),(𝑞, 𝜀, 𝛾)) = 1} =

⋁{𝑎
𝑖
| 𝑞 ∈ 𝐹

𝑖
, 𝑖 ∈ 𝑁

𝑛
, 𝜇
⊢
∗

M
((𝑞

0𝑖
, 𝜔, 𝑍

0𝑖
), (𝑞, 𝜀, 𝛾)) = 1, 𝛾 ∈ Γ∗

𝑖
} =

⋁{𝑎
𝑖
| 𝜔 ∈ L

𝑖
, 𝑖 ∈ 𝑁

𝑛
} = ⋁

𝑛

𝑖=1
𝑎
𝑖
∧ 𝜇1Li

(𝜔), 𝜈L(M)(𝜔) =
⋀{𝜈

⊢
∗

M
((𝑞

0𝑖
, 𝜔, 𝑍

0𝑖
), (𝑞, 𝜀, 𝛾)) ∨ 𝜈

𝐹
(𝑞)|𝑞

0𝑖
∈ 𝑄

𝑖
, 𝛾 ∈ Γ

∗
, 𝑞 ∈

𝑄, 𝑖 ∈ 𝑁
𝑛
} = ⋀{𝜈

𝐹
(𝑞) | 𝑞

0𝑖
∈ 𝑄

𝑖
, 𝛾 ∈ Γ

∗

𝑖
, 𝑞 ∈ 𝑄, 𝑖 ∈

𝑁
𝑛
, 𝜇

⊢
∗

M
((𝑞

0𝑖
, 𝜔, 𝑍

0𝑖
),(𝑞, 𝜀, 𝛾)) = 1} = ⋀{𝑏

𝑖
| 𝑞 ∈ 𝐹

𝑖
, 𝑖 ∈

𝑁
𝑛
, 𝜇
⊢
∗

M
((𝑞

0𝑖
, 𝜔, 𝑍

0𝑖
), (𝑞, 𝜀, 𝛾)) = 1, 𝛾 ∈ Γ

∗

𝑖
} = ⋀{𝑏

𝑖
| 𝜔 ∈

L
𝑖
, 𝑖 ∈ 𝑁

𝑛
} =⋀𝑛

𝑖=1
𝑎
𝑖
∨ 𝜈1Li

(𝜔).
(iii) implies (ii): obviously.
(ii) implies (i): it is concluded by Proposition 18.

Next, we will discuss the characterization of IFPDA0.

Proposition 20. LetM = (𝑄, Σ, Γ, 𝛿, 𝑞
0
, 𝑍
0
, 0) be an IFPDA0.

Then there is a special IFPDA0M󸀠
= (𝑄

󸀠
, Σ, Γ

󸀠
, 𝛿
󸀠
, 𝑞
󸀠

0
, 𝑋

0
, 0)

equivalent toM.

Proof. Given M, we construct an IFPDA0M󸀠
=

(𝑄
󸀠
, Σ, Γ

󸀠
, 𝛿
󸀠
, 𝑞
󸀠

0
, 𝑋

0
, 0) as follows:

(1) 𝑄󸀠 = 𝑄
2
× (𝐿

1
\ {0}) × (𝐿

2
\ {1}), where𝑄

2
= 𝑄∪ {𝑝

0
},

Γ
󸀠
= Γ ∪ {𝑋

0
}, 𝐿

1
= 𝑋

∧
, 𝐿

2
= 𝑌

∨
, 𝑋 = Im(𝜇

𝛿
), 𝑌 =

Im(𝜈
𝛿
), and 𝑞󸀠

0
= (𝑝

0
, 1, 0);

(2) 𝛿󸀠 = (𝜇
𝛿
󸀠 , 𝜈

𝛿
󸀠) is an IFS in𝑄󸀠 ×(Σ∪{𝜀})×Γ󸀠 ×𝑄󸀠 ×Γ󸀠∗,

where the mappings 𝜇
𝛿
󸀠 , 𝜈

𝛿
󸀠 : 𝑄

󸀠
×(Σ∪{𝜀})×Γ

󸀠
×𝑄

󸀠
×

Γ
󸀠∗
→ [0, 1] are defined by

(i) 𝜇
𝛿
󸀠((𝑝

0
, 1, 0), 𝜀, 𝑋

0
, (𝑞

0
, 1, 0), 𝑍

0
𝑋
0
) = 1,

𝜈
𝛿
󸀠((𝑝

0
, 1, 0), 𝜀, 𝑋

0
, (𝑞

0
, 1, 0), 𝑍

0
𝑋
0
) = 0;

(ii) 𝜇
𝛿
󸀠((𝑞, 𝑎, 𝑏), 𝜏, 𝑋, (𝑞

󸀠
, 𝑎 ∧ 𝑎

󸀠
, 𝑏 ∨ 𝑏

󸀠
), 𝛾) = 1

and 𝜈
𝛿
󸀠((𝑞, 𝑎, 𝑏), 𝜏, 𝑋, (𝑞

󸀠
, 𝑎 ∧ 𝑎

󸀠
, 𝑏 ∨ 𝑏

󸀠
), 𝛾) =

0 whenever 𝜇
𝛿
(𝑞, 𝜏, 𝑋, 𝑞

󸀠
, 𝛾) = 𝑎

󸀠
> 0 and

𝜈
𝛿
(𝑞, 𝜏, 𝑋, 𝑞

󸀠
, 𝛾) = 𝑏

󸀠
< 1, for all (𝑞, 𝑎, 𝑏) ∈ 𝑄󸀠,

𝜏 ∈ Σ ∪ {𝜀},𝑋 ∈ Γ, 𝛾 ∈ Γ∗;
(iii) if 0 ≤ 𝑎 + 𝑏 ≤ 1, then 𝜇

𝛿
󸀠((𝑞, 𝑎, 𝑏), 𝜀, 𝑋

0
, (𝑞, 𝑎,

𝑏), 𝜀) = 𝑎 and 𝜈
𝛿
󸀠((𝑞, 𝑎, 𝑏), 𝜀, 𝑋

0
, (𝑞, 𝑎, 𝑏), 𝜀) = 𝑏.

If 𝑎+𝑏 > 1, then 𝜇
𝛿
󸀠((𝑞, 𝑎, 𝑏), 𝜀, 𝑋

0
, (𝑞, 𝑎, 𝑏), 𝜀) =

0 and 𝜈
𝛿
󸀠((𝑞, 𝑎, 𝑏), 𝜀, 𝑋

0
, (𝑞, 𝑎, 𝑏), 𝜀) = 1;

(iv) In other cases, 𝜇
𝛿
󸀠((𝑞, 𝑎, 𝑏), 𝜏, 𝑋, (𝑝, 𝑐, 𝑑), 𝛾) = 0

and 𝜈
𝛿
󸀠((𝑞, 𝑎, 𝑏), 𝜏,𝑋, (𝑝, 𝑐, 𝑑), 𝛾) = 1.

Obviously, 𝛿󸀠 = (𝜇
𝛿
󸀠 , 𝜈

𝛿
󸀠) is a finite IFS in 𝑄󸀠 × (Σ ∪ {𝜀}) ×

Γ
󸀠
× 𝑄

󸀠
× Γ

󸀠∗.
Next, we showL(M󸀠

) =L(M).

Firstly let us show that, for any 𝜔 = 𝜏
1
⋅ ⋅ ⋅ 𝜏

𝑛
∈ Σ

∗, 𝜏
𝑖
∈

Σ ∪ {𝜀}, 𝑖 ∈ {1, . . . , 𝑛}, 𝑞
𝑛
∈ 𝑄,

𝜇
⊢
∗

M󸀠
((𝑞

󸀠

0
, 𝜔, 𝑋

0
) , ((𝑞

𝑛
, 𝑎
𝑛
, 𝑏
𝑛
) , 𝜀, 𝑋

0
))

= {
1, if (P2) is satisfied
0, otherwise,

𝜈
⊢
∗

M󸀠
((𝑞

󸀠

0
, 𝜔, 𝑋

0
) , ((𝑞

𝑛
, 𝑎
𝑛
, 𝑏
𝑛
) , 𝜀, 𝑋

0
))

= {
0, if (P2) is satisfied
1, otherwise,

(24)

where the condition (P2) is the following:

(P2) there exist 𝑞
1
, . . . , 𝑞

𝑛−1
∈ 𝑄, 𝑍

1
, . . . , 𝑍

𝑛−1
∈ Γ, 𝛾

1
,

. . . , 𝛾
𝑛−1

∈ Γ
∗, s.t. 𝑎

𝑛
= 𝜇

⊢M
((𝑞

0
, 𝜔, 𝑍

0
), (𝑞

1
, 𝜏
2
⋅ ⋅ ⋅ 𝜏

𝑛
,

𝑍
1
𝛾
1
))∧𝜇

⊢M
((𝑞

1
, 𝜏
2
⋅ ⋅ ⋅ 𝜏

𝑛
, 𝑍
1
𝛾
1
), (𝑞

2
, 𝜏
3
⋅ ⋅ ⋅ 𝜏

𝑛
, 𝑍
2
𝛾
2
))∧

⋅ ⋅ ⋅ ∧ 𝜇
⊢M
((𝑞

𝑛−1
, 𝜏

𝑛
, 𝑍
𝑛−1
𝛾
𝑛−1
), (𝑞

𝑛
, 𝜀, 𝜀)) > 0

and 𝑏
𝑛

= 𝜈
⊢M
((𝑞

0
, 𝜔, 𝑍

0
), (𝑞

1
, 𝜏
2
⋅ ⋅ ⋅ 𝜏

𝑛
, 𝑍
1
𝛾
1
)) ∨

𝜈
⊢M
((𝑞

1
, 𝜏
2
⋅ ⋅ ⋅ 𝜏

𝑛
, 𝑍
1
𝛾
1
), (𝑞

2
, 𝜏
3
⋅ ⋅ ⋅ 𝜏

𝑛
, 𝑍
2
𝛾
2
)) ∨ ⋅ ⋅ ⋅ ∨

𝜈
⊢M
((𝑞

𝑛−1
, 𝜏
𝑛
, 𝑍
𝑛−1
𝛾
𝑛−1
), (𝑞

𝑛
, 𝜀, 𝜀)) < 1.

In fact, if (P2) is satisfied, then let 𝜇
⊢M
((𝑞

𝑖
, 𝜏
𝑖+1
⋅ ⋅ ⋅ 𝜏

𝑛
,

𝑍
𝑖
𝛾
𝑖
), (𝑞

𝑖+1
, 𝜏
𝑖+2
⋅ ⋅ ⋅ 𝜏

𝑛
, 𝑍
𝑖+1
𝛾
𝑖+1
)) = 𝑐

𝑖
, 𝜈
⊢M
((𝑞

𝑖
, 𝜏
𝑖+1
⋅ ⋅ ⋅ 𝜏

𝑛
, 𝑍
𝑖
𝛾
𝑖
),

(𝑞
𝑖+1
, 𝜏
𝑖+2
⋅ ⋅ ⋅ 𝜏

𝑛
, 𝑍
𝑖+1
𝛾
𝑖+1
)) = 𝑑

𝑖
, 𝑖 = 0, 1, . . . , 𝑛 − 2, where

𝛾
0
= 𝜀. We have

𝜇
⊢
M󸀠
((𝑞

0
, 1, 0), 𝜔,𝑍

0
𝑋
0
), ((𝑞

1
, 𝑐
0
, 𝑑
0
), 𝜏

2
⋅ ⋅ ⋅ 𝜏

𝑛
,

𝑍
1
𝛾
1
𝑋
0
)) = 1,

𝜈
⊢
M󸀠
((𝑞

0
, 1, 0), 𝜔,𝑍

0
𝑋
0
), ((𝑞

1
, 𝑐
0
, 𝑑
0
), 𝜏

2
⋅ ⋅ ⋅ 𝜏

𝑛
,

𝑍
1
𝛾
1
𝑋
0
)) = 0,

𝜇
⊢
M󸀠
(((𝑞

1
, 𝑐
0
, 𝑑
0
), 𝜏

2
⋅ ⋅ ⋅ 𝜏

𝑛
, 𝑍
1
𝛾
1
𝑋
0
), ((𝑞

2
, 𝑐
0
∧ 𝑐

1
, 𝑑
0
∨

𝑑
1
), 𝜏

3
⋅ ⋅ ⋅ 𝜏

𝑛
, 𝑍
2
𝛾
2
𝑋
0
)) = 1,

𝜈
⊢
M󸀠
(((𝑞

1
, 𝑐
0
, 𝑑
0
), 𝜏

2
⋅ ⋅ ⋅ 𝜏

𝑛
, 𝑍
1
𝛾
1
𝑋
0
), ((𝑞

2
, 𝑐
0
∧ 𝑐

1
, 𝑑
0
∨

𝑑
1
), 𝜏

3
⋅ ⋅ ⋅ 𝜏

𝑛
, 𝑍
2
𝛾
2
𝑋
0
)) = 0,

...
𝜇
⊢
M󸀠
(((𝑞

𝑛−1
, 𝑐
0
∧ 𝑐

1
∧ ⋅ ⋅ ⋅ ∧ 𝑐

𝑛−2
, 𝑑
0
∨ 𝑑

1
∨ ⋅ ⋅ ⋅ ∨ 𝑑

𝑛−2
),

𝜏
𝑛
, 𝑍
𝑛−1
𝛾
𝑛−1
𝑋
0
), ((𝑞

𝑛
, 𝑎
𝑛
, 𝑏
𝑛
), 𝜀, 𝑋

0
)) = 1,

𝜈
⊢
M󸀠
(((𝑞

𝑛−1
, 𝑐
0
∧ 𝑐

1
∧ ⋅ ⋅ ⋅ ∧ 𝑐

𝑛−2
, 𝑑
0
∨ 𝑑

1
∨ ⋅ ⋅ ⋅ ∨ 𝑑

𝑛−2
),

𝜏
𝑛
, 𝑍
𝑛−1
𝛾
𝑛−1
𝑋
0
), ((𝑞

𝑛
, 𝑎
𝑛
, 𝑏
𝑛
), 𝜀, 𝑋

0
)) = 0.

