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Taking intuitionistic fuzzy sets as the structures of truth values, we propose the notions of intuitionistic fuzzy context-free
grammars (IFCFGs, for short) and pushdown automata with final states (IFPDAs). Then we investigate algebraic characterization
of intuitionistic fuzzy recognizable languages including decomposition form and representation theorem. By introducing the
generalized subset construction method, we show that IFPDAs are equivalent to their simple form, called intuitionistic fuzzy simple
pushdown automata (IF-SPDAs), and then prove that intuitionistic fuzzy recognizable step functions are the same as those accepted
by IFPDAs. It follows that intuitionistic fuzzy pushdown automata with empty stack and IFPDAs are equivalent by classical automata
theory. Additionally, we introduce the concepts of Chomsky normal form grammar (IFCNF) and Greibach normal form grammar
(IFGNF) based on intuitionistic fuzzy sets. The results of our study indicate that intuitionistic fuzzy context-free languages generated
by IFCFGs are equivalent to those generated by IFGNFs and IFCNFs, respectively, and they are also equivalent to intuitionistic fuzzy
recognizable step functions. Then some operations on the family of intuitionistic fuzzy context-free languages are discussed. Finally,

pumping lemma for intuitionistic fuzzy context-free languages is investigated.

1. Introduction

Intuitionistic fuzzy set (IFS) introduced by Atanassov [1-
3], which emerges from the simultaneous consideration of
the degrees of membership and nonmembership with a
degree of hesitancy, has been found to be highly useful in
dealing with problems with vagueness and uncertainty. The
notion of vague set, proposed by Gau and Buehrer [4], is
another generalization of fuzzy sets. However, Burillo and
Bustince [5] showed that it is an equivalence of the IFS and
studied intuitionistic fuzzy relations. Recently, IFS theory
has supported a wealth of important applications in many
fields such as fuzzy multiple attribute decision making, fuzzy
pattern recognition, medical diagnosis, fuzzy control, and
fuzzy optimization [6-10].

In classical theoretical computer science, it is well known
that formal languages are very useful in the description of
natural languages and programming languages. But they are

not powerful in the processing of human languages. For this,
Lee and Zadeh [11] introduced the notion of fuzzy languages
and gave some characterizations, where fuzzy languages took
values in the unit interval [0, 1]. Malik and Mordeson [12—
14] studied algebraic properties of fuzzy languages. They
stated that fuzzy regular languages can be characterized by
fuzzy finite automata, fuzzy regular expressions, and fuzzy
regular grammars. Meanwhile, as one of the generators of
fuzzy languages, fuzzy automata have been used to solve
meaningful issues such as the model of computing with
words [15], clinical monitoring [16], neural networks [17], and
pattern recognition [18]. Also, fuzzy grammars, automata,
and languages tend to the improvement of lexical analysis and
simulating fuzzy discrete event dynamical systems and hybrid
systems [14, 19].

As is well known, quantum logic was proved by Birkhoft
and Von Neumann as a logic of quantum mechanics and



is currently understood as a logic with truth values taken
from an orthomodular lattice. To study quantum compu-
tation, Ying [20, 21] first proposed automata theory based
on quantum logic where quantum automata are defined to
be orthomodular lattice-valued generalization of classical
automata. More systematic exposition of this theory appeared
in [22, 23]. Moore and Crutchfield [24] defined quantum
version of pushdown automata and regular and context-
free grammars. He showed that the corresponding languages
generated by quantum grammars and recognized by quantum
automata have satisfactory properties in analogy to their
classical counterparts. A basic framework of grammar theory
on quantum logic was established by Cheng and Wang [25].
They proved that the set of lattice-valued quantum regular
languages generated by lattice-valued quantum regular gram-
mars coincides with that of lattice-valued quantum languages
recognized by lattice-valued quantum automata. Then some
algebraic properties of automata based on quantum logic
were discussed by Qiu [26, 27]. To enhance the processing
ability of fuzzy automata, the membership grades were
extended to many general algebraic structures. For example,
by combining the ideas in [20-23] and the idea in Ying’s
another work on topology based on residuated lattice-valued
logic [28], Qiu has primarily established automata theory
based on complete residuated lattice-valued logic [29-31].
And Li and Pedrycz [32] studied automata theory with mem-
bership values in lattice-ordered monoids. They showed that
lattice-valued finite automata have more power to recognize
fuzzy languages than that of classical fuzzy finite automata.
Recently, Li [33] studied automata theory with membership
values in lattices, introduced the technique of extended
subset construction to prove the equivalence between lattice-
valued finite automata and lattice-valued deterministic finite
automata, and then presented a minimization algorithm of
lattice-valued deterministic finite automata. On the basis of
breadth-first and depth-first ways, Jin and Li [34] established
a fundamental framework of fuzzy grammars based on
lattices, which provided a necessary tool for the analysis of
fuzzy automata.

Fuzzy context-free languages, more powerful than fuzzy
regular languages, have also been studied and can be char-
acterized by fuzzy pushdown automata with two distinct
ways and fuzzy context-free grammars, respectively [14, 35].
As a continuation of the work in [29-31], a fundamental
framework of fuzzy pushdown automata theory based on
complete residuated lattice-valued logic has been established
in recent years by Xing et al. [36], and the work generalizes
the previous fuzzy automata theory systematically studied by
Mordeson and Malik to some extent. The pumping lemma
for fuzzy context-free grammar theory in this setting was also
investigated by Xing and Qiu [37].

Using the notions of IFSs and fuzzy finite automata,
Jun [38, 39] presented the concept of intuitionistic fuzzy
finite state machines as a generalization of fuzzy finite state
machines, and Zhang and Li [40] discussed intuitionistic
fuzzy recognizers, intuitionistic fuzzy finite automata, and
intuitionistic fuzzy language. They showed that the languages
recognized by intuitionistic fuzzy recognizers are regular, and
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the intuitionistic fuzzy languages recognized by the intuition-
istic fuzzy finite automata and the intuitionistic fuzzy lan-
guages recognized by deterministic intuitionistic fuzzy finite
automata are equivalent. Recently Chen et al. [41] utilized the
intuitionistic fuzzy automata to deal with consumers’ adver-
tising involvement when considering the expression of an IFS
characterized by a pair of membership degree and nonmem-
bership degree is similar to human thinking logic with pros
and cons. Due to pushdown automata being another kind of
important computational models [15] and also motivated by
the importance of grammars, languages and models theory
[14], it stands to reason that we ought consider the notions of
intuitionistic fuzzy pushdown automata, intuitionistic fuzzy
context-free grammars, and fuzzy context-free languages
because our discussion in this paper will provide a funda-
mental framework for studying intuitionistic fuzzy set theory
on fuzzy pushdown automata and generators as well. How to
characterize intuitionistic fuzzy context-free languages and
its pumping lemma in this setting becomes open problems;
however, there is no research on the algebraic character-
ization of intuitionistic fuzzy context-free languages. We
will try to solve the problems in this paper. Additionally,
some examples are given to illustrate the significance of the
results. In particular, Example 35 presented in this paper
will show that intuitionistic fuzzy pushdown automata have
more power than fuzzy pushdown automata when comparing
two distinct strings although the degrees of membership of
these strings recognized by the underlying fuzzy pushdown
automata are equal. Investigating intuitionistic fuzzy context-
free languages will reduce the gap between the precision of
formal languages and the imprecision of human languages.
The remaining parts of the paper are arranged as fol-
lows. Section 2 describes some basic concepts of IFSs. Sec-
tion 3 gives the definitions of intuitionistic fuzzy pushdown
automata with two distinct ways and their languages. It
is investigated that, for any intuitionistic fuzzy pushdown
automaton with final states (IFPDA, for short), there is
a cover, which consists of a collection of classical push-
down automata, equivalent to the IFPDA. By introducing
intuitionistic fuzzy recognizable step functions, it is shown
that intuitionistic fuzzy pushdown automata with final states
and empty stack are intuitionistic fuzzy recognizable step
functions, respectively, and conversely any intuitionistic
fuzzy recognizable step function can be recognized by an
intuitionistic fuzzy pushdown automaton with final states or
empty stack. It follows that intuitionistic fuzzy pushdown
automata with final states and empty stack are equivalent.
Section 4 studies intuitionistic fuzzy context-free grammars
(IFCFGs) as a type of generator of intuitionistic fuzzy
context-free languages (IFCFLs). The notions of intuitionistic
fuzzy Chomsky normal form (IFCNF) and Greibach nor-
mal form (IFGNF) are proposed. The results of our study
indicate that IFCFLs generated by IFCFGs are equivalent to
those generated by IFGNFs and IFCNFs, respectively, and
they are also equivalent to intuitionistic fuzzy recognizable
step functions. The algebraic properties of IFCFLs are also
discussed. Section 5 establishes pumping lemma for IFCFLs.
Some examples are then given to illustrate the application
of pumping lemma and the significance of IFCFLs. Finally,
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conclusions and directions for future work are presented in
Section 6.

2. Basic Concepts

Definition 1 (see [40]). An intuitionistic fuzzy set A in a non-
empty set X is an object having the form:

A={(x,pys (%), vy (%)) | x € X}, 1

where the functions y, : X — [0,1]and v, : X — [0,1]
denote the degree of membership (i.e., p4(x)) and the degree
of nonmembership (v,(x)) of each element x € X to the set
A, respectively, and the two quantities satisfy the following
inequalities:
O<ps(x)+vy(x) <1, VxeX. 2)

For the sake of simplicity, we use the notation A = (p4,v,)
instead of A = {(x, p4(x),v4(x)) | x € X}. An intuitionistic
fuzzy set will be abbreviated as an IFS.

Let{A; | i € I} beafamily of IFSsin X. Then the infimum
and supremum operations of IFSs are defined as follows:

(A = {(x,/\m,. ), \/va, (x)) | x € X},

i€l iel iel

3)
UAi = {(x’\/.”A,. (x)s/\VA,- (x)) | x € X} >
iel i€l iel

where \/ and /\ denote supremum and infimum of real num-
bers in [0, 1], respectively.

For two IFSs A = (p4,v4) and B = (up, vg), we say A = B
ifp, = pgand v, = vg. In addition, if the IFS A = (p,, v,) in
X satisfies the condition that, for any x € X, py(x) + va(x) =
1, then A reduces to a fuzzy set in X. The difference between
intuitionistic fuzzy sets and fuzzy sets is whether the sum
of the degrees of membership and nonmembership of an
element to a set equals one.

AnIFRin X xY is an intuitionistic fuzzy subset of X x Y;
that is, it is an expression E given by

E={((xy)pe(xy),ve(x,y) | x e X,y €Y}, (4)

where the mappings piz : X XY — [0,1]and vy : X xY —
[0, 1] satisfy

0<pp(%y)+vp(xy)<sl, V(x,y)eXxY. (5

An IFBR over X is an IFS of X x X. Let P = (up,vp) and
E = (pp, vg) be IFRs in X x Y and Y x Z, respectively. Define
the composition of IFRs, P o E = (Up,g, Vp.p) in X X Z, by

bpop (%,2) = \/ (up (%, ¥) A g (3,2))
yey

(6)

Vpop (%, 2) = /\ (vp (%, ) Vg (3,2)),
yeYy

forall (x,z) € X x Z.