Hence 𝜇
⊢
∗

M󸀠
((𝑞

󸀠

0
, 𝜔, 𝑋

0
), ((𝑞

𝑛
, 𝑎
𝑛
, 𝑏
𝑛
), 𝜀, 𝑋

0
) ≥ 𝜇

⊢
M󸀠
((𝑞

0
,

1, 0), 𝜔,𝑍
0
𝑋
0
), ((𝑞

1
, 𝑐
0
, 𝑑
0
), 𝜏

2
⋅ ⋅ ⋅ 𝜏

𝑛
, 𝑍

1
𝛾
1
𝑋
0
)) ∧ 𝜇

⊢
M󸀠
(((𝑞

1
,

𝑐
0
, 𝑑
0
), 𝜏

2
⋅ ⋅ ⋅ 𝜏

𝑛
, 𝑍
1
𝛾
1
𝑋
0
), ((𝑞

2
, 𝑐
0
∧ 𝑐

1
, 𝑑
0
∨ 𝑑

1
), 𝜏

3
⋅ ⋅ ⋅ 𝜏

𝑛
,

𝑍
2
𝛾
2
𝑋
0
)) ∧ ⋅ ⋅ ⋅ ∧ 𝜇

⊢
M󸀠
(((𝑞

𝑛−1
, 𝑐
0
∧ 𝑐

1
∧ ⋅ ⋅ ⋅ ∧ 𝑐

𝑛−2
, 𝑑

0
∨

𝑑
1
∨ ⋅ ⋅ ⋅ ∨ 𝑑

𝑛−2
), 𝜏

𝑛
, 𝑍
𝑛−1
𝛾
𝑛−1
𝑋
0
), ((𝑞

𝑛
, 𝑎
𝑛
, 𝑏
𝑛
), 𝜀, 𝑋

0
)) = 1,

𝜈
⊢
∗

M󸀠
((𝑞

󸀠

0
, 𝜔, 𝑋

0
), ((𝑞

𝑛
, 𝑎
𝑛
, 𝑏
𝑛
), 𝜀, 𝑋

0
)) ≤ 𝜈

⊢
M󸀠
((𝑞

0
, 1, 0), 𝜔,

𝑍
0
𝑋
0
), ((𝑞

1
, 𝑐
0
, 𝑑
0
), 𝜏

2
⋅ ⋅ ⋅ 𝜏

𝑛
, 𝑍
1
𝛾
1
𝑋
0
)) ∨ 𝜈

⊢
M󸀠
(((𝑞

1
, 𝑐
0
, 𝑑

0
), 𝜏

2

⋅ ⋅ ⋅ 𝜏
𝑛
, 𝑍
1
𝛾
1
𝑋
0
), ((𝑞

2
, 𝑐
0
∧ 𝑐

1
, 𝑑
0
∨ 𝑑

1
), 𝜏

3
⋅ ⋅ ⋅ 𝜏

𝑛
, 𝑍
2
𝛾
2
𝑋
0
)) ∨

⋅ ⋅ ⋅ ∨ 𝜈
⊢
M󸀠
(((𝑞

𝑛−1
, 𝑐
0
∧ 𝑐

1
∧ ⋅ ⋅ ⋅ ∧ 𝑐

𝑛−2
, 𝑑

0
∨ 𝑑

1
∨ ⋅ ⋅ ⋅ ∨ 𝑑

𝑛−2
),

𝜏
𝑛
, 𝑍
𝑛−1
𝛾
𝑛−1
𝑋
0
), ((𝑞

𝑛
, 𝑎
𝑛
, 𝑏
𝑛
), 𝜀, 𝑋

0
)) = 0.

Since 𝜇
⊢
∗

M󸀠
((𝑞

󸀠

0
, 𝜔, 𝑋

0
), ((𝑞

𝑛
, 𝑎
𝑛
, 𝑏
𝑛
), 𝜀, 𝑋

0
)) ≤ 1 and

𝜈
⊢
∗

M󸀠
((𝑞

󸀠

0
, 𝜔, 𝑋

0
), ((𝑞

𝑛
, 𝑎
𝑛
, 𝑏
𝑛
), 𝜀, 𝑋

0
)) ≥ 0, 𝜇

⊢
∗

M󸀠
((𝑞

󸀠

0
, 𝜔,𝑋

0
),
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((𝑞
𝑛
, 𝑎
𝑛
, 𝑏
𝑛
), 𝜀, 𝑋

0
)) = 1 and 𝜈

⊢
∗

M󸀠
((𝑞

󸀠

0
, 𝜔, 𝑋

0
), ((𝑞

𝑛
, 𝑎
𝑛
, 𝑏
𝑛
),

𝜀, 𝑋
0
)) = 0.
If (P2) is not satisfied, then we assume 𝜇

⊢
∗

M󸀠
((𝑞

󸀠

0
,

𝜔,𝑋
0
), ((𝑞

𝑛
, 𝑎
𝑛
, 𝑏
𝑛
), 𝜀, 𝑋

0
)) > 0.

So there at least exist 𝑞
1
, . . . , 𝑞

𝑛−1
∈ 𝑄, 𝑍

1
, . . . , 𝑍

𝑛−1
∈ Γ,

𝛾
1
, . . . , 𝛾

𝑛−1
∈ Γ

∗, s.t. 𝜇
⊢
M󸀠
((𝑞

0
, 1, 0), 𝜔, 𝑍

0
𝑋
0
), ((𝑞

1
, 𝑐
0
, 𝑑
0
),

𝜏
2
⋅ ⋅ ⋅ 𝜏

𝑛
, 𝑍
1
𝛾
1
𝑋
0
)) ∧ 𝜇

⊢
M󸀠
(((𝑞

1
, 𝑐

0
, 𝑑
0
), 𝜏

2
⋅ ⋅ ⋅ 𝜏

𝑛
, 𝑍

1
𝛾
1
𝑋
0
),

((𝑞
2
, 𝑐
0
∧ 𝑐

1
, 𝑑
0
∨ 𝑑

1
), 𝜏

3
⋅ ⋅ ⋅ 𝜏

𝑛
, 𝑍
2
𝛾
2
𝑋
0
)) ∧ ⋅ ⋅ ⋅ ∧ 𝜇

⊢
M󸀠
(((𝑞

𝑛−1
,

𝑐
0
∧ 𝑐

1
∧ ⋅ ⋅ ⋅ ∧ 𝑐

𝑛−2
, 𝑑

0
∨ 𝑑

1
∨ ⋅ ⋅ ⋅ ∨ 𝑑

𝑛−2
),𝜏
𝑛
, 𝑍
𝑛−1
𝛾
𝑛−1
𝑋
0
),

((𝑞
𝑛
, 𝑎
𝑛
, 𝑏
𝑛
), 𝜀, 𝑋

0
)) > 0.

Hence 𝑎
𝑛

= 𝜇
⊢M
((𝑞

0
, 𝜔, 𝑍

0
), (𝑞

1
, 𝜏
2
⋅ ⋅ ⋅ 𝜏

𝑛
, 𝑍
1
𝛾
1
)) ∧

𝜇
⊢M
((𝑞

1
, 𝜏
2
⋅ ⋅ ⋅ 𝜏

𝑛
, 𝑍
1
𝛾
1
), (𝑞

2
, 𝜏
3
⋅ ⋅ ⋅ 𝜏

𝑛
,𝑍

2
𝛾
2
))∧ ⋅ ⋅ ⋅ ∧𝜇

⊢M
((𝑞

𝑛−1
,

𝜏
𝑛
, 𝑍
𝑛−1
𝛾
𝑛−1
), (𝑞

𝑛
, 𝜀, 𝜀)) > 0 and 𝑏

𝑛
= 𝜈

⊢M
((𝑞

0
, 𝜔, 𝑍

0
), (𝑞

1
, 𝜏
2

⋅ ⋅ ⋅ 𝜏
𝑛
, 𝑍
1
𝛾
1
)) ∨ 𝜈

⊢M
((𝑞

1
, 𝜏
2
⋅ ⋅ ⋅ 𝜏

𝑛
, 𝑍
1
𝛾
1
), (𝑞

2
, 𝜏
3
⋅ ⋅ ⋅ 𝜏

𝑛
, 𝑍

2
𝛾
2
)) ∨

⋅ ⋅ ⋅ ∨ 𝜈
⊢M
((𝑞

𝑛−1
, 𝜏
𝑛
, 𝑍
𝑛−1
𝛾
𝑛−1
), (𝑞

𝑛
, 𝜀, 𝜀)) < 1.

It contradicts with the assumption. So 𝜇
⊢
∗

M󸀠
((𝑞

󸀠

0
, 𝜔, 𝑋

0
),

((𝑞
𝑛
, 𝑎
𝑛
, 𝑏
𝑛
), 𝜀, 𝑋

0
) = 0 if (P2) is not satisfied. In a similar

way, it is easily concluded that 𝜈
⊢
∗

M󸀠
((𝑞

󸀠

0
, 𝜔, 𝑋

0
), ((𝑞

𝑛
, 𝑎
𝑛
,

𝑏
𝑛
), 𝜀, 𝑋

0
) = 1 if (P2) is not satisfied.

Secondly, for any 𝜔 = 𝜏
1
⋅ ⋅ ⋅ 𝜏

𝑛
∈ Σ

∗, 𝜏
𝑖
∈ Σ ∪ {𝜀},

𝑖 ∈ {1, . . . , 𝑛}, 𝜇L(M󸀠)(𝜔) = ⋁{𝜇⊢∗
M󸀠
((𝑞

󸀠

0
, 𝜔, 𝑋

0
), ((𝑞

𝑛
, 𝑎
𝑛
, 𝑏
𝑛
), 𝜀,

𝑋
0
)) ∧ 𝜇

⊢
M󸀠
((𝑞

𝑛
, 𝑎
𝑛
, 𝑏
𝑛
), 𝜀, 𝑋

0
), ((𝑞

𝑛
, 𝑎
𝑛
, 𝑏
𝑛
), 𝜀, 𝜀)) | (𝑞

𝑛
, 𝑎
𝑛
,

𝑏
𝑛
) ∈ 𝑄

󸀠
} =⋁{𝜇

⊢M
((𝑞

0
, 𝜔, 𝑍

0
), (𝑞

1
, 𝜏
2
⋅ ⋅ ⋅ 𝜏

𝑛
,𝑍

1
𝛾
1
)) ∧𝜇

⊢M
((𝑞

1
,

𝜏
2
⋅ ⋅ ⋅ 𝜏

𝑛
, 𝑍
1
𝛾
1
), (𝑞

2
, 𝜏
3
⋅ ⋅ ⋅ 𝜏

𝑛
, 𝑍

2
𝛾
2
)) ∧ ⋅ ⋅ ⋅ ∧ 𝜇

⊢M
((𝑞

𝑛−1
, 𝜏

𝑛
,

𝑍
𝑛−1
𝛾
𝑛−1
),(𝑞

𝑛
, 𝜀, 𝜀)) | 𝑞

1
, . . . , 𝑞

𝑛
∈ 𝑄, 𝑍

1
, . . . , 𝑍

𝑛−1
∈ Γ, 𝛾

1
,

. . . , 𝛾
𝑛−1

∈ Γ
∗
} = 𝜇L(M)(𝜔).

Similarly, 𝜈L(M󸀠)(𝜔) = 𝜈L(M)(𝜔).
HenceL(M󸀠

) =L(M).

Remark 21. Proposition 20 presents an equivalence of an
IFPDA0. In particular, due to the underlying truth-valued
domain being an IFS, the proof technique used in Propo-
sition 20 is to some extent different from the technique of
extended subset construction in [33]. Moreover, Proposi-
tion 20 plays an important role in proving the fact that any
language recognized by an IFPDA0 is an intuitionistic fuzzy
recognizable step function.

Proposition 22. LetM = (𝑄, Σ, Γ, 𝛿, 𝑞
0
, 𝑍
0
, 0) be an IFPDA0.

Then the language recognized by M is an intuitionistic fuzzy
recognizable step function over Σ∗, that is,L(M) ∈ Step𝐶(Σ).

Proof. Let M = (𝑄, Σ, Γ, 𝛿, 𝑞
0
, 𝑍
0
, 0) be an IFPDA0. Then

there is a special IFPDA0M󸀠
= (𝑄

󸀠
, Σ, Γ

󸀠
, 𝛿
󸀠
, 𝑞
󸀠

0
, 𝑋

0
, 0) con-

structed by Proposition 20, which is equivalent toM. For any
(𝑎, 𝑏) ∈ (𝐿

1
\ {0}) × (𝐿

2
\ {1}) with 0 < 𝑎 + 𝑏 ≤ 1, con-

struct a classical PDA with empty stack M
𝑎𝑏
= (𝑄

󸀠
, Σ, Γ

󸀠,
𝛿
󸀠󸀠

𝑎𝑏
, 𝑞
󸀠

0
, 𝑋

0
, 0), where 𝑄󸀠, Σ, Γ󸀠, 𝑞󸀠

0
, and 𝑋

0
are the same as

those inM󸀠, and the function 𝛿󸀠󸀠
𝑎𝑏
: 𝑄

󸀠
× Σ × Γ

󸀠
→ 2

𝑄
󸀠
×Γ
󸀠∗

is
defined by

(i) 𝛿󸀠󸀠
𝑎𝑏
((𝑝

0
, 1, 0), 𝜀, 𝑋

0
) = {((𝑞

0
, 1, 0), 𝑍

0
𝑋
0
)};

(ii) 𝛿󸀠󸀠
𝑎𝑏
((𝑞, 𝑐, 𝑑), 𝜏, 𝑋) = {((𝑞

󸀠
, 𝑐 ∧ 𝑐

1
, 𝑑 ∨ 𝑑

1
), 𝛾) | 𝑐

1
=

𝜇
𝛿
(𝑞, 𝜏, 𝑋, 𝑞

󸀠
, 𝛾) > 0, 𝑑

1
= 𝜈

𝛿
(𝑞, 𝜏, 𝑋, 𝑞

󸀠
, 𝛾) < 1, 𝑞

󸀠
∈

𝑄, 𝛾 ∈ Γ
∗
};

(iii) 𝛿󸀠󸀠
𝑎𝑏
((𝑞, 𝑎, 𝑏), 𝜀, 𝑋

0
) = {((𝑞, 𝑎, 𝑏), 𝜀)};

(iv) 𝛿󸀠󸀠
𝑎𝑏
((𝑞, 𝑐, 𝑑), 𝜏, 𝑋) = 0 in other cases.