Furthermore, if R is an IFBR over X, then its reflexive and
transitive closure is R* = [ J0° R”, where R""' = R"o R, n >
0,and R® = id = (u;y, v;y), that is,

1, ifu=v

Hia (16,0) = {0, ifu#v,
(7)

0, ifu=v

Via (1, 0) = {1, if u#v,

for all (u,v) € X x X.

Definition 2. Let A = (44, v,) bean IFS in X. Then the image
set of A, denoted as Im(A), is given as

Im(A) =Im(py) UIm(v,), (8)

where Im(p,) = {ua(x) | x € X} and Im(v,) = {vu(x) | x €
X}.

Forany 4,0 € [0,1], A + 0 < 1, the (A, 0)-cut set of A is
defined as

And the support set of A, denoted as supp(A), is defined by
supp (A) = {x € X | gy (x) > 0,v4 (x) < 1}.  (10)

If supp(A) is finite, then A is called a finite IFS in X.

3. Intuitionistic Fuzzy Pushdown Automata

It is well known that any language accepted by a pushdown
automaton with final states can be accepted by a certain
pushdown automaton with empty stack, and vice versa. As
a natural generalization of pushdown automata, we give the
notions of intuitionistic fuzzy pushdown automata with final
states and empty stack, respectively, and then do research
in the algebraic characterization of their intuitionistic fuzzy
recognizable languages including decomposition form and
representation theorem. Note that X" is the free monoid
generated from the set £ with the operator of concatenation,
where the empty string ¢ is identified with the identity of
¥. And the length of the string w € X" is denoted by |w].
N ={1,...,k}L

Definition 3. An intuitionistic fuzzy pushdown automaton
with final states (IFPDA, for short) is a seven tuple /4 =
(Q) z) r) 8, I, Zo, F), Where
(i) Q is a finite nonempty set of states;
(ii) X is a finite nonempty set of input symbols;
(iii) T is a finite nonempty set of stack symbols;
(iv) & = (ps, vs) is afinite IFS in QX (ZU{e}) x I x Qx T™;
(v) Z, €T is called the start stack symbol;

(vi) I = (up,v;) and F = (ug, vp) are intuitionistic fuzzy
subsets in Q, which are called the intuitionistic fuzzy
subsets of initial and final states, respectively.



Definition 4. An intuitionistic fuzzy pushdown automaton
with empty stack (IFPDA, for short) is a seven tuple 4 =
(Q,X,T,6,1,Z,,0), where Q,%,T, 6, I and Z, are the same as
those in IFPDA ., and 0 represents an empty set.

Definition 5. Let #4 = (Q,%,1,8,1,Z,,F) be an IFPDA.
Definean IFBR on Q x X" xI", k- 4 = (g, , v ) in the form
of > Vra

b, (@@, ), (pru )
145 (¢ & head (B), p, o \ il (B)),

if u=ow, tail (f) <«
= { us (g, head (w) , head (B), p,a\ tail (B)),
if u = tail (w), tail (B) < «
|0, otherwise,
(11)
v, (@ B),(pu,a))

[ vs (g & head (B), p, o \ tail (B)),
ifu=w, til(f)<a

= { v5 (g, head (w), head (B), p,a \ tail (B)),
if u = tail (w), tail (B) <«
| 0, otherwise

for any (g, w, B), (p,u, ) € Q x £* x I'*. Here, for any non-
empty string u = x;---x,, n > 1, head(u) = x,, tail(u) =
Xy X,, and tail(u) < u. +7, is the reflexive and transitive
closure of I .

If no confusion, we denote + and +* instead of + , and
F,» respectively.

Definition 6. Let # = (Q,%,T,6,1, Zy, F) bean IFPDA. Then
we call Z () an intuitionistic fuzzy language accepted by .#
with final states, where Z () = (uo 4> Vo a))> B a)> a0d
Vo are functions from X* to the unit interval [0, 1], and

(@)= Vipr(@) N p (@ @, 20), (pre;7)) A
ue(p) 1 g p € Qr €T},
Vo) = Nvi(qy) Vv ijﬂ((%»w) zg), (p,&1)) V
vi(P) 1 qoop € Qrel™}

for any w € =*.

Definition 7. Let /' = (Q,%,T,8,1,Zy,0) be an IFPDA’.
Then we call (/) an intuitionistic fuzzy language accepted
by " with empty stack, where Z(N) = (o) Vo)
to ) and vy are functions from X to the unit interval
[0,1], and

(@) = Vip(ge) A ps (o @ 2), (pre€)) |
do-P € Q}
V(@) = Avi(qo) V v (e w:2), (p:€)) |
qo P € Q}

forany w € T*.
Lemma 8 (see [33]). Let [ be a lattice and X a finite subset of

I. Then the N-semilattice of | generated by X, written as X ,, is
finite, and the V-semilattice of | generated by X, denoted as X,
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is also finite, where X, = {x; N+ Axp : k> 1,xq,...,x; €
Xtu{lhand X, = {x; V-V i k> 1,x,...,x, € X}U{0}.

Proposition 9. If f can be accepted by some IFPDA M =
(QX,1,8,1,Zy,F), then f is an IFS in X", and the image set

of f is finite.
Proof. We have the following.
Claim1(f = (ps,vy) isan IFS in ).