Then for any 𝜔 ∈ Σ
∗, we have 𝜇L(M)(𝜔) = 𝜇L(M󸀠)(𝜔)

= ⋁{𝜇
⊢
∗

M󸀠
((𝑞

󸀠

0
, 𝜔, 𝑋

0
), ((𝑞

𝑛
, 𝑎
𝑛
, 𝑏
𝑛
), 𝜀, 𝑋

0
)) ∧ 𝜇

⊢
M󸀠
((𝑞

𝑛
, 𝑎
𝑛
, 𝑏
𝑛
),

𝜀, 𝑋
0
), ((𝑞

𝑛
, 𝑎
𝑛
, 𝑏
𝑛
), 𝜀, 𝜀)) | (𝑞

𝑛
, 𝑎
𝑛
, 𝑏
𝑛
) ∈ 𝑄

󸀠
} = ⋁{𝑎

𝑛
|

(𝑞
𝑛
, 𝑎
𝑛
, 𝑏
𝑛
) ∈ 𝑄

󸀠, 0 < 𝑎
𝑛
+ 𝑏

𝑛
≤ 1, 𝜇

⊢
∗

M󸀠
((𝑞

󸀠

0
, 𝜔, 𝑋

0
),((𝑞

𝑛
, 𝑎
𝑛
, 𝑏
𝑛
),

𝜀, 𝑋
0
)) = 1} = ⋁{𝑎

𝑛
| (𝑞

󸀠

0
, 𝜔, 𝑋

0
) ≻

∗

M𝑎𝑏
((𝑞

𝑛
, 𝑎
𝑛
, 𝑏
𝑛
), 𝜀, 𝜀), 𝑞

𝑛
∈

𝑄} = ⋁
𝑎∈𝐿1\{0}

𝑎 ∧ 𝜇
1L(Mab)

(𝜔), and 𝜈L(M)(𝜔) = 𝜈L(M󸀠)(𝜔)

= ⋀{𝜈
⊢
∗

M󸀠
((𝑞

󸀠

0
, 𝜔, 𝑋

0
), ((𝑞, 𝑎, 𝑏), 𝜀, 𝑋

0
)) ∨ 𝜈

⊢
M󸀠
((𝑞, 𝑎, 𝑏), 𝜀,

𝑋
0
), ((𝑞, 𝑎, 𝑏), 𝜀, 𝜀)) | (𝑞, 𝑎, 𝑏) ∈ 𝑄

󸀠
} = ⋀{𝑏 | (𝑞, 𝑎, 𝑏) ∈

𝑄
󸀠, 0 < 𝑎 + 𝑏 ≤ 1, 𝜇

⊢
∗

M󸀠
((𝑞

󸀠

0
, 𝜔, 𝑋

0
), ((𝑞, 𝑎, 𝑏), 𝜀, 𝑋

0
)) =

1} = ⋀{𝑏 | (𝑞
󸀠

0
, 𝜔, 𝑋

0
) ≻

∗

M𝑎𝑏
((𝑞, 𝑎, 𝑏), 𝜀, 𝑋

0
), (𝑞, 𝑎, 𝑏) ∈ 𝑄󸀠}

=⋀
𝑏∈𝐿2\{1}

𝑏 ∨ 𝜈
1L(Mab)

(𝜔).
ThereforeL(M) ∈ Step𝐶(Σ).

Theorem 23. Let 𝐴 be an IFS over Σ∗. Then the following
statements are equivalent:

(1) 𝐴 ∈ Step𝐶(Σ);
(2) 𝐴 is accepted by a certain IFPDA0M.

Proof. (i) implies (ii). Suppose 𝐴 ∈ Step𝐶(Σ). Then there are
a finite natural number 𝑛 ∈ 𝑁, recognizable context-free
languages L

1
, . . . ,L

𝑛
⊆ Σ

∗, and (𝑎
𝑖
, 𝑏
𝑖
) ∈ (0, 1] × [0, 1)

with 0 ≤ 𝑎
𝑖
+ 𝑏

𝑖
≤ 1 for 𝑖 = 1, . . . , 𝑛 such that 𝐴 =

(𝜇
𝐴
, 𝜈
𝐴
) = ∐

𝑛

𝑖=1
(𝑎
𝑖
, 𝑏
𝑖
) ⋅ 1Li

. Let L
𝑖
be recognized by PDA

M
𝑖
= (𝑄

𝑖
, Σ, Γ

𝑖
, 𝛿
𝑖
, 𝑞
0𝑖
, 𝑍
0𝑖
, 0), and𝑄

𝑖
∩𝑄

𝑗
= 0whenever 𝑖 ̸= 𝑗,

𝑖, 𝑗 ∈ 𝑁
𝑛
.

Next, construct an IFPDA0M = (𝑄, Σ, Γ, 𝛿, 𝐼, 𝑍
0
, 0) as

follows: 𝑄 = ⋃
𝑛

𝑖=1
𝑄
𝑖
, Γ = ⋃

𝑛

𝑖=1
Γ
𝑖
∪ {𝑍

0
}, and 𝐼 = (𝜇

𝐼
, 𝜈
𝐼
)

are an IFS over 𝑄, defined by 𝜇
𝐼
(𝑞
0𝑖
) = 𝑎

𝑖
, 𝜈

𝐼
(𝑞
0𝑖
) = 𝑏

𝑖
,

𝑖 ∈ 𝑁
𝑛
; otherwise 𝜇

𝐼
(𝑞) = 0 and 𝜈

𝐼
(𝑞) = 1. 𝛿 = (𝜇

𝛿
, 𝜈
𝛿
) is

an IFS over 𝑄 × (Σ ∪ {𝜀}) × Γ × 𝑄 × Γ∗, where the mappings
𝜇
𝛿
, 𝜈
𝛿
: 𝑄 × (Σ ∪ {𝜀}) × Γ × 𝑄 × Γ

∗
→ {0, 1} are defined by

𝜇
𝛿
(𝑞
0𝑖
, 𝜀, 𝑍

0
, 𝑞
0𝑖
, 𝑍
0𝑖
) = 1 and 𝜈

𝛿
(𝑞
0𝑖
, 𝜀, 𝑍

0
, 𝑞
0𝑖
, 𝑍
0𝑖
) = 0, 𝑖 ∈

𝑁
𝑛
; 𝜇
𝛿
(𝑞, 𝜏, 𝑍, 𝑝, 𝛾) = 1 and 𝜈

𝛿
(𝑞, 𝜏, 𝑍, 𝑝, 𝛾) = 0 if 𝑝, 𝑞 ∈ 𝑄

𝑖
,

𝑍 ∈ Γ
𝑖
, 𝛾 ∈ Γ

∗

𝑖
, 𝜏 ∈ Σ, 𝑖 ∈ 𝑁

𝑛
and (𝑝, 𝛾) ∈ 𝛿(𝑞, 𝜏, 𝑍).

Otherwise, 𝜇
𝛿
(𝑞, 𝜏, 𝑍, 𝑝, 𝛾) = 0 and 𝜈

𝛿
(𝑞, 𝜏, 𝑍, 𝑝, 𝛾) = 1.

Then 𝐴 =L(M) = ∐
𝑛

𝑖=1
(𝑎
𝑖
, 𝑏
𝑖
) ⋅ 1Li

.
(ii) implies (i). It is concluded by Proposition 22.

One can see that IFPDAs and IFPDAs0 are equivalent to
a type of intuitionistic fuzzy recognizable step functions over
a set, respectively, byTheorems 19 and 23.Therefore, IFPDAs
and IFPDAs0 are equivalent in the sense that they accept or
recognize the same classes of intuitionistic fuzzy languages.
That is to say, the following statement is true.

Corollary 24. For any IFPDA M, there is an
IFPDA0M󸀠 equivalent to M. For any IFPDA0M󸀠, there
is an IFPDAM equivalent toM󸀠.

4. Intuitionistic Fuzzy Context-Free Grammars

As a type of generator of intuitionistic fuzzy context-free
languages, the notion of intuitionistic fuzzy context-free
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grammars is introduced in the section. Then the relationship
between intuitionistic fuzzy context-free grammars, IFPDAs,
IFPDAs0, and intuitionistic fuzzy recognizable step functions
is discussed. The algebraic properties of intuitionistic fuzzy
context-free languages are investigated finally.

Definition 25. An intuitionistic fuzzy grammar is a system
𝐺 = (𝑁, 𝑇, 𝑃, 𝐼), where

(i) 𝑁 is a finite nonempty alphabet of variables;

(ii) 𝑇 is a finite nonempty alphabet of terminals and 𝑇 ∩
𝑁 = 0;

(iii) 𝐼 is an intuitionistic fuzzy set over𝑁;

(iv) 𝑃 is a finite collection of productions over 𝑇 ∪ 𝑁,
and 𝑃 = {𝑥 → 𝑦 | 𝑥 ∈ (𝑁 ∪ 𝑇)

∗
𝑁(𝑁 ∪ 𝑇)

∗,
𝑦 ∈ (𝑁 ∪ 𝑇)

∗, 𝜇
𝜌
(𝑥 → 𝑦) > 0, 𝜈

𝜌
(𝑥 → 𝑦) < 1},

where 𝜌 = (𝜇
𝜌
, 𝜈
𝜌
) is an IFS over (𝑁 ∪ 𝑇)

∗
× (𝑁 ∪ 𝑇)

∗,
𝜇
𝜌
(𝑥, 𝑦), and 𝜈

𝜌
(𝑥, 𝑦) mean the membership degree and

the nonmembership degree that 𝑥 will be replaced by 𝑦,
respectively, denoted by 𝜇

𝜌
(𝑥, 𝑦) = 𝜇

𝜌
(𝑥 → 𝑦), 𝜈

𝜌
(𝑥, 𝑦) =

𝜈
𝜌
(𝑥 → 𝑦).

For 𝛼, 𝛽 ∈ (𝑁 ∪ 𝑇)
∗, if 𝑥 → 𝑦 ∈ 𝑃, then 𝛼𝑦𝛽 is said to

be directly derivable from 𝛼𝑥𝛽, denoted by 𝛼𝑥𝛽 ⇒ 𝛼𝑦𝛽, and
define 𝜇

𝜌
(𝛼𝑥𝛽 ⇒ 𝛼𝑦𝛽) = 𝜇

𝜌
(𝑥 → 𝑦), 𝜈

𝜌
(𝛼𝑥𝛽 ⇒ 𝛼𝑦𝛽) =

𝜈
𝜌
(𝑥 → 𝑦).
If 𝛼

1
, . . . , 𝛼

𝑚
are strings in (𝑁 ∪ 𝑇)

∗ and 𝛼
1
→ 𝛼

2
,

. . . , 𝛼
𝑚−1

→ 𝛼
𝑚
∈ 𝑃, then 𝛼

1
is said to derive 𝛼

𝑚
in 𝐺, or,

equivalently, 𝛼
𝑚
is derivable from 𝛼

1
in 𝐺. This is expressed

by𝛼
1
⇒
∗

𝐺
𝛼
𝑚
or simply𝛼

1
⇒
∗
𝛼
𝑚
.The expression𝛼

1
→ 𝛼

2
→

⋅ ⋅ ⋅ → 𝛼
𝑚
is referred to as a derivation chain from 𝛼

1
to 𝛼

𝑚
.

An intuitionistic fuzzy grammar 𝐺 generates an intu-
itionistic fuzzy language L(𝐺) = (𝜇

𝐺
, 𝜈
𝐺
) in the following

manner. For any 𝜃 = 𝜔
𝑛
∈ 𝑇

∗, 𝑛 ≥ 1, 𝜇
𝐺
(𝜃) = ⋁{𝜇

𝐼
(𝜔
0
) ∧

𝜇
𝜌
(𝜔
0
⇒ 𝜔

1
) ∧ ⋅ ⋅ ⋅ ∧ 𝜇

𝜌
(𝜔
𝑛−1

⇒ 𝜔
𝑛
) | 𝜔

0
∈ 𝑁, 𝜔

1
, . . . , 𝜔

𝑛−1
∈

(𝑁 ∪ 𝑇)
∗
}, and 𝜈

𝐺
(𝜃) = ⋀{𝜈

𝐼
(𝜔
0
) ∨ 𝜈

𝜌
(𝜔
0
⇒ 𝜔

1
) ∨ ⋅ ⋅ ⋅ ∨

𝜈
𝜌
(𝜔
𝑛−1

⇒ 𝜔
𝑛
) | 𝜔

0
∈ 𝑁, 𝜔

1
, . . . , 𝜔

𝑛−1
∈ (𝑁 ∪ 𝑇)

∗
}.

𝜇
𝐺
(𝜃) and 𝜈

𝐺
(𝜃) express the membership and nonmem-

bership degree of 𝜃 in the language generated by grammar
𝐺, respectively. Obviously, L(𝐺) = (𝜇

𝐺
, 𝜈
𝐺
) is well defined.

In fact, for any 𝜃 = 𝜔
𝑛
∈ 𝑇

∗, 𝑛 ≥ 1, there is the strongest
derivation from 𝜔

0
to 𝜔

𝑛
, that is, 𝜔

0
⇒ 𝜔

󸀠

1
⇒ ⋅ ⋅ ⋅ ⇒ 𝜔

󸀠

𝑛−1
⇒

𝜔
𝑛
, such that 𝜇

𝐺
(𝜃) = 𝜇

𝐼
(𝜔
0
)∧𝜇

𝜌
(𝜔
0
⇒ 𝜔

󸀠

1
)∧⋅ ⋅ ⋅∧𝜇

𝜌
(𝜔
󸀠

𝑛−1
⇒

𝜔
𝑛
). So 𝜈

𝐺
(𝜃) ≤ 𝜈

𝐼
(𝜔
0
) ∨ 𝜈

𝜌
(𝜔
0
⇒ 𝜔

󸀠

1
) ∨ ⋅ ⋅ ⋅ ∨ 𝜈

𝜌
(𝜔
󸀠

𝑛−1
⇒ 𝜔

𝑛
),

and 𝜇
𝐺
(𝜃) + 𝜈

𝐺
(𝜃) ≤ 𝜇

𝐺
(𝜃) + 𝜈

𝐼
(𝜔
0
) ∨ 𝜈

𝜌
(𝜔
0
⇒ 𝜔

󸀠

1
) ∨ ⋅ ⋅ ⋅ ∨

𝜈
𝜌
(𝜔
󸀠

𝑛−1
⇒ 𝜔

𝑛
) = (𝜇

𝐺
(𝜃) + 𝜈

𝐼
(𝜔
0
)) ∨ (𝜇

𝐺
(𝜃) + 𝜈

𝜌
(𝜔
0
⇒ 𝜔

󸀠

1
)) ∨

⋅ ⋅ ⋅∨ (𝜇
𝐺
(𝜃)+𝜈

𝜌
(𝜔
󸀠

𝑛−1
⇒ 𝜔

𝑛
)) ≤ (𝜇

𝐼
(𝜔
0
)+𝜈

𝐼
(𝜔
0
))∨ (𝜇

𝜌
(𝜔
0
⇒

𝜔
󸀠

1
) + 𝜈

𝜌
(𝜔
0
⇒ 𝜔

󸀠

1
)) ∨ ⋅ ⋅ ⋅ ∨ (𝜇

𝜌
(𝜔
󸀠

𝑛−1
⇒ 𝜔

𝑛
) + 𝜈

𝜌
(𝜔
󸀠

𝑛−1
⇒

𝜔
𝑛
)) ≤ 1.
For any intuitionistic fuzzy grammars 𝐺

1
and 𝐺

2
, if

L(𝐺
1
) =L(𝐺

2
) in the sense of equality of intuitionistic fuzzy

sets, then the grammars 𝐺
1
and 𝐺

2
are said to be equivalent.