It suffices to show that 0 < pp(w) + ve(w) < 1, for any
w=u U, u; € EU{ehi=1,...,n

Clearly, ps(w) = V{p(q0) A ps, (o> @, 20), (pr€:7)) A
ue(p) | qep € Qr € T} = \{u(qy) N p((9o @ 7)),
(qruy - upzir) N (Gt - Uy, 2017)5 (G, U5 -+ 1y,
Zz”z)) ZARRRA tul—((qn—l’ uwzn—lrn—l)’ (qws’ rn)) A #F(qn) |
(G q1s--->9,) € Q™ 2z, €T, 1.t € T
and ve(w) = A{vi(qo) V v (90 0> 2)s (pr&:7)) V vi(p) |
Gop € Qr € T} = A\vi(q) vV v.((q 0 20), (q1,15 -+
Uy 2171)) V Ve (Grs Uy Uy, 2170)5 (Gpp Uz + Uy 2515)) V-0 V
vl—((qn—l’ un’Zn—lrn—l)’ (qn’ & rn)) 4 VF(qn) | (%> di>--+> qn) €
Q" z,...,z, €L, 1.1, €T*}

On the one hand, 0 < /Af(w) + vf(w); on the other
hand, there exists a sequence (qy,q,...,q,) € Q”“, Zy,
2y € T, 1y, r, € TV such that pp(w) = py(gy) A
- ((Go> @, 20)s (qys iy =<+ thyy 217)) N (s 1y -+ 1y, 2979),
(Cb’ Uz Uy, ZZrZ)) ASH ‘/\M—((qn—l’un’ zn—lrn—l)’ (qn’ & rn))/\
tr(q,)- Hence v(w) < vi(q) V v ((qp, > 20), (g1, -+ 1ty
zir1) V v ((qpuyuy 2i10), (Gosthy e Uy, 2515)) Voo V
VF((qn—l’ un’ zn—lrn—l)) (an &, }’n)) V VF(qn)-

Therefore, ptf(w) + vf(w) < (ur(qo) + vi(qo)) V (1. ((qo»
W, 29), (g thy Uy 2111)) V(oo w5 20), (gt - -1ty
Zr)))V (e ((grs vy -ty 2171), (G Us <+ Uy, 2515)) + v (9
Uy Uy 2i11), (Gorthy 1y, 2513))) Vo V(e (15 Uy
zn—lrn—l)’ (qn’s’rn)) + vl—((qn—l’un’zn—lrn—l)’ (qn’s’rn))) 4
(Up(q,) +vp(g)) <1V1IV---v1=1

Claim 2 (Im( f) is finite).

In fact, let X = Im(y;) U Im(ys) U Im(pp) and Y =
Im(v;) UIm(vs)UIm(vg). Then X, = {x; A Axy | k> 1,x,
coxe € Xfu{ltand X, = {x; Ve Vg | k2 1, xq,...,%;, €
X} U {0} are finite sets by Lemma 8. Since § = (ug, ;) is a
finite IFS, forany w = u; - - - u,, u; € XU{e},i = 1,...,n, there
exists a natural number d € N such that yf(w) = \VA{ur(go) A
- ((qo> 0, 20), (qrstiy -1y, 2111)) A ((qrs Uy -+ Uy, 211y),
(CI2> Uz Uy, 227’2))/\’ A M—((qn—l’un’ zn—lrn—l)’ (qn’ & rn))/\
tp(@,) | o Grs-->q0) € Q25 v2,y €T, 1,..0,1, €
I} =(a oA - -Aay, Aay)V--V(agA- - -Nag,, 1 Aag,)), where
a; € X,i=1,...,d;j=0,...,n. By Lemma 8, (X,),, is also
finite. Since ptf(w) € (X,), foranyw € £*, Im(yf) C(X\)y-
Hence Im(y) is a finite subset of [0, 1].

Similarly, it follows that Im(vf) is also a finite subset of
[0, 1].

Therefore, Im(f) = Im(yf) u Im(vf) is finite.

If f can be accepted by some IFPDA” /' = (Q,Z,T, 4,
I,Z,,0), then, by Definition 7, for any w = u;---u,, u; €
TuUfehi = 1...,n we have ps(w) = VAp (go)N
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I/‘F_}((%’ ®, %), (p&¢€) | qep € Q = Viw(g) A
U ((Go> 05 20)5 (qy> Uy -+ -ty 2171)) N i ((qrs 1y - -1y, 2177),
(@ vtz 2575)) A v A iy (s Uy 21 Tet)> (G €5 €)) |
(90915 -+->9n) € Q" z,... € I, r,....r,, €
I} and ve(w) = A {vi(ge) V v, (G0 @ 20) (P €:€)) | Gos
p € Qb = N\ {vi(q) vV vi.((qow 20), (g1, 1+ -ty 2171)) V
Vo (st Uy 2110)5 (oo iy - Uy 2513)) Vo0 V V(G

> Zp-1

Up> Zn—lrn—l)’ (qn’ & 8)) | (qO’ qi>--+> qn) € Qn+1’ Rl Zp €
[0t €70

In a similar manner, it is concluded that the following
must be true. 0

Proposition 10. If f can be accepted by some IFPDA” ¥ =
(QX,1,8,1,2,0), then f is an IFS in £*, and the image set
of f is finite.

Specially, the IFPDA .# = (Q,%,T,6,1,Z,, F) will be
abbreviated as ' = (Q, %, T, 5, qo» Zy» F), whenever Im(I) €
{0,1} and supp(I) = {q,}. Moreover, if Im(I) U Im(F) U
Im(8) < {0, 1} and supp(I) has only one element, then the
IFPDA is a classical PDA.