For any intuitionistic fuzzy grammar 𝐺 = (𝑁, 𝑇, 𝑃, 𝐼), if
Im(𝐼) = Im(𝜇

𝐼
) ∪ Im(𝜈

𝐼
) = {0, 1} and supp(𝐼) = {𝑆}, then 𝐺

is also written as 𝐺 = (𝑁, 𝑇, 𝑃, 𝑆).

Proposition 26. Let 𝐴 be an IFS over 𝑇∗. Then the following
statements are equivalent:

(i) 𝐴 is generated by a certain intuitionistic fuzzy grammar
𝐺 = (𝑁, 𝑇, 𝑃, 𝐼);

(ii) 𝐴 is generated by a certain intuitionistic fuzzy grammar
𝐺 = (𝑁

󸀠
, 𝑇
󸀠
, 𝑃
󸀠
, 𝑆).

Proof. (i) implies (ii). Let 𝐴 be generated by an intuitionistic
fuzzy grammar 𝐺 = (𝑁, 𝑇, 𝑃, 𝐼). Then we construct an
intuitionistic fuzzy grammar 𝐺󸀠 = (𝑁󸀠, 𝑇󸀠, 𝑃󸀠, 𝑆) as follows:
𝑁
󸀠
= 𝑁 ∪ {𝑆}, 𝑆 ∉ 𝑁; 𝑇󸀠 = 𝑇, 𝑃󸀠 = 𝑃 ∪ 𝑃

1
, where 𝑃

1
= {𝑆 →

𝑞 | 𝑞 ∈ supp(𝐼), 𝜇
𝜌
(𝑆 → 𝑞) = 𝜇

𝐼
(𝑞), 𝜈

𝜌
(𝑆 → 𝑞) = 𝜈

𝐼
(𝑞)}.

Next we show that L(𝐺󸀠) = L(𝐺). In fact, 𝐺󸀠 =

(𝑁
󸀠
, 𝑇
󸀠
, 𝑃
󸀠
, 𝐼
󸀠
), where 𝐼󸀠 is an IFS over𝑁󸀠, 𝜇

𝐼
󸀠(𝑆) = 1, 𝜈

𝐼
󸀠(𝑆) =

0; 𝜇
𝐼
󸀠(𝑞) = 0 and 𝜈

𝐼
󸀠(𝑞) = 1 when 𝑞 ∈ 𝑁.

For any 𝜃 = 𝜔
𝑛
∈ 𝑇

∗, 𝑛 ≥ 1,𝜇
𝐺
󸀠(𝜃) = ⋁{𝜇

𝐼
󸀠(𝜔

0
)∧𝜇

𝜌
(𝜔
0
⇒

𝜔
1
) ∧ ⋅ ⋅ ⋅ ∧ 𝜇

𝜌
(𝜔
𝑛−1

⇒ 𝜔
𝑛
) | 𝜔

0
∈ 𝑁

󸀠
, 𝜔
1
, . . . , 𝜔

𝑛−1
∈ (𝑁

󸀠
∪

𝑇
󸀠
)
∗
} = ⋁{𝜇

𝜌
(𝑆 ⇒ 𝜔

1
) ∧ 𝜇

𝜌
(𝜔
1
⇒ 𝜔

2
) ∧ ⋅ ⋅ ⋅ ∧ 𝜇

𝜌
(𝜔
𝑛−1

⇒

𝜔
𝑛
) | 𝜔

1
, . . . , 𝜔

𝑛−1
∈ (𝑁

󸀠
∪ 𝑇

󸀠
)
∗
} = ⋁{𝜇

𝜌
(𝑆 ⇒ 𝑞) ∧ 𝜇

𝜌
(𝑞 ⇒

𝜔
2
) ∧ ⋅ ⋅ ⋅ ∧ 𝜇

𝜌
(𝜔
𝑛−1

⇒ 𝜔
𝑛
) | 𝑞 ∈ 𝑁, 𝜔

2
, . . . , 𝜔

𝑛−1
∈ (𝑁 ∪

𝑇)
∗
} = ⋁{𝜇

𝐼
(𝑞) ∧ 𝜇

𝜌
(𝑞 ⇒ 𝜔

2
) ∧ ⋅ ⋅ ⋅ ∧ 𝜇

𝜌
(𝜔
𝑛−1

⇒ 𝜔
𝑛
) | 𝑞 ∈

𝑁, 𝜔
2
, . . . , 𝜔

𝑛−1
∈ (𝑁∪𝑇)

∗
} = 𝜇

𝐺
(𝜃) and 𝜈

𝐺
󸀠(𝜃) = ⋀{𝜈

𝐼
󸀠(𝜔

0
)∨

𝜈
𝜌
(𝜔
0
⇒ 𝜔

1
) ∨ ⋅ ⋅ ⋅ ∨ 𝜈

𝜌
(𝜔
𝑛−1

⇒ 𝜔
𝑛
) | 𝜔

0
∈ 𝑁

󸀠
, 𝜔
1
, . . . , 𝜔

𝑛−1
∈

(𝑁
󸀠
∪𝑇

󸀠
)
∗
} = ⋀{𝜈

𝜌
(𝑆 ⇒ 𝜔

1
)∨𝜈

𝜌
(𝜔
1
⇒ 𝜔

2
)∨ ⋅ ⋅ ⋅∨𝜈

𝜌
(𝜔
𝑛−1

⇒

𝜔
𝑛
) | 𝜔

1
, . . . , 𝜔

𝑛−1
∈ (𝑁

󸀠
∪ 𝑇

󸀠
)
∗
} = ⋀{𝜈

𝜌
(𝑆 ⇒ 𝑞) ∨ 𝜈

𝜌
(𝑞 ⇒

𝜔
2
)∨ ⋅ ⋅ ⋅∨𝜈

𝜌
(𝜔
𝑛−1

⇒ 𝜔
𝑛
) | 𝑞 ∈ 𝑁, 𝜔

2
, . . . , 𝜔

𝑛−1
∈ (𝑁∪𝑇)

∗
} =

⋀{𝜈
𝐼
(𝑞) ∨ 𝜈

𝜌
(𝑞 ⇒ 𝜔

2
) ∨ ⋅ ⋅ ⋅ ∨ 𝜈

𝜌
(𝜔
𝑛−1

⇒ 𝜔
𝑛
) | 𝑞 ∈ 𝑁,

𝜔
2
, . . . , 𝜔

𝑛−1
∈ (𝑁 ∪ 𝑇)

∗
} = 𝜈

𝐺
(𝜃).

HenceL(𝐺󸀠) =L(𝐺).
(ii) implies (i), obviously.

Definition 27. (1) An intuitionistic fuzzy grammar 𝐺 = (𝑁,
𝑇, 𝑃, 𝐼) is called context-free (IFCFG, for short) if it has only
productions of the form 𝐴 → 𝜔 ∈ 𝑃 with 𝐴 ∈ 𝑁 and 𝜔 ∈
(𝑁 ∪ 𝑇)

∗. And the language L(𝐺), generated by the IFCFG
𝐺, is said to be an intuitionistic fuzzy context-free language
(IFCFL).

(2) An IFCFG 𝐺 = (𝑁, 𝑇, 𝑃, 𝑆) is called an intuitionistic
fuzzy Chomsky normal form (IFCNF) if it has only produc-
tions of the form 𝐴 → 𝐵𝐶 ∈ 𝑃 or 𝐴 → 𝑎 ∈ 𝑃 or 𝑆 → 𝜀,
where 𝐴, 𝐵, 𝐶 ∈ 𝑁, 𝐵 ̸= 𝑆, 𝐶 ̸= 𝑆 and 𝑎 ∈ 𝑇. (3) An IFCFG
𝐺 = (𝑁, 𝑇, 𝑃, 𝑆) is called an intuitionistic fuzzy Greibach
normal form (IFGNF) if all the productions are of the form
𝐴 → 𝑎𝑥 ∈ 𝑃 or 𝑆 → 𝜀, where 𝐴 ∈ 𝑁, 𝑎 ∈ 𝑇, and 𝑥 ∈
(𝑁 \ {𝑆})

∗. (4) An IFCFG 𝐺 = (𝑁, 𝑇, 𝑃, 𝐼) is called a simple-
typed intuitionistic fuzzy context-free grammar (IFSCFG) if

𝑃 = {𝐴 󳨀→ 𝑥 | 𝐴 ∈ 𝑁, 𝑥 ∈ (𝑁 ∪ 𝑇)
∗
, 𝜇
𝜌 (𝐴 󳨀→ 𝑥) = 1} .

(25)

Proposition 28. Let 𝐺 = (𝑁, 𝑇, 𝑃, 𝐼) be an IFCFG and
L(𝐺) = (𝜇

𝐺
, 𝜈
𝐺
) be the intuitionistic fuzzy context-free

language generated by𝐺. Then the image set ofL(𝐺) is a finite
subset of the unit interval [0, 1].

Proof. Let 𝐺 = (𝑁, 𝑇, 𝑃, 𝐼) be an IFCFG. Then Im(𝜇
𝜌
) and

Im(𝜈
𝜌
) are finite. For any 𝜃 = 𝜔

𝑛
∈ 𝑇

∗, 𝑛 ≥ 1, there exist
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natural numbers 𝑑, 𝑙 such that 𝜇
𝐺
(𝜃) = ⋁{𝜇

𝐼
(𝑆) ∧ 𝜇

𝜌
(𝑆 ⇒

𝜔
1
) ∧ 𝜇

𝜌
(𝜔
1
⇒ 𝜔

2
) ∧ ⋅ ⋅ ⋅ ∧ 𝜇

𝜌
(𝜔
𝑛−1

⇒ 𝜔
𝑛
) | 𝑆 ∈ 𝑁,

𝜔
1
, . . . , 𝜔

𝑛−1
∈ (𝑁∪𝑇)

∗
} = (𝑎

10
∧⋅ ⋅ ⋅∧𝑎

1𝑛−1
∧𝑎

1𝑛
)∨⋅ ⋅ ⋅∨(𝑎

𝑑0
∧

⋅ ⋅ ⋅∧𝑎
𝑑𝑛−1

∧𝑎
𝑑𝑛
) and 𝜈

𝐺
(𝜃) = ⋀{𝜈

𝐼
(𝑆)∨𝜈

𝜌
(𝑆 ⇒ 𝜔

1
)∨𝜈

𝜌
(𝜔
1
⇒

𝜔
2
)∨ ⋅ ⋅ ⋅∨𝜈

𝜌
(𝜔
𝑛−1

⇒ 𝜔
𝑛
) | 𝑆 ∈ 𝑁, 𝜔

1
, . . . , 𝜔

𝑛−1
∈ (𝑁∪𝑇)

∗
} =

(𝑏
10
∨ ⋅ ⋅ ⋅ ∨ 𝑏

1𝑛−1
∨ 𝑏

1𝑛
) ∧ ⋅ ⋅ ⋅ ∧ (𝑏

𝑙0
∨ ⋅ ⋅ ⋅ ∨ 𝑏

𝑙𝑛−1
∨ 𝑏

𝑙𝑛
), where

𝑎
𝑖𝑘
∈ Im(𝜇

𝐼
) ∪ Im(𝜇

𝜌
), 𝑏

𝑗𝑘
∈ Im(𝜈

𝐼
) ∪ Im(𝜈

𝜌
), 𝑖 ∈ {1, . . . , 𝑑},

𝑗 ∈ {1, . . . , 𝑙}, 𝑘 ∈ {0, 1, . . . , 𝑛}. Let 𝑋 = Im(𝜇
𝐼
) ∪ Im(𝜇

𝜌
) and

𝑌 = Im(𝜈
𝐼
) ∪ Im(𝜈

𝜌
). Then 𝑋 and 𝑌 are finite subsets of the

interval [0, 1]. (𝑋
∧
)
∨
and (𝑌

∨
)
∧
are also finite by Lemma 8.

Since 𝜇
𝐺
(𝜃) ∈ (𝑋

∧
)
∨
and 𝜈

𝐺
(𝜃) ∈ (𝑌

∨
)
∧
for any 𝜃 ∈ 𝑇

∗,
we have Im(𝜇

𝐺
) ⊆ (𝑋

∧
)
∨
and Im(𝜈

𝐺
) ⊆ (𝑌

∨
)
∧
. Hence

Im(L(𝐺)) = Im(𝜇
𝐺
) ∪ Im(𝜈

𝐺
) is finite.

Proposition 29. Let 𝐺 = (𝑁, 𝑇, 𝑃, 𝑆) be an IFCFG. Then
L(𝐺) ∈ Step𝐶(𝑇).

Proof. Let 𝑋 = Im(𝜇
𝜌
) and 𝑌 = Im(𝜈

𝜌
). Then 𝑋 and 𝑌 have

finite elements because 𝑃 is a finite collection of productions
over 𝑇 ∪ 𝑁. Suppose 𝐿

1
= 𝑋

∧
and 𝐿

2
= 𝑌

∨
. Then 𝐿

1
and 𝐿

2

are finite by Lemma 8. For any (𝑎, 𝑏) ∈ (𝐿
1
\ {0}) × (𝐿

2
\ {1}),

0 ≤ 𝑎 + 𝑏 ≤ 1, we construct a classical context-free grammar
𝐺
𝑎𝑏
= (𝑁

󸀠
, 𝑇, 𝑃

󸀠

𝑎𝑏
, 𝑆
󸀠
) as follows:

𝑁
󸀠
= 𝑁 × (𝐿

1
\ {0}) × (𝐿

2
\ {1}), 𝑆󸀠 = (𝑆, 1, 0) ∈ 𝑁󸀠, 𝑃󸀠

𝑎𝑏

consists of the form:

(1) (𝐴, 𝑎
1
, 𝑏
1
) → 𝐷

1
⋅ ⋅ ⋅ 𝐷

𝑘
whenever 𝜇

𝜌
(𝐴 →

𝜏
1
⋅ ⋅ ⋅ 𝜏

𝑘
) > 0 and 𝜈

𝜌
(𝐴 → 𝜏

1
⋅ ⋅ ⋅ 𝜏

𝑘
) < 1, where

𝐷
𝑖
= {

(𝜏
𝑖
, 𝑎
2
, 𝑏
2
) , if 𝜏

𝑖
∈ 𝑁

𝜏
𝑖
, if 𝜏

𝑖
∈ 𝑇

(26)

𝑖 = 1, . . . , 𝑘; 𝑎
2
= 𝑎

1
∧ 𝜇

𝜌
(𝐴 → 𝜏

1
⋅ ⋅ ⋅ 𝜏

𝑘
) and 𝑏

2
=

𝑏
1
∨ 𝜈

𝜌
(𝐴 → 𝜏

1
⋅ ⋅ ⋅ 𝜏

𝑘
);

(2) (𝐴, 𝑎
1
, 𝑏
1
) → 𝑥 whenever 𝑎 ≤ 𝑎

1
∧ 𝜇

𝜌
(𝐴 → 𝑥) and

𝑏 ≥ 𝑏
1
∨ 𝜈

𝜌
(𝐴 → 𝑥), for all 𝐴 ∈ 𝑁, 𝑥 ∈ (𝑁 ∪ 𝑇)

∗.