For two IFPDAs ./, and . ,, we say that they are equiv-
alent if they accept the same intuitionistic fuzzy language.

Proposition 11. Let A be an IFS in a nonempty set *. Then
the following statements are equivalent:

(i) A can be accepted by an IFPDA M = (Q,%,T,6,1,
Z(): F);

(ii) A can be accepted by a certain IFPDA M' = (Q',%,
1,8, gy, X, F'), where g, € Q'.

Proof. (i) implies (ii). Construct an IFPDA .4 = (Q,%,
1,8, I', X, F') as follows: Q' = Q U {g,}, T' =T U {X,},
where g, ¢ Q, X,, ¢ I. Define an IFS I' in Q' by

1, ifg=
mwm={ 1= dy

0, if g#qy,
(12)
_ |0, iftg=q,
w={y g
Define an IFS F' in Q' by
0, if g =q,
pp () = { .
F e (q), if 9# 4o,
(13)

1 if g =q,
Vi = .
e (4) {VF (q). if 9#4,.

Define an IFS &' in Q' x (X U {e}) x I' x Q' x I'* by
mappings gy, vy : Q' x S U{e) xT' x Q' xI'* — [0,1],
M(S’(q()) &, X()) p) ZO) = MI(P)’ V@’(q()) &, X()) p) Z()) = Vj(p))
Us (97,2, p,Y) = Us(q: T2, y), Vo (4 752, oY) = V5(g T,
z,p,y), whereq,p € Q, 7 € ZU {e}, z € [, y € T'"; otherwise,
Us (qo> T>2, P> y) = 0 and vy (qy, T, 2, p, p) = 1.

Then for any w = u;---u, € £, u; € XU {e}i=
L,...,n, we have pgy,m(w) = \/{up(g) A -, (g, , Xo),

(Po>w, Zg)) A P‘Fﬂ,((Po’w’Zo)> (@1 uy -ty 2917)) A e,
(Grouy - upp 2171) (G th3 ==ty 2572)) A oA e (G
un’zn—lrn—l)’(qn’s’ rn)) A‘uF’(qn) | q¢€ Q” (pO’ ql""’qn) €
Q" zyzyy € Ty, € T = VAL A yi(po)A
e, (P, Z), (qrythy -+t zi)) - A ppy ((gysup -+ 1y,
2111 (Gos iz -+ Uy, 2575)) A oos A #Fﬂ((qnfl’un’ Zy1Tp1)>
(@& 1)) A up(@y) | (Po>dy>--->4,) € Qnﬂ)zlwu’ Zy1 €
L, r,e.rn, € I'Y = pgum(w), and vy 4m(w)=
/\{VI’(q) \ V)—yﬂ,((qaw)XO))(poaw>ZO)) \ V,_J{,((PO,(L),ZO),
(qsuy Uy, 2117)) v Vhﬂ,((%ﬂz'““w ziry)s (qpouz---
un’ZZrZ))V' : 'Vvl—ﬂ/ ((qn—l’ Uy Zn—lrn—l)’ (qn’g’ rn))VVF’ (qn) |
q € Q, (ppqp--q) € Q™zy, vz, € Trp,.ls,
ro€ T = N1V vi(po) Vv, (po @, Z0), (qyou; -+
Uy 2171)) Vv (G thy -ty 2071)s (Gpsthy =221y 2575)) V
"'VVhﬂ((qn—l’uwzn—lrn—l)’ (qn’ & rn))VVF(qn) l (po’ql""’
q,) € Q" 2z, € Trynr, € T = vy ().
Therefore, Z(M') = L(M).

From the construction, it is clearly that .#' can be
denoted as ' = (Q', 2, F',S',qO,XO,F').

(ii) implies (i). Suppose the IFS A is accepted by the
IFPDA /' = (Q',%,T',8', gy, X, F'). Then we construct an
IFS I in Q' by

L ifg=gq,
I/‘I(Q)—{O, if g a,,

_ o, ifg=gq,
Vf(q)_{l, if g#qq.

(14)

It follows that the IFPDA .# = (Q',%,T',8',1, X, F')
accepts A.

Similarly, it is easily concluded that the following must be
true. O

Proposition 12. Let A be an IFS in a nonempty set 2*. Then
the following statements are equivalent:

(i) A can be accepted by an IFPDA® # =
r,a,I,Zo,ﬂ);

(ii) There exists an IFPDA® ' = (Q', =, 1,8, q4, X, 0)
recognizing A, where q, € Q'.

(Qs Z,

There is especially a simple type of intuitionistic fuzzy
pushdown automata, which is called intuitionistic fuzzy
simple pushdown automata. The definition is given as follows.

Definition 13. An IFPDA M/ = (Q,2,T, 0,9y, Z,, F) is called
an intuitionistic fuzzy simple pushdown automaton
(IFSPDA) if the image set of § is contained in the set
{0, 1}.

Next any IFPDA is proven to be an equivalence of a cer-
tain IFSPDA by utilizing the generalized subset construction
method. Noting that an IFS requires that the sum of the
degrees of membership and nonmembership of an element
to a set is no more than the natural number 1. So the proof
technique is to some extent different from the technique of



extended subset construction introduced by Li in [33], and it
is not an easy task to conduct reasoning in the realm of the
modified techniques.

Proposition 14. Let ./ be an IFPDA. Then there exists an
IFSPDA ' such that Z(M") = L(M).

Proof. Let # = (Q,%,1,6, 4y, Zy, F) be an IFPDA. Then we
construct an IFSPDA ' = (Q',3,T, 8',q('),ZO,F') as fol-
lows:

() Q' = Qx (L, —{0) x (L, - {1}), where L, = X, L, =
Y, X = Im(ps) UIm(pp) and Y = Im(vy) U Im(vp);

(if) 9o = (40, 1,0) € Q'

(iii) &' = (s> vyr) is an IFS in Q x (T uU{e) xT x
Q' x I, where the mappings py,vy : Q x (X U
{eh xTx Q' xT* — {0,1} are given as follows.
For any (g, a, b),(q',c, d e Q,7r e Tufe X ¢
Fandy € T% psy((ga,b),7,X,(q,c.d),y) = 1,
and vy ((¢q,a,b),7, X, (q', ¢,d),y) = 0 whenever there
exist a’ and b such that ys(q, 7, X,q,y) = a' > 0,
v, X,q,y) = b < L,c =and andd =
b Vv b'. Otherwise, us ((g,a,b), 7, X, (q',c, d),y) =0
and vy ((¢,a,b), 7, X, (q',c, d),y) =1

(iv) F' = (4pr> vpr) is an IFS in Q'. For any (g,a,b) € Q,

_|anpp(q), if0<a+b<1
”F'((q’a’b))_{o, ifa+b>1,
(15)
_[bvve(q), fo<a+b<1
VF'((q’a’b))_{l, ifa+b>1.
Now, it is claimed that, for any w = 7,---7, € %%,
T, € TU{ehi e {1,...

,n} and for any (q,,4,,b,) €
Q” Zn’)/n € r*’ [’lk*ﬂ,((q(l)’w’zo)’((qn)an’bn)’g’zn)/n)) = 1
and v, . ,((q('), w, Zy), ((q,>a,,b,), & Z,y,)) = 0 whenever the
followiﬁg condition is satisfied.

(P1) There exist q,...,q,_; € Q. Z,,...,Z,_ € land y,,
>Vu1 € T7 such thata, = . ((qpw, Zg), (9,7,
T Z1y)) A i, (T T Ziy)s (@ T30 T Z292)) A

A HF/”((qn—l’Tn’Zn—l)/n—l)’ (an & Zn)/n)) and bn:
Ve (oo @, Zo)s (@17 T Zin)) Vv (@11,
Zim)s, @73 TwZyy)) Voo Vv (s Ty
Zn—lYn—l)’ (qn’s’ZnYn))' OtherWise) MF;Z,((Q(’))MZO),((QW
G b,), 8 Z,Y,)) =
Z,v.)) = 1.

It is proved by induction. In fact, if |w| = 0, then w =
& ijﬂ,((%’& Zy),(go,& Zy)) = 1 and ij,{((%’& Zy), (go> &
Z,)) = 0. Hence ‘quﬁ(((qO,1,0),8,20),((%,1,0),8, Zy) =1
and Ver, (((q9>1,0), &, Z), ((qo» 1,0), &, Z)) = 0.

Suppose the result still holds whenever |w| < n,n € N.
Iflwl =n+1,w=1 7Ty = XTpyy and 7, € X, then
x| =nandx =1, - 1.

Next, for any (qx 1 @15 be1) € Qs ZiwsYirr € T
whenever (P1) is satisfied; that is, there exists a sequence of
states gy, .., G € Q, Zy,.. ., Z € L, yy, ..., P € ™ such that

0 and vk*ﬂl((q(',,w,ZO),((qn,an,bn),&
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b, (> Tir *** Tr 1> Zi¥i)> (Gt T ™" Tt
Zi1Vis1)) = G > 0,

Ve (@ Tiy - Thes Zi%2)s Qi i+ T
Zis1Yir1))

sG> T 1> Zio i 1> Ziea1) = Ger > 05
Voo Tert> Zio s> Zier1) = dien < 1,

= di+1 < 1’

wherey, =¢,i=0,1,...,k— 1.
Letay = A---ANg, y=d,Vv---vd,l e{l,....k+1}.
Then

e, (((g5> >8> Tiv1 *** Ter1> Zi¥i)> (G155 i)
Tiv2 " Thrl> Zi+1yi+1)) =1,

Vv (95> >8> Tisy ** Thesr> Zi2)s
Tiv2 " ThtD> Zi+1Yi+1)) =0,
I/‘gﬂ,(((%)ak’ bi)s T 1> ZiVi)> (Gt G Bean)»
& Zk+1Yk+1)) =1,and

Wﬂ,(((‘h’ %o B> T 1> ZiVid)> Qi1 s> b))
& Zk+1yk+1)) =0,

((Qi+1’ai+1’bi+l)>

wherea, =1,b,=0,y,=¢,i=0,1,...,k— 1.
By assumption, p.. ((qp % Zo)s (@ Ao ) & ZiYi)) =

1, w;ﬂ,((q(’),x, Zo), (@i @i ), & Zyye) = 0,and so (g0
XTer15 Z0)> (@G> Bi) T Zievi)) = 1, VI—;{,((q(,)’ka+l’ZO)’

((qk, ag, bk), Ties1s Zkyk)) :/ 0.
Therefore, P‘Hﬁ, (G0, Zo),  (Gis1> Her15bi1)> &

Zi1 Vi) = V{Mkjﬂ,((q(l)’w’zo)’ ((G> > B)s> Ties1s ZiVie)) A
M, (((Gr> A be)> Trer1> ZieVie)> (@Gresr> Gier1> Biein)s &

Zk+1Yk+1)) ! (qk,ak,bk) € Q’, Zk € r,'}/k € F*} =1A1=1.