Then L(𝐺
𝑎𝑏
) = {𝜔 ∈ 𝑇

∗
| 𝑆

󸀠
⇒
∗

𝐺𝑎𝑏
𝜔} = {𝜔 ∈ 𝑇

∗
| 𝑎 ≤

𝜇
𝜌
(𝑆 ⇒ 𝑢

1
) ∧ 𝜇

𝜌
(𝑢
1
⇒ 𝑢

2
) ∧ ⋅ ⋅ ⋅ ∧ 𝜇

𝜌
(𝑢
𝑛−1

⇒ 𝜔), 𝑏 ≥ 𝜈
𝜌
(𝑆 ⇒

𝑢
1
) ∨ 𝜈

𝜌
(𝑢
1
⇒ 𝑢

2
) ∨ ⋅ ⋅ ⋅ ∨ 𝜈

𝜌
(𝑢
𝑛−1

⇒ 𝜔), 𝑢
1
, . . . , 𝑢

𝑛−1
∈ (𝑁 ∪

𝑇)
∗
}.
Next it suffices to show thatL(𝐺) = ∐(𝑎, 𝑏) ⋅1L(𝐺𝑎𝑏), that

is, 𝜇
𝐺
(𝜔) = ⋁

𝑎∈𝐿1\{0}
𝑎 ∧ 𝜇

1L(𝐺
𝑎𝑏
)
(𝜔) and 𝜈

𝐺
(𝜔) = ⋀

𝑏∈𝐿2\{1}
𝑏 ∨

𝜈
1L(𝐺
𝑎𝑏
)
(𝜔), for all 𝜔 ∈ 𝑇∗.

Suppose 𝜇
𝐺
(𝜔) = 𝑎

𝑘
> 0. Then there exist 𝑢󸀠

1
, . . . , 𝑢

󸀠

𝑛−1
∈

(𝑁 ∪ 𝑇)
∗ such that 𝑎

𝑘
= 𝜇

𝜌
(𝑆 ⇒ 𝑢

󸀠

1
) ∧ 𝜇

𝜌
(𝑢
󸀠

1
⇒ 𝑢

󸀠

2
) ∧

⋅ ⋅ ⋅ ∧ 𝜇
𝜌
(𝑢
󸀠

𝑛−1
⇒ 𝜔). Put 𝑐 = 𝜈

𝜌
(𝑆 ⇒ 𝑢

󸀠

1
) ∨ 𝜈

𝜌
(𝑢
󸀠

1
⇒ 𝑢

󸀠

2
) ∨

⋅ ⋅ ⋅ ∨ 𝜈
𝜌
(𝑢
󸀠

𝑛−1
⇒ 𝜔). Then 𝑐 < 1 and 𝜔 ∈ L(𝐺

𝑘𝑐
).

Therefore, 𝜇
𝐺
(𝜔) ≤ ⋁

𝑎∈𝐿1\{0}
𝑎 ∧ 𝜇

1L(𝐺
𝑎𝑏
)
(𝜔) and 𝜈

𝐺
(𝜔) ≥

⋀
𝑏∈𝐿2\{1}

𝑏 ∨ 𝜈
1L(𝐺
𝑎𝑏
)
(𝜔) for any 𝜔 ∈ 𝑇

∗. In addition,
⋁
𝑎∈𝐿1\{0}

𝑎 ∧ 𝜇
1L(𝐺
𝑎𝑏
)
(𝜔) = ⋁{𝑎 ∈ 𝐿

1
\ {0} | 𝜔 ∈ L(𝐺

𝑎𝑏
)} ≤

⋁{𝜇
𝜌
(𝑆 ⇒ 𝑢

1
) ∧ 𝜇

𝜌
(𝑢
1
⇒ 𝑢

2
) ∧ ⋅ ⋅ ⋅ ∧ 𝜇

𝜌
(𝑢
𝑛−1

⇒ 𝜔) | 𝜔 ∈

L(𝐺
𝑎𝑏
), 𝑢

1
, . . . , 𝑢

𝑛−1
∈ (𝑁∪𝑇)

∗
} ≤ ⋁{𝜇

𝜌
(𝑆 ⇒ 𝑢

1
)∧𝜇

𝜌
(𝑢
1
⇒

𝑢
2
) ∧ ⋅ ⋅ ⋅ ∧ 𝜇

𝜌
(𝑢
𝑛−1

⇒ 𝜔) | 𝑢
1
, . . . , 𝑢

𝑛−1
∈ (𝑁 ∪ 𝑇)

∗
} = 𝜇

𝐺
(𝜔),

𝜈
𝐺
(𝜔) = ⋀{𝜈

𝜌
(𝑆 ⇒ 𝑢

1
) ∨ 𝜈

𝜌
(𝑢
1
⇒ 𝑢

2
) ∨ ⋅ ⋅ ⋅ ∨ 𝜈

𝜌
(𝑢
𝑛−1

⇒

𝜔) | 𝑢
1
, . . . , 𝑢

𝑛−1
∈ (𝑁 ∪ 𝑇)

∗
} ≤ ⋀{𝑏 ∈ 𝐿

2
\ {1} | 𝑏 ≥

𝜈
𝜌
(𝑆 ⇒ 𝑢

1
)∨𝜈

𝜌
(𝑢
1
⇒ 𝑢

2
)∨⋅ ⋅ ⋅∨𝜈

𝜌
(𝑢
𝑛−1

⇒ 𝜔), 𝑢
1
, . . . , 𝑢

𝑛−1
∈

(𝑁 ∪ 𝑇)
∗
} ≤ ⋀{𝑏 ∈ 𝐿

2
\ {1} | 𝑏 ≥ 𝜈

𝜌
(𝑆 ⇒ 𝑢

1
) ∨ 𝜈

𝜌
(𝑢
1
⇒

𝑢
2
) ∨ ⋅ ⋅ ⋅ ∨ 𝜈

𝜌
(𝑢
𝑛−1

⇒ 𝜔), 𝑎 ≤ 𝜇
𝜌
(𝑆 ⇒ 𝑢

1
) ∧ 𝜇

𝜌
(𝑢
1
⇒

𝑢
2
) ∧ ⋅ ⋅ ⋅ ∧ 𝜇

𝜌
(𝑢
𝑛−1

⇒ 𝜔), 𝑢
1
, . . . , 𝑢

𝑛−1
∈ (𝑁 ∪ 𝑇)

∗
} = ⋀{𝑏 ∈

𝐿
2
\ {1} | 𝜔 ∈L(𝐺

𝑎𝑏
)} = ⋀

𝑏∈𝐿2\{1}
𝑏 ∨ 𝜈

1L(𝐺
𝑎𝑏
)
(𝜔).

It is concluded that 𝜇
𝐺
(𝜔) = ⋁

𝑎∈𝐿1\{0}
𝑎 ∧ 𝜇

1L(𝐺
𝑎𝑏
)
(𝜔) and

𝜈
𝐺
(𝜔) = ⋀

𝑏∈𝐿2\{1}
𝑏 ∨ 𝜈

1L(𝐺
𝑎𝑏
)
(𝜔), for all 𝜔 ∈ 𝑇∗.

Proposition 29 states that any language recognized by an
IFCFG is an intuitionistic fuzzy recognizable step function,
where the proof technique is constructive. Next we will
show that the set consisting of all the intuitionistic fuzzy
recognizable step functions coincides with that of languages
recognized by IFCFGs.

Theorem 30. Let 𝐴 be an IFS over 𝑇∗. Then the following
statements are equivalent:

(1) 𝐴 ∈ Step𝐶(𝑇);
(2) There is an IFCFG 𝐺 such that 𝐴 =L(𝐺);
(3) There is an IFSCFG 𝐺 such that 𝐴 =L(𝐺).

Proof. (1) implies (3). Let 𝐴 = ∐𝑘

𝑖=1
(𝑎
𝑖
, 𝑏
𝑖
) ⋅ 1L𝑖 , where 𝑎𝑖, 𝑏𝑖 ∈

[0, 1], 𝑎
𝑖
+ 𝑏

𝑖
≤ 1, 𝑖 ∈ 𝑁

𝑘
, and L

1
, . . . ,L

𝑘
⊂ 𝑇

∗ are
classical context-free languages. Suppose L

𝑖
is generated by

a context-free grammar 𝐺
𝑖
= (𝑁

𝑖
, 𝑇, 𝑃

𝑖
, 𝑆
0𝑖
) and𝑁

𝑖
∩ 𝑁

𝑗
= 0

whenever 𝑖 ̸= 𝑗.Thenwe construct an IFSCFG𝐺 = (𝑁, 𝑇, 𝑃, 𝐼)
as follows: 𝑁 = ⋃

𝑘

𝑖=1
𝑁
𝑖
, 𝑃 = ⋃

𝑘

𝑖=1
𝑃
𝑖
, 𝐼 = (𝜇

𝐼
, 𝜈
𝐼
) is an IFS

over𝑁, where the mappings 𝜇
𝐼
, 𝜈
𝐼
: 𝑁 → [0, 1] are defined

by 𝜇
𝐼
(𝑆
0𝑖
) = 𝑎

𝑖
, 𝜈
𝐼
(𝑆
0𝑖
) = 𝑏

𝑖
; 𝜇
𝐼
(𝑞) = 0 and 𝜈

𝐼
(𝑞) = 1whenever

𝑞 ∈ 𝑁 \ {𝑆
0𝑖
| 𝑖 = 1, . . . , 𝑘}.

Next, we show 𝐴 = L(𝐺) = ∐
𝑘

𝑖=1
(𝑎
𝑖
, 𝑏
𝑖
) ⋅ 1L𝑖 . In fact, for

any 𝜔 = 𝑢
𝑛
∈ 𝑇

∗, 𝜇
𝐺
(𝜔) = ⋁{𝜇

𝐼
(𝑆) ∧ 𝜇

𝜌
(𝑆 ⇒ 𝑢

1
) ∧ 𝜇

𝜌
(𝑢
1
⇒

𝑢
2
) ∧ ⋅ ⋅ ⋅ ∧ 𝜇

𝜌
(𝑢
𝑛−1

⇒ 𝜔) | 𝑆 ∈ 𝑁, 𝑢
1
, . . . , 𝑢

𝑛−1
∈ (𝑁 ∪ 𝑇)

∗
} =

⋁{𝜇
𝐼
(𝑆
0𝑖
) | 𝑆

0𝑖
⇒
∗

𝐺𝑖
𝜔, 𝑆

0𝑖
∈ 𝑁, 𝑖 ∈ 𝑁

𝑘
} = ⋁{𝑎

𝑖
| 𝜔 ∈ L

𝑖
, 𝑖 ∈

𝑁
𝑘
} = ⋁

𝑘

𝑖=1
𝑎
𝑖
∧ 𝜇

1L𝑖
(𝜔) and 𝜈

𝐺
(𝜔) = ⋀{𝜈

𝐼
(𝑆) ∨ 𝜈

𝜌
(𝑆 ⇒ 𝑢

1
) ∨

𝜈
𝜌
(𝑢
1
⇒ 𝑢

2
) ∨ ⋅ ⋅ ⋅ ∨ 𝜈

𝜌
(𝑢
𝑛−1

⇒ 𝜔) | 𝑆 ∈ 𝑁, 𝑢
1
, . . . , 𝑢

𝑛−1
∈

(𝑁 ∪ 𝑇)
∗
} = ⋀{𝜈

𝐼
(𝑆
0𝑖
) | 𝑆

0𝑖
⇒
∗

𝐺𝑖
𝜔, 𝑆

0𝑖
∈ 𝑁, 𝑖 ∈ 𝑁

𝑘
} = ⋀{𝑏

𝑖
|

𝜔 ∈L
𝑖
, 𝑖 ∈ 𝑁

𝑘
} = ⋀

𝑘

𝑖=1
𝑏
𝑖
∨ 𝜈

1L𝑖
(𝜔).

HenceL(𝐺) = (𝜇
𝐺
, 𝜈
𝐺
) = ∐

𝑘

𝑖=1
(𝑎
𝑖
, 𝑏
𝑖
) ⋅ 1L𝑖 = 𝐴.

(3) implies (2). It is true obviously since an IFSCFG is a
special IFCFG by Definition 27.

(2) implies (1). It is straightforward by Propositions 26
and 29.

Theorem 31. Let 𝐴 be an IFS over Σ∗. Then the following
statements are equivalent:

(1) 𝐴 ∈ Step𝐶(Σ);
(2) there is an IFPDAM such that 𝐴 =L(M);
(3) there is an IFPDA0M such that 𝐴 =L(M);
(4) there is an IFCFG 𝐺 such that 𝐴 =L(𝐺);
(5) there is an IFCNF 𝐺 such that 𝐴 =L(𝐺);
(6) there is an IFGNF 𝐺 such that 𝐴 =L(𝐺).
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Proof. (1) implies (5). Let 𝐴 ∈ Step𝐶(Σ). Then suppose 𝐴 =

∐
𝑘

𝑖=1
(𝑎
𝑖
, 𝑏
𝑖
) ⋅ 1L𝑖 , where 𝑎𝑖, 𝑏𝑖 ∈ [0, 1], 𝑎𝑖 + 𝑏𝑖 ≤ 1, 𝑖 ∈ 𝑁𝑘, and

L
1
, . . . ,L

𝑘
⊂ Σ

∗ are classical context-free languages.
If supp(𝐴) = {𝜀}, then we construct an IFCNF 𝐺 = (𝑁,

Σ, 𝑃, 𝑆) as follows: 𝑁 = {𝑆}, 𝑃 = {𝑆 → 𝜀 | 𝜇
𝜌
(𝑆 → 𝜀) =

𝜇
𝐴
(𝜀), 𝜈

𝜌
(𝑆 → 𝜀) = 𝜇

𝐴
(𝜀)}. Clearly,L(𝐺) = 𝐴.