V“.}ﬂ((%, 0 Zo)s Qs Ui b)) & Zg1Verr)) =
/\ {VF’;{’ ((qé)) w, ZO)) ((qk) aka bk)) Tk+1>Zkyk)) \ vk/{,(((qka ak,
bk’)’Tk+1’ZkYk)’ (G 1> e 1> bes1)> & Zis1 Yier!)) | (G a1 by) €
Q’Zk € r,)/k € r*} =0v0=0.

For any (qk+1’ak+1>bk+1) € Q” Zk+1’ Vis1 € r*’ if (P1) is
not satisfied, then it follows that

B, (400 @, Z)s (st B> i1 ) & Zies1 Vierr)) = 0,

Vl—:‘ﬂ, ((q(l)’ w, ZO)> ((qk+1’ Aet1> bk+1)> & Zk+1)’k+1)) =1

Hence, for any w = 7,---7, € 2%, 7, € Z U {e}i €
{1,...,n}, we have pg( 4 (w) = \/{m;i,((q{),w, Zy)s (q» s

b),& V) A b (G 308,)) | (G a,08,) € Qhy € T}
=Via, Nup(q) | g quy € Q22 €T,
YooooVua € I7, a, .”hﬂ((CIww’Zo)’ Q1 Ty
Ziy) Ay (T T ZyY1)s (@os T3 T Zo2)) Ao A
Ml—_ﬂ((qn—l’ Tn’Zn—lyn—l)’(qn’s’y))’ bn vl—.l,((q()’w’z()x
Qi1 T Zin) V VI—M((ql’TZ'”Tn’Zl)}l)’ (G2 T3+ Tps
ZZYZ)) \ \ VI—V,{((qn—DTn’Zn—lyn—l)’ (qn,s,y))}z
\/{‘ukﬂ((qO’w’ZO)’(ql’TZ"'Tn’ZIYI)) A ["k/,((ql’TZ"'Tn’
Zy) @@yt T Zoy)) AN ANy (@15 Ty
Zp1Vu1) @ &) A pp(d,) | qisesqp € Q2,0
Zyy € Lynooyy € T} = U (@) Vo an(w) =
/\{vkjﬂ, ((Q(’)’ w, ZO)’ ((qn’ > bn)’ & Y)) Vo v ((qn’ Ay
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b)) | @oanb) € @y € T} = A,V vea,) | 4y
ey € Q ZyoosZyy € Loy €T,
a, = ‘“rﬁ((%’w’ Z)( G T T Zy Y1) A Hr/[((Q1’ Ty T
Ziy)s @13 T Zoy)) A Ay (Guets T Zyoa V1)
(@6 7)), b, = v (40, 05 Zo) (41 Ty T Zi)) VY, (G0
T T ZiV)s (T3 T Z)y)) V ooor v Vhﬂ((%—l’ T>
Zy1Yn-1)s @p&y))y = /\{Vh,{((%rwazo)’ (G727
Ziy) Vv (@t T Zi11)s (o T3 Ty Z37))) V-

VVI—%((qn—l’ Tn> Zn—lYn—l)’ (qn’ & y)) v VF(qn) I di>-->4qn-1 €
Q Zys s Zyy €095 Y €17} = v ().
Therefore, Z(M') = L(M). O]

Clearly, an IFPDA is a generalization of a classical push-
down automaton (PDA). Next, it will be shown that any
IFPDA can be characterized by a collection of pushdown
automata. To describe the behavior of a pushdown automaton
M= (Q,2,T,6,qy Zy F), we need to introduce the concept
of instantaneous description. An instantaneous description is
a three-tuple (g, w,y) € Q x £* x I'*, which means that the
automaton is in the state g and has unexpended input w and
stack contents p. An instantaneous description represents the
configuration of a pushdown automaton at a given instant. To
introduce the transition in a pushdown automaton in terms of
instantaneous descriptions, we define > , as a binary relation
on Q x X* x I'". We say (q, aw, Zy) > , (p, w, 0y) if (g, a, Z)
contains (p, o), where p,q € Q,a € LU {el,w € 2*,Z €T,
and y,0 € T". Furthermore, we define >, as the reflexive
and transitive closure of > ,. Then the language accepted by
J with final states is defined as

Z (M) ={w € 2" | (g9, Zy) >y (pr&:y) , p € Fy €T}
(16)

Definition 15. A collection of classical pushdown automata
with final states

S:{ﬂabI‘%ab:(Q’z’r’8>qO’ZO’Fab)’ ( )
17
0<a+b<l,abe(01]}

is called a cover if the following conditions hold:
(i) ay <ayandb, < b implyF,, CF,;;
(i) Fy = Q.
For a cover §, its recognized intuitionistic fuzzy language
fs = (s, vy,) in X" is given by
ps (@) = \a € [0,1] | M 4 accepts w, M, € S},
vi(w) = A € [0,1] | A, accepts w, M, € S}, for
allw e X°.

Theorem 16. Let f be an IFS in X*. Then f can be accepted
by an IFPDA if and only if f can be recognized by a cover S.

Proof. If f can be accepted by an IFPDA, then there exists an
IFSPDA A/ = (Q,%,1,8, qy, Zy, F) such that ./ accepts f by
Proposition 14. Next we construct a cover

S={ly | My =(Q2T,8,q0,Z0, Fy), )
18
0<a+b<l,abe [0,1]},

where F;, = {g € Q | up(q) = a, vp(q) < b}; the mapping
8 :Qx(Eu{e)) xT — 29T s given by

8'@n.2) ={(py) | us(@ 7. Z,p.y) = Lp € Qy €
I}, forall(q,7,2) e Qx (ZU{e}) xT.