If supp(𝐴) \ {𝜀} ̸= 0, then there is a Chomsky normal form
grammar 𝐺

𝑖
= (𝑁

𝑖
, Σ, 𝑃

𝑖
, 𝑆
0𝑖
) such that L(𝐺

𝑖
) = L

𝑖
\ {𝜀},

for any L
𝑖
with L

𝑖
\ {𝜀} ̸= 0, 𝑖 = 1, . . . , 𝑘. Let 𝑁

𝑖
∩ 𝑁

𝑗
= 0

whenever 𝑖 ̸= 𝑗.Thenwe construct an IFSCFG𝐺 = (𝑁, Σ, 𝑃, 𝐼)
according to the method constructed by Theorem 30, where
𝑁 = ⋃

𝑘

𝑖=1
𝑁
𝑖
, 𝑃 = ⋃𝑘

𝑖=1
𝑃
𝑖
, 𝐼 = (𝜇

𝐼
, 𝜈
𝐼
) is an IFS over 𝑁, and

the mappings 𝜇
𝐼
, 𝜈
𝐼
: 𝑁 → [0, 1] are defined by 𝜇

𝐼
(𝑆
0𝑖
) = 𝑎

𝑖
,

𝜈
𝐼
(𝑆
0𝑖
) = 𝑏

𝑖
; 𝜇
𝐼
(𝑞) = 0 and 𝜈

𝐼
(𝑞) = 1 whenever 𝑞 ∈ 𝑁 \ {𝑆

0𝑖
|

𝑖 = 1, . . . , 𝑘}. Next, we construct an IFCNF𝐺󸀠 = (𝑁󸀠, Σ, 𝑃󸀠, 𝑆)
as follows:

(i) 𝑁󸀠 = 𝑁 ∪ {𝑆}, 𝑆 ∉ 𝑁;
(ii) 𝑃󸀠 = 𝑃 ∪ 𝑃

󸀠󸀠, where 𝑃󸀠󸀠 has the productions in the
form of

(𝐸1) 𝑆 → 𝜀 with 𝜇
𝜌
(𝑆 → 𝜀) = 𝜇

𝐴
(𝜀), 𝜈

𝜌
(𝑆 → 𝜀) =

𝜇
𝐴
(𝜀) whenever 𝜀 ∈ supp(𝐴);

(𝐸2) 𝑆 → 𝐵𝐶 with 𝜇
𝜌
(𝑆 → 𝐵𝐶) = 𝜇

𝐼
(𝑆
0𝑖
) and

𝜈
𝜌
(𝑆 → 𝐵𝐶) = 𝜈

𝐼
(𝑆
0𝑖
) whenever 𝑆

0𝑖
∈ supp(𝐼)

and 𝑆
0𝑖
→ 𝐵𝐶 ∈ 𝑃

𝑖
, 𝑖 = 1, . . . , 𝑘;

(𝐸3) 𝑆 → 𝛼 with 𝜇
𝜌
(𝑆 → 𝛼) = ⋁{𝜇

𝐼
(𝑆
0𝑖
) | 𝑆

0𝑖
∈

supp(𝐼), 𝑆
0𝑖
→ 𝛼 ∈ 𝑃

𝑖
, 𝑖 = 1, . . . , 𝑘} and 𝜈

𝜌
(𝑆 →

𝛼) = ⋀{𝜈
𝐼
(𝑆
0𝑖
) | 𝑆

0𝑖
∈ supp(𝐼), 𝑆

0𝑖
→ 𝛼 ∈ 𝑃

𝑖
, 𝑖 =

1, . . . , 𝑘} whenever 𝑆
0𝑖
∈ supp(𝐼) and 𝑆

0𝑖
→ 𝛼 ∈

𝑃
𝑖
, 𝑖 = 1, . . . , 𝑘.

Then we haveL(𝐺󸀠) = (𝜇
𝐺
󸀠 , 𝜈

𝐺
󸀠) = 𝐴. In fact, for any 𝜔 ∈

Σ
∗, if 𝜔 = 𝜀, then 𝜇

𝐺
󸀠(𝜀) = 𝜇

𝜌
(𝑆 → 𝜀) = 𝜇

𝐴
(𝜀) and 𝜈

𝐺
󸀠(𝜀) =

𝜈
𝜌
(𝑆 → 𝜀) = 𝜈

𝐴
(𝜀); if 𝜔 ̸= 𝜀, then 𝜇

𝐺
󸀠(𝜔) = ⋁{𝜇

𝜌
(𝑆⇒

𝐺
󸀠𝑢
1
) ∧

𝜇
𝜌
(𝑢
1
⇒
𝐺
󸀠𝑢
2
) ∧ ⋅ ⋅ ⋅ ∧ 𝜇

𝜌
(𝑢
𝑛−1
⇒
𝐺
󸀠𝜔) | 𝑢

1
, 𝑢
2
, . . . , 𝑢

𝑛−1
∈ (𝑁

󸀠
∪

Σ)
∗
} = ⋁{𝜇

𝐼
(𝑆
0𝑖
) ∧ 𝜇

𝜌
(𝑆
0𝑖
⇒
𝐺𝑖
𝑢
1
) ∧ 𝜇

𝜌
(𝑢
1
⇒
𝐺𝑖
𝑢
2
) ∧ ⋅ ⋅ ⋅ ∧

𝜇
𝜌
(𝑢
𝑛−1
⇒
𝐺𝑖
𝜔) | 𝑢

1
, 𝑢
2
, . . . , 𝑢

𝑛−1
∈ (𝑁 ∪ Σ)

∗
, 𝑖 ∈ 𝑁

𝑘
} =

⋁{𝑎
𝑖
| 𝜔 ∈ L(𝐺

𝑖
), 𝑖 ∈ 𝑁

𝑘
} = ⋁

𝑘

𝑖=1
𝑎
𝑖
∧ 𝜇

1L𝑖
(𝜔) and 𝜈

𝐺
󸀠(𝜔) =

⋀{𝜈
𝜌
(𝑆⇒

𝐺
󸀠𝑢
1
) ∨ 𝜈

𝜌
(𝑢
1
⇒
𝐺
󸀠𝑢
2
) ∨ ⋅ ⋅ ⋅ ∨ 𝜈

𝜌
(𝑢
𝑛−1
⇒
𝐺
󸀠𝜔) |

𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑛−1
∈ (𝑁

󸀠
∪ Σ)

∗
} = ⋀{𝜈

𝐼
(𝑆
0𝑖
) ∨ 𝜈

𝜌
(𝑆
0𝑖
⇒
𝐺𝑖
𝑢
1
) ∨

𝜈
𝜌
(𝑢
1
⇒
𝐺𝑖
𝑢
2
) ∨ ⋅ ⋅ ⋅ ∨ 𝜈

𝜌
(𝑢
𝑛−1
⇒
𝐺𝑖
𝜔) | 𝑢

1
, 𝑢
2
, . . . , 𝑢

𝑛−1
∈ (𝑁 ∪

Σ)
∗
, 𝑖 ∈ 𝑁

𝑘
} = ⋀{𝑎

𝑖
| 𝜔 ∈L(𝐺

𝑖
), 𝑖 ∈ 𝑁

𝑘
} = ⋀

𝑘

𝑖=1
𝑎
𝑖
∨ 𝜇

1L𝑖
(𝜔).

(1) implies (6), similarly. The proof is omitted.
(5) implies (4), (6) implies (4), obviously, since IFCNF

and IFGNF are special IFCFGs respectively.
(1), (2), (3), and (4) are equivalent mutually by Theorems

19, 23, and 30.
Theorem 31 states that IFCFLs, the set of intuitionistic

fuzzy languages recognized by IFPDA and the set of intu-
itionistic fuzzy recognizable step functions, coincide with
each other. Next we discuss some operations on the family
of IFCFLs.

Let 𝐴 = (𝜇
𝐴
, 𝜈
𝐴
) and 𝐵 = (𝜇

𝐵
, 𝜈
𝐵
) be IFSs over Σ∗,

𝜆, 𝜃 ∈ [0, 1], and 0 ≤ 𝜆+𝜃 ≤ 1. Then the operations of union,
scalar product, reversal, concatenation andKleene closure are
defined, respectively, by

(i) 𝐴 ∪ 𝐵 = (𝜇
𝐴∪𝐵

, 𝜈
𝐴∪𝐵

), 𝜇
𝐴∪𝐵

(𝜔) = 𝜇
𝐴
(𝜔) ∨ 𝜇

𝐵
(𝜔),

𝜈
𝐴∪𝐵

(𝜔) = 𝜈
𝐴
(𝜔) ∧ 𝜈

𝐵
(𝜔);

(ii) (𝜆, 𝜃)𝐴 = (𝜆 ∧ 𝜇
𝐴
, 𝜃 ∨ 𝜈

𝐴
), (𝜆 ∧ 𝜇

𝐴
)(𝜔) = 𝜆 ∧ 𝜇

𝐴
(𝜔),

(𝜃 ∨ 𝜈
𝐴
)(𝜔) = 𝜃 ∨ 𝜈

𝐴
(𝜔);

(iii) 𝐴−1 = (𝜇
𝐴
−1 , 𝜈

𝐴
−1), 𝜇

𝐴
−1(𝜔) = 𝜇

𝐴
(𝜔
−1
), 𝜈

𝐴
−1(𝜔) =

𝜈
𝐴
(𝜔
−1
);

(iv) 𝐴𝐵 = (𝜇
𝐴𝐵
, 𝜈
𝐴𝐵
), 𝜇

𝐴𝐵
(𝜔) = ⋁{𝜇

𝐴
(𝜔
1
) ∧ 𝜇

𝐵
(𝜔
2
) |

𝜔
1
𝜔
2
= 𝜔}, 𝜈

𝐴𝐵
(𝜔) = ⋀{𝜈

𝐴
(𝜔
1
) ∨ 𝜈

𝐵
(𝜔
2
) | 𝜔

1
𝜔
2
= 𝜔};

(v) 𝐴∗ = (𝜇
𝐴
∗ , 𝜈

𝐴
∗), 𝜇

𝐴
∗(𝜔) = ⋁{𝜇

𝐴
(𝜔
1
) ∧ ⋅ ⋅ ⋅ ∧ 𝜇

𝐴
(𝜔
𝑘
) :

𝑘 ≥ 1, 𝜔 = 𝜔
1
⋅ ⋅ ⋅ 𝜔

𝑘
}, 𝜈

𝐴
∗(𝜔) = ⋀{𝜈

𝐴
(𝜔
1
) ∨ ⋅ ⋅ ⋅ ∨

𝜈
𝐴
(𝜔
𝑘
) : 𝑘 ≥ 1, 𝜔 = 𝜔

1
⋅ ⋅ ⋅ 𝜔

𝑘
} for any 𝜔 ∈ Σ

∗,
where 𝜔−1 represents the reversal of 𝜔, that is, if 𝜔 =
𝜔
1
⋅ ⋅ ⋅ 𝜔

𝑘
, then 𝜔−1 = 𝜔

𝑘
⋅ ⋅ ⋅ 𝜔

1
, for all 𝜔 ∈ Σ∗.

Theorem 32. (1) The family Step𝐶(Σ) is closed under the
operations of union, scalar product, reversal, concatenation,
and Kleene closure. That is, 𝐴 ∪ 𝐵, (𝜆, 𝜃)𝐴, 𝐴−1, 𝐴𝐵, 𝐴∗ ∈

Step𝐶(Σ), for any 𝐴, 𝐵 ∈ Step𝐶(Σ), 𝜆, 𝜃 ∈ [0, 1], 0 ≤ 𝜆 + 𝜃 ≤ 1.
(2) Let ℎ : Σ

∗

1
→ Σ

∗

2
be a homomorphism. If 𝐴 ∈

Step𝐶(Σ
2
), then ℎ−1(𝐴) = 𝐴 ∘ ℎ ∈ Step𝐶(Σ

1
). (3) Let ℎ : Σ∗

1
→

Σ
∗

2
be a homomorphism. If ℎ satisfies, for 𝜏 ∈ Σ, ℎ(𝜏) ̸= 𝜀,

and 𝑔 = (𝜇
𝑔
, 𝜈
𝑔
) ∈ Step𝐶(Σ

1
), then ℎ(𝑔) = (𝜇

ℎ(𝑔)
, 𝜈
ℎ(𝑔)
) ∈

Step𝐶(Σ
2
), where 𝜇

ℎ(𝑔)
(𝜔) = ⋁{𝜇

𝑔
(𝛼) | ℎ(𝛼) = 𝜔, 𝛼 ∈ Σ

∗

1
},

𝜈
ℎ(𝑔)
(𝜔) = ⋀{𝜈

𝑔
(𝛼) | ℎ(𝛼) = 𝜔, 𝛼 ∈ Σ

∗

1
} for any 𝜔 ∈ Σ∗

2
.

Proof. (1) Let 𝐴, 𝐵 ∈ Step𝐶(Σ). By Definition 17, we can
assume 𝐴 = (𝜇

𝐴
, 𝜈
𝐴
) = ∐

𝑘

𝑖=1
(𝑎
𝑖
, 𝑏
𝑖
) ⋅ 1L𝑖 , 𝐵 = (𝜇

𝐵
, 𝜈
𝐵
) =

∐
𝑛

𝑗=1
(𝑐
𝑗
, 𝑑
𝑗
) ⋅ 1M𝑗 , where allL𝑖

andM
𝑗
are classical context-

free languages, 0 ≤ 𝑎
𝑖
+ 𝑏

𝑖
≤ 1, 0 ≤ 𝑐

𝑗
+ 𝑑

𝑗
≤ 1, 𝑎

𝑖
, 𝑏
𝑖
, 𝑐
𝑗
, 𝑑
𝑗
∈

[0, 1], 𝑖 ∈ 𝑁
𝑘
, and 𝑗 ∈ 𝑁

𝑛
. With respect to the union, we

have 𝐴 ∪ 𝐵 ∈ Step𝐶(Σ). That is, 𝐴 ∪ 𝐵 = (𝜇
𝐴∪𝐵

, 𝜈
𝐴∪𝐵

) =

(𝜇
𝐴
∨ 𝜇

𝐵
, 𝜈
𝐴
∧ 𝜈

𝐵
), 𝜇

𝐴∪𝐵
(𝜔) = 𝜇

𝐴
(𝜔) ∨ 𝜇

𝐵
(𝜔) = (⋁

𝑘

𝑖=1
𝑎
𝑖
∧

𝜇
1L𝑖
(𝜔)) ∨ (⋁

𝑛

𝑗=1
𝑐
𝑗
∧ 𝜇

1M𝑗
(𝜔)), 𝜈

𝐴∪𝐵
(𝜔) = 𝜈

𝐴
(𝜔) ∧ 𝜈

𝐵
(𝜔) =

(⋀
𝑘

𝑖=1
𝑏
𝑖
∨ 𝜈

1L𝑖
(𝜔)) ∧ (⋀

𝑛

𝑗=1
𝑑
𝑗
∨ 𝜈

1M𝑗
(𝜔)), for all 𝜔 ∈ Σ∗.

With respect to the scalar product, for each (𝜆, 𝜃) ∈

[0, 1]×[0, 1], 0 ≤ 𝜆+𝜃 ≤ 1, we have (𝜆, 𝜃)𝐴 = (𝜆∧𝜇
𝐴
, 𝜃∨𝜈

𝐴
),

(𝜆 ∧ 𝜇
𝐴
)(𝜔) = 𝜆 ∧ 𝜇

𝐴
(𝜔) = 𝜆 ∧ (⋁

𝑘

𝑖=1
𝑎
𝑖
∧ 𝜇

1L𝑖
(𝜔)) =

⋁
𝑘

𝑖=1
((𝜆 ∧ 𝑎

𝑖
) ∧ 𝜇

1L𝑖
(𝜔)), (𝜃 ∨ 𝜈

𝐴
)(𝜔) = 𝜃 ∨ 𝜈

𝐴
(𝜔) = 𝜃 ∨

(⋀
𝑘

𝑖=1
𝑏
𝑖
∨ 𝜈

1L𝑖
(𝜔)) = ⋀

𝑘

𝑖=1
(𝜃 ∨ 𝑏

𝑖
) ∨ 𝜈

1L𝑖
(𝜔), for all 𝜔 ∈ Σ

∗.
By Definition 17, (𝜆, 𝜃)𝐴 ∈ Step𝐶(Σ). For the reversal
operation, L−1

𝑖
= {𝜔

−1
∈ Σ

∗
| 𝜔 ∈ L

𝑖
}, and L−1

𝑖
is a con-

text-free language because L
𝑖
is a context-free language,

𝑖 ∈ 𝑁
𝑘
. For any 𝜔 ∈ Σ

∗
, 𝜇
𝐴
−1(𝜔) = 𝜇

𝐴
(𝜔
−1
) = ⋁

𝑘

𝑖=1
𝑎
𝑖
∧

𝜇
1L𝑖
(𝜔
−1
) = ⋁

𝑘

𝑖=1
𝑎
𝑖
∧ 𝜇

1
L−1
𝑖

(𝜔),𝜈
𝐴
−1(𝜔) = 𝜈

𝐴
(𝜔
−1
) = ⋀

𝑘

𝑖=1
𝑏
𝑖
∨

𝜈
1L𝑖
(𝜔
−1
) = ⋀

𝑘

𝑖=1
𝑏
𝑖
∨ 𝜈

1
L−1
𝑖

(𝜔), that is 𝐴−1 ∈ Step𝐶(Σ). For the

operation of concatenation, since 𝜇
𝐴𝐵
(𝜔) = ⋁

𝑘

𝑖=1
⋁
𝑛

𝑗=1
(𝑎
𝑖
∧

𝑐
𝑗
) ∧ 𝜇

1L𝑖M𝑗
(𝜔), 𝜈

𝐴𝐵
(𝜔) = ⋀

𝑘

𝑖=1
⋀
𝑛

𝑗=1
(𝑏
𝑖
∨ 𝑑

𝑗
) ∨ 𝜈

1L𝑖M𝑗
(𝜔), for

all 𝜔 ∈ Σ∗, where the elements of the family set {L
𝑖
M
𝑗
| 𝑖 ∈

𝑁
𝑘
, 𝑗 ∈ 𝑁

𝑛
} are also context-free languages sinceL

𝑖
andM

𝑗

are context-free languages. Hence 𝐴𝐵 ∈ Step𝐶(Σ).
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For the Kleene closure, 𝐴∗ = (𝜇
𝐴
∗ , 𝜈

𝐴
∗) is defined by

𝜇
𝐴
∗(𝜔) = ⋁{𝜇

𝐴
(𝜔
1
) ∧ ⋅ ⋅ ⋅ ∧ 𝜇

𝐴
(𝜔
𝑘
) : 𝑘 ≥ 1, 𝜔 = 𝜔

1
⋅ ⋅ ⋅ 𝜔

𝑘
},

𝜈
𝐴
∗(𝜔) = ⋀{𝜈

𝐴
(𝜔
1
) ∨ ⋅ ⋅ ⋅ ∨ 𝜈

𝐴
(𝜔
𝑘
) : 𝑘 ≥ 1, 𝜔 = 𝜔

1
⋅ ⋅ ⋅ 𝜔

𝑘
} for

any 𝜔 ∈ Σ∗. Since 𝐴 ∈ Step𝐶(Σ), we assume that the IFSPDA
M = (𝑄, Σ, Γ, 𝛿, 𝑞

0
, 𝑍
0
, 𝐹) accepts 𝐴 by Theorem 19. Let 𝑅 =

{(𝜇
𝐹
(𝑞), 𝜈

𝐹
(𝑞)) | 𝑞 ∈ 𝑄} \ {(0, 1)} = {(𝑎

𝑖
, 𝑏
𝑖
) | 𝑖 ∈ 𝑁

𝑘
}. Then

𝐴 = ∐
𝑘

𝑖=1
(𝑎
𝑖
, 𝑏
𝑖
) ⋅ 1L𝑖 , where L𝑖

is accepted by a PDA M
𝑖
=

(𝑄, Σ, Γ, 𝛿
󸀠
, 𝑞
0
, 𝑍
0
, 𝐹
𝑖
), the mapping 𝛿󸀠 : 𝑄 × (Σ ∪ {𝜀}) × Γ →

2
𝑄×Γ
∗

is defined by 𝛿󸀠(𝑞, 𝜏, 𝑋) = {(𝑝, 𝛾) | 𝜇
𝛿
(𝑞, 𝜏, 𝑋, 𝑝, 𝛾) =

1, 𝑝 ∈ 𝑄, 𝛾 ∈ Γ
∗
}, for all (𝑞, 𝜏, 𝑋) ∈ 𝑄 × (Σ ∪ {𝜀}) × Γ, and

𝐹
𝑖
= {𝑞 ∈ 𝑄 | 𝜇

𝐹
(𝑞) = 𝑎

𝑖
, 𝜈
𝐹
(𝑞) = 𝑏

𝑖
}, for all 𝑖 ∈ 𝑁

𝑘
.

For any nonempty subset 𝐽 of the set {1, 2, . . . , 𝑘}, we can
assume that 𝐽 = {𝑖

1
, . . . , 𝑖

𝑠
}. Let 𝑟

𝐽
= 𝑎

𝑖1
∧ ⋅ ⋅ ⋅ ∧ 𝑎

𝑖𝑠
, 𝑡
𝐽
=

𝑏
𝑖1
∨ ⋅ ⋅ ⋅ ∨ 𝑏

𝑖𝑠
, and L(𝐽) = ⋃

𝑝1⋅⋅⋅𝑝𝑠
L+

𝑝1
L+

𝑝2
L∗

𝑝1
L+

𝑝3
(L

𝑝1
∪

L
𝑝2
)
∗
⋅ ⋅ ⋅L+

𝑝𝑠−1
(L

𝑝1
∪ ⋅ ⋅ ⋅ ∪L

𝑝𝑠−2
)
∗
L+

𝑝𝑠
(L

𝑝1
∪ ⋅ ⋅ ⋅ ∪L

𝑝𝑠
)
∗,

where 𝑝
1
⋅ ⋅ ⋅ 𝑝

𝑠
is a permutation of {𝑖

1
, . . . , 𝑖

𝑠
}, andL(𝐽) takes

unions under all permutations of {𝑖
1
, . . . , 𝑖

𝑠
}. Hence L(𝐽)

is a context-free language. It is easily verified that 𝐴∗ =

(∐
0 ̸= 𝐽⊆𝑁𝑘

(𝑟
𝐽
, 𝑡
𝐽
)⋅1L(𝐽))∪((𝜇𝐴(𝜀), 𝜈𝐴(𝜀))⋅1{𝜀}).Therefore,𝐴∗ ∈

Step𝐶(Σ).
(2) If 𝐴 ∈ Step𝐶(Σ

2
), then 𝐴 = ∐𝑘

𝑖=1
(𝑎
𝑖
, 𝑏
𝑖
) ⋅ 1L𝑖 , where 𝑎𝑖,

𝑏
𝑖
∈ [0, 1], 𝑎

𝑖
+ 𝑏

𝑖
≤ 1, 𝑖 ∈ 𝑁

𝑘
, and L

1
, . . . ,L

𝑘
⊂ Σ

∗

2
are

classical context-free languages. Since ℎ : Σ
∗

1
→ Σ

∗

2
is a

homomorphism, 𝜇
ℎ
−1
(𝐴)
(𝜔) = 𝜇

𝐴∘ℎ
(𝜔) = 𝜇

𝐴
(ℎ(𝜔)) = ⋁

𝑘

𝑖=1
𝑎
𝑖
∧

𝜇
1L𝑖
(ℎ(𝜔)) = ⋁

𝑘

𝑖=1
𝑎
𝑖
∧ 𝜇

1
ℎ
−1
(L𝑖 )
(𝜔), and 𝜈

ℎ
−1
(𝐴)
(𝜔) = 𝜈

𝐴∘ℎ
(𝜔) =

𝜈
𝐴
(ℎ(𝜔)) = ⋀

𝑘

𝑖=1
𝑏
𝑖
∨ 𝜇

1L𝑖
(ℎ(𝜔)) = ⋀

𝑘

𝑖=1
𝑏
𝑖
∨ 𝜈

1
ℎ
−1
(L𝑖)
(𝜔), where

𝜔 ∈ Σ
∗

1
, ℎ
−1
(L

𝑖
) = {𝜔

1
∈ Σ

∗

1
| ℎ(𝜔

1
) ∈ L

𝑖
}, 𝑖 ∈ 𝑁

𝑘
, and the

elements of the set {ℎ−1(L
𝑖
) | 𝑖 ∈ 𝑁

𝑘
} are classical context-

free languages. Hence ℎ−1(𝐴) = 𝐴 ∘ ℎ = ∐𝑘

𝑖=1
(𝑎
𝑖
, 𝑏
𝑖
) ⋅ 1

ℎ
−1
(L𝑖)

.
And so ℎ−1(𝐴) ∈ Step𝐶(Σ

1
). (3) If ℎ(𝜏) ̸= 𝜀, for all 𝜏 ∈ Σ, and

𝑔 = (𝜇
𝑔
, 𝜈
𝑔
) ∈ Step𝐶(Σ

1
), then 𝜇

𝑔
(𝜔) = ⋁

𝑘

𝑖=1
𝑎
𝑖
∧ 𝜇

1L𝑖
(𝜔),

𝜈
𝑔
(𝜔) = ⋀

𝑘

𝑖=1
𝑏
𝑖
∨ 𝜇

1L𝑖
(𝜔), for any 𝜔 ∈ Σ

1
, where 𝑎

𝑖
, 𝑏
𝑖
∈ [0, 1],

𝑎
𝑖
+ 𝑏

𝑖
≤ 1, 𝑖 ∈ 𝑁

𝑘
,L

1
, . . . ,L

𝑘
⊂ Σ

∗

1
are classical context-free

languages. Since ℎ : Σ∗
1
→ Σ

∗

2
is a homomorphism, ℎ(L

𝑖
) =

{ℎ(𝜔) ∈ Σ
∗

2
| 𝜔 ∈L

𝑖
} is also a classical context-free language,

𝑖 ∈ 𝑁
𝑘
. For any 𝑥 ∈ Σ∗

2
, 𝜇
ℎ(𝑔)
(𝑥) = ⋁{𝜇

𝑔
(𝛼) | ℎ(𝛼) = 𝑥}=

⋁{⋁
𝑘

𝑖=1
𝑎
𝑖
∧𝜇

1L𝑖
(𝛼) | ℎ(𝛼) = 𝑥} = ⋁

𝑘

𝑖=1
𝑎
𝑖
∧𝜇

1ℎ(L𝑖 )
(𝑥), 𝜈

ℎ(𝑔)
(𝑥)=

⋀{𝜈
𝑔
(𝛼) | ℎ(𝛼) = 𝑥} = ⋀{⋀

𝑘

𝑖=1
𝑏
𝑖
∨ 𝜈

1L𝑖
(𝛼) | ℎ(𝛼) = 𝑥}=

⋀
𝑘

𝑖=1
𝑏
𝑖
∨ 𝜈

1ℎ(L𝑖 )
(𝑥). Hence ℎ(𝑔) = (𝜇

ℎ(𝑔)
, 𝜈
ℎ(𝑔)
) ∈

Step𝐶(Σ
2
).

5. Pumping Lemma for IFCFLs

In this section, we mainly discuss the pumping lemma for
IFCFLs, which will become a powerful tool for proving a
certain intuitionistic fuzzy language noncontext-free.

Theorem 33. Let 𝐴 = (𝜇
𝐴
, 𝜈
𝐴
) be an IFCFL over Σ∗. Then

there exists a finite natural number 𝑛 such that for any 𝑧 ∈ Σ∗
with 𝑛 ≤ |𝑧|, there have 𝑢, 𝑣, 𝑤, 𝑥, 𝑦, 𝑢

1
, 𝑣
1
, 𝑤
1
, 𝑥
1
, 𝑦
1
∈ Σ

∗

such that 𝑧 = 𝑢𝑣𝑤𝑥𝑦 = 𝑢
1
𝑣
1
𝑤
1
𝑥
1
𝑦
1
, |𝑣𝑤𝑥| ≤ 𝑛,

|𝑣
1
𝑤
1
𝑥
1
| ≤ 𝑛, |𝑣𝑥| ≥ 1, |𝑣

1
𝑥
1
| ≥ 1, and 𝜇

𝐴
(𝑢𝑣

𝑖
𝑤𝑥

𝑖
𝑦) ≥

𝜇
𝐴
(𝑢𝑣𝑤𝑥𝑦),𝜈

𝐴
(𝑢
1
𝑣
𝑖

1
𝑤
1
𝑥
𝑖

1
𝑦
1
) ≤ 𝜈

𝐴
(𝑢
1
𝑣
1
𝑤
1
𝑥
1
𝑦
1
), for all 𝑖 ≥ 0.

Proof. Let 𝐴 = (𝜇
𝐴
, 𝜈
𝐴
) be an IFCFL over Σ∗. Then there

is an IFCNF 𝐺 = (𝑁, 𝑇, 𝑃, 𝑆) who accepts 𝐴. According to
Proposition 29, L(𝐺) = ∐(𝑎, 𝑏) ⋅ 1L(𝐺𝑎𝑏), where (𝑎, 𝑏) ∈
(𝑋

∧
\ {0}) × (𝑌

∨
\ {1}),𝑋 = Im(𝜇

𝜌
), 𝑌 = Im(𝜈

𝜌
), 0 ≤ 𝑎+ 𝑏 ≤ 1

and the classical context-free grammar 𝐺
𝑎𝑏
= (𝑁

󸀠
, 𝑇, 𝑃

󸀠

𝑎𝑏
, 𝑆
󸀠
)

is shown in the proof process of of Proposition 29. Let𝐺 have
𝑚 variables. That means, |𝑁| = 𝑚. Choose 𝑛 = 2

𝑚. Next,
suppose |𝑧| ≥ 𝑛, 𝜇

𝐺
(𝑧) = 𝑎

0
> 0 and 𝜈

𝐺
(𝑧) = 𝑏

0
< 1. Then

there exist 𝑏
𝑘
∈ 𝑌

∨
\ {1} and 𝑎

𝑙
∈ 𝑋

∧
\ {0} with 0 < 𝑎

0
+ 𝑏

𝑘
≤ 1

and 0 < 𝑎
𝑙
+ 𝑏

0
≤ 1 such that 𝑧 ∈ L(𝐺

𝑎0𝑏𝑘
) ∩ L(𝐺

𝑎𝑙𝑏0
).

By pumping lemma for context-free languages, there are
𝑢, 𝑣, 𝑤, 𝑥, 𝑦 ∈ Σ

∗ satisfying 𝑧 = 𝑢𝑣𝑤𝑥𝑦, |𝑣𝑤𝑥| ≤ 𝑛 and
|𝑣𝑥| ≥ 1 such that 𝑢𝑣𝑖𝑤𝑥𝑖𝑦 ∈ L(𝐺

𝑎0𝑏𝑘
), for all 𝑖 ≥ 0. Then

𝜇
𝐴
(𝑢𝑣

𝑖
𝑤𝑥

𝑖
𝑦) ≥ 𝜇

𝐴
(𝑢𝑣𝑤𝑥𝑦) for any 𝑖 ≥ 0 since𝜇

𝐴
(𝑢𝑣

𝑖
𝑤𝑥

𝑖
𝑦) =

⋁
𝑎∈𝑋∧\{0}

𝑎 ∧ 1L(𝐺𝑎𝑏)(𝑢𝑣
𝑖
𝑤𝑥

𝑖
𝑦) ≥ 𝑎

0
.

Similarly, there are 𝑢
1
, 𝑣
1
, 𝑤
1
, 𝑥
1
, 𝑦
1
∈ Σ

∗ satisfying 𝑧 =
𝑢
1
𝑣
1
𝑤
1
𝑥
1
𝑦
1
, |𝑣

1
𝑤
1
𝑥
1
| ≤ 𝑛 and |𝑣

1
𝑥
1
| ≥ 1 such that

𝑢
1
𝑣
𝑖

1
𝑤
1
𝑥
𝑖

1
𝑦
1
∈L(𝐺

𝑎𝑙𝑏0
), for all 𝑖 ≥ 0. Then 𝜈

𝐴
(𝑢
1
𝑣
𝑖

1
𝑤
1
𝑥
𝑖

1
𝑦
1
) ≤

𝜈
𝐴
(𝑢
1
𝑣
1
𝑤
1
𝑥
1
𝑦
1
) for any 𝑖 ≥ 0 since 𝜈

𝐴
(𝑢
1
𝑣
𝑖

1
𝑤
1
𝑥
𝑖

1
𝑦
1
) =

⋀
𝑏∈𝑌∨\{1}

𝑏 ∨ 1L(𝐺𝑎𝑏)(𝑢1𝑣
𝑖

1
𝑤
1
𝑥
𝑖

1
𝑦
1
) ≤ 𝑏

0
.

Next, let us look at an example to negate an intuitionistic
fuzzy language to be an IFCFL.

Example 34. Let 𝐴 = (𝜇
𝐴
, 𝜈
𝐴
) be an IFS over 𝑇∗. The

mappings 𝜇
𝐴
, 𝜈
𝐴
: 𝑇

∗
→ [0, 1] are defined by

𝜇
𝐴 (𝑧) = {

0.5, if 𝑧 = 𝑎𝑖𝑏𝑗𝑐𝑘 (𝑖 < 𝑗 < 𝑘) ,
0, otherwise,

𝜈
𝐴 (𝑧) = {

0.3, if 𝑧 = 𝑎𝑖𝑏𝑗𝑐𝑘 (𝑖 < 𝑗 < 𝑘) ,
1, otherwise,

(27)

where 𝑖, 𝑗, and 𝑘 are natural numbers.

Suppose𝐴 is an IFCFL.Then there exists a certain IFCNF
𝐺 such that L(𝐺) = 𝐴. For constant 𝑛, put 𝑧 = 𝑎𝑛𝑏𝑛+1𝑐𝑛+2.
Hence, 𝜇

𝐴
(𝑧) = 𝜇L(𝐺)(𝑧) = 0.5 and 𝜈𝐴(𝑧) = 𝜈L(𝐺)(𝑧) = 0.3.

Let 𝑧 = 𝑢𝑣𝑤𝑥𝑦, where |𝑣𝑤𝑥| ≤ 𝑛 and |𝑣𝑥| ≥ 1. If 𝑣𝑤𝑥
does not have 𝑐’s, then 𝑢𝑣3𝑤𝑥3𝑦 has at least 𝑛 + 2𝑎’s or 𝑏’s;
if 𝑣𝑤𝑥 has at least a 𝑐, then it has not an 𝑎 since |𝑣𝑤𝑥| ≤ 𝑛.
And so 𝑢𝑤𝑦 has 𝑛𝑎󸀠s, but no more than 2𝑛 + 2𝑏’s and 𝑐’s in
total, that is, |𝑢𝑤𝑦| ≤ 𝑛 + 2𝑛 + 2. Therefore, it is impossible
that 𝑢𝑤𝑦 has more 𝑏’s than 𝑎’s and also has more 𝑐’s than 𝑏’s.
By calculation, we have 𝜇

𝐴
(𝑢𝑤𝑦) = 0 and 𝜈

𝐴
(𝑢𝑤𝑦) = 1. No

matter how 𝑧 is broken into 𝑢𝑣𝑤𝑥𝑦, we have a contradiction
withTheorem 33. Therefore, 𝐴 is not an IFCFL.

The following example will show that intuitionistic fuzzy
pushdown automata have more power than fuzzy pushdown
automata when comparing two distinct strings although the
degrees of membership of these strings recognized by the
underlying fuzzy pushdown automata are equal.
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Example 35. Let Σ = {0, 1}. Then 𝐿 = {𝜔1𝜔−1 | 𝜔 ∈ Σ∗} ⊆ Σ∗
is clearly a context-free language but not a regular language by
classical automata theory, where𝜔−1 represents the reversal of
the string 𝜔. Given an IFPDA M = (𝑄, Σ, Γ, 𝛿, 𝐼, 𝑍

0
, 𝐹) and

a fuzzy pushdown automatonN = (𝑄, Σ, Γ, 𝜂, 𝜎
0
, 𝑍
0
, 𝜎
1
). Put

𝑄 = {𝑞
0
, 𝑞
1
, 𝑞
2
}, Γ = {𝑍

0
, 0, 1}, an IFS 𝛿 = (𝜇

𝛿
, 𝜈
𝛿
) in 𝑄 × (Σ ∪

{𝜀}) × Γ × 𝑄 × Γ
∗ is defined by

𝜇
𝛿
(𝑞
0
, 0, 𝑍

0
, 𝑞
0
, 0𝑍

0
) = 0.7, 𝜈

𝛿
(𝑞
0
, 0, 𝑍

0
, 𝑞
0
, 0𝑍

0
) =

0.2,
𝜇
𝛿
(𝑞
0
, 1, 𝑍

0
, 𝑞
0
, 1𝑍

0
) = 0.6, 𝜈

𝛿
(𝑞
0
, 1, 𝑍

0
, 𝑞
0
, 1𝑍

0
) =

0.3,
𝜇
𝛿
(𝑞
0
, 0, 0, 𝑞

0
, 00) = 0.3, 𝜈

𝛿
(𝑞
0
, 0, 0, 𝑞

0
, 00) = 0.6,

𝜇
𝛿
(𝑞
0
, 0, 1, 𝑞

0
, 01) = 0.3, 𝜈

𝛿
(𝑞
0
, 0, 1, 𝑞

0
, 01) = 0.5,

𝜇
𝛿
(𝑞
0
, 1, 0, 𝑞

0
, 10) = 0.5, 𝜈

𝛿
(𝑞
0
, 1, 0, 𝑞

0
, 10) = 0.4,

𝜇
𝛿
(𝑞
1
, 0, 0, 𝑞

1
, 𝜀) = 0.6, 𝜈

𝛿
(𝑞
1
, 0, 0, 𝑞

1
, 𝜀) = 0.3,

𝜇
𝛿
(𝑞
1
, 1, 1, 𝑞

1
, 𝜀) = 0.5, 𝜈

𝛿
(𝑞
1
, 1, 1, 𝑞

1
, 𝜀) = 0.35,

𝜇
𝛿
(𝑞
0
, 1, 𝑍

0
, 𝑞
1
, 𝑍
0
) = 1, 𝜈

𝛿
(𝑞
0
, 1, 𝑍

0
, 𝑞
1
, 𝑍
0
) = 0,

𝜇
𝛿
(𝑞
0
, 1, 0, 𝑞

1
, 0) = 1, 𝜈

𝛿
(𝑞
0
, 1, 0, 𝑞

1
, 0) = 0,

𝜇
𝛿
(𝑞
0
, 1, 1, 𝑞

1
, 1) = 1, 𝜈

𝛿
(𝑞
0
, 1, 1, 𝑞

1
, 1) = 0,

𝜇
𝛿
(𝑞
1
, 𝜀, 𝑍

0
, 𝑞
2
, 𝑍
0
) = 1, 𝜈

𝛿
(𝑞
1
, 𝜀, 𝑍

0
, 𝑞
2
, 𝑍
0
) = 0.

Otherwise 𝜇
𝛿
(𝑞, 𝜏, 𝑍, 𝑝, 𝛾) = 0 and 𝜈

𝛿
(𝑞, 𝜏, 𝑍, 𝑝, 𝛾) = 1

for (𝑞, 𝜏, 𝑍, 𝑝, 𝛾) ∈ 𝑄 × (Σ ∪ {𝜀}) × Γ × 𝑄 × Γ∗.
The IFSs 𝐼 = (𝜇

𝐼
, 𝜈
𝐼
) and 𝐹 = (𝜇

𝐹
, 𝜈
𝐹
) in 𝑄 are defined

by 𝜇
𝐼
(𝑞
0
) = 1, 𝜈

𝐼
(𝑞
0
) = 0, 𝜇

𝐼
(𝑞
1
) = 𝜇

𝐼
(𝑞
2
) = 0, 𝜈

𝐼
(𝑞
1
) =

𝜇
𝐼
(𝑞
2
) = 1, 𝜇

𝐹
(𝑞
2
) = 1, 𝜈

𝐹
(𝑞
2
) = 0, 𝜇

𝐹
(𝑞
0
) = 𝜇

𝐹
(𝑞
1
) = 0 and

𝜈
𝐹
(𝑞
0
) = 𝜇

𝐹
(𝑞
1
) = 1.

And set 𝜂 = 𝜇
𝛿
, 𝜎
0
= 𝜇

𝐼
, and 𝜎

1
= 𝜇

𝐹
.

By computing with the strings, 010, 111, 01110, 10101,
0011100, and 1011101∈ Σ∗, we have

𝜇L(M)(010) = 𝑓N(010) = 0.6, 𝜈L(M)(010) = 0.3,
𝜇L(M)(111) = 𝑓N(111) = 0.5, 𝜈L(M)(111) = 0.35,
𝜇L(M)(01110) = 𝑓N(01110) = 0.5, 𝜈L(M)(01110) =
0.4,
𝜇L(M)(10101) = 𝑓N(10101) = 0.3, 𝜈L(M)(10101) =
0.5,
𝜇L(M)(0011100) = 𝑓N(0011100) = 0.3,
𝜈L(M)(0011100) = 0.6,
𝜇L(M)(1011101) = 𝑓N(1011101) = 0.3,
𝜈L(M)(1011101) = 0.5.

This implies that 111 is better than 01110 because the
degree of nonmembership of 𝜈L(M)(111) is smaller than the
𝜈L(M)(01110)’s although the degrees of membership of the
fuzzy context-free languages 𝑓N(01110) and 𝑓N(111) are
equal. Comparing the above five strings, 010 is the best and
0011100 is the worst.

6. Conclusions

Taking intuitionistic fuzzy sets as the structures of truth
values, we have investigated intuitionistic fuzzy context-free
languages and established pumping lemma for the underlying

languages. Firstly, the notions of intuitionistic fuzzy push-
down automata (IFPDAs) and their recognizable languages
are introduced and discussed in detail. Using the generalized
subset constructionmethod, we show that IFPDAs are equiv-
alent to IFSPDAs and then prove that intuitionistic fuzzy
step functions are the same as those accepted by IFPDAs.
Furthermore, we have presented algebraic characterization of
intuitionistic fuzzy recognizable languages including decom-
position form and representation theorem. It follows that
the languages accepted by IFPDAs are equivalent to those
accepted by IFPDAs0 by classical automata theory. Secondly,
we have introduced the notions of IFCFGs, IFCNFs, and
IFGNFs. It is shown that they are equivalent in the sense
that they generate the same classes of intuitionistic fuzzy
context-free languages (IFCFLs). In particular, IFCFGs are
proven to be an equivalence of IFPDAs as well. Then some
operations on the family of IFCFLs are discussed. Finally
pumping lemma for IFCFLs has been established. Thus,
together with [38–40], we have more systematically estab-
lished intuitionistic fuzzy automata theory as a generalization
of fuzzy automata theory.

Asmentioned in Section 1, IFS and fuzzy automata theory
have supported a wealth of important applications in many
fields. The next step is to consider the potential application
of IFPDAs and IFCFLs such as in model checking and
clinical monitoring. Additionally, many related researches in
theories, such as IFPDAs based on the composition of t-norm
and t-conorm and the minimal algorithm of IFPDAs, will be
studied in the future.
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