Clearly, the cover S is well defined.
Next, we will show that f can be recognized by the cover
S. In fact, we have

(90, w0, Zo)>y (g,&,y) if and only if u+, (o>
w,Zy),(g,&7)) =1,

foralla,b € [0,1] witha+b < 1, forallw € £,y € T".
pr(w) = \a € [0,1] | My, accepts w, My, € S} = \/{a €
(0,11 | g € Fyp (90> @, Zg) >y (@:67), ¥ € T} = Via €
(0,1] | up(q) > a, ve(q@) < b,(qp, @, Zg) >y (9:87), ¥ €
I} = Via € 0.1] ] (@) > . (00, Zg) > (@..7). q €
Qy € I'} = Vipp(@) | ps, ((Go @ Zy), (g67) = 1, g €
Q y eI} = upw) = po (), vi(w) = Nfb € [0,1] |
My, accepts o, My € S} = Nb € [0,1] | g € Fy,
(Go>w> Zy) >j%ub(q,s,y), y eI = ANb e [0,1] | up(q) =
a, ve(q) < b,(qo,w,Zo)>jﬂub(q,s,y), y e T'} = A\{b €
[0,1] | vp(g) < b, (qo,w,Zo)>}lub(q,s,y), qgeQyel™}=
AVve@ |t ((Go @, Zg), (g,6:9)) = 1, g € Q y € T} =
vf(w) = Vo) (W)

Therefore, f¢ = L(M) = f.

Conversely, suppose f can be recognized by a cover

S={lly | My =(QET,8' 90,2y Fyy)
(19)
0O<a+b<labelo1]}.

Then we construct an IFSPDA /# = (Q,Z,I,1,9y,Zy, F),
where 7 = (yq,vy,) isan IFSin Q x (XU {e}) xI' x Q x T'*,
and the mappings P Vi 1 QX Cul{eh)xITxQxTI* — {0,1}
are defined as

L if(py) €8 (q.7.2)
> ’Z’ b =
(4.7 2.p.7) {0, otherwise,
(20)
0, if (py) €8 (¢7.2)

1, otherwise,

vy (@7 Z,pry) = {

forany (¢, 7, Z, p,y) € Qx (ZU{e}) x I x Qx T,

F = (pp,vg) is an IFS in Q, where pp(q) = \/{a € [0,
1] | g € Fy}and vie(g) = A{b € [0,1]g € F,},for all
q € Q. Then (M) = f; In fact, for any w € X7,
oy (@) = V{up@ | g (G @, Zo): (g,67)) = 1, q €
Qy eI}t =V{Via € [0,1] | g € Fy} | p- ((qpo 5
Zos(gey) = 1L q € Qy eI} = Via e [01] |
q € Fub’!’lk:‘ﬂ((qo’wizo)>(q)s’y)) =1, q € Q, y € F*} =
Via € [0,1] | q € Ey,(qpw, Zy) >j%ab(q,e,y), y e I} =
Via € [0,1] | M, accepts w, My € S = pg(w),
Vo) = Nve(@) | e, ((qe 0. Zy),(g:67) = 1, q € Q,
y € I'} = NMAL € [0,1] | g € Fp} | py (g0,
Z),(q.69)=1,q€Q, yeTl"t = \{be[0,1] | g € Fy,



(q()) w) Z()) >j%ub(q’ 8) V)) Y € r*} = /\{b € [0) 1] | %ub
accepts w, M o, € S} = vy ().
Therefore, the IFSPDA . accepts f. O

Theorem 16 shows that every IFPDA is equivalent to a
certain cover; however, the cover may have infinite classical
pushdown automata elements. Is there a finite cover who
is equivalent to the IFPDA? To solve the problem, we
introduce the notion of an intuitionistic fuzzy recognizable
step function as follows.

Definition 17. An IFS A over X* is called an intuitionistic
fuzzy recognizable step function if there are a finite nat-
ural number n € N, recognizable context-free languages
&L, <2, and (a;,b) € (0,1]1x[0,1) with0 < g;+b; <
1fori=1,...,nsuch that

A= (ppova) = ]_[ (a:5) 14, (*)
i=1

where 15, = (4, ,v;,, ) represents the intuitionistic charac-
"1 1

terized function of &£, i = 1,...,n, that is,
1, ifwe,;
th,, (@) = {0, ifw¢ 2,
(21)
0, ifweX;
Vi, (@)= {1, ifw¢ 2,

And the equation (x) means that the following equations
hold:

pa (W) =\/ a; Ay, (W), vu(w) =/\ b, AT (w),
i=1 ' i=1 ' (22)

Yow € 27,

Noting that the family of all the intuitionistic fuzzy
recognizable step functions over £* is denoted by Step“(2).

Proposition 18. Let 4 = (Q;,%, 11,8}, qo1> Zo1» Fy) be an
IFPDA. Then the language recognized by (', is an intuitionistic
fuzzy recognizable step function over X*, that is, L(M") €
Step®(2).

Proof. By Proposition 14, there is an IFSPDA /4 = (Q,%,T,
8, 40> Zy» F) equivalent to " .

Let R = {(up(q),ve(q) | g € Q\{(0, 1)} = {(a;, ) |
i€ NN, = {L....k. PutF, = {q € Q | pplg) =
a;,ve(q) = b}, for all i € N;. Then we construct a PDA
M; = (Q2,T,8,qy Zy F,), where the mapping &' : Q x (ZU
{e)) xT — 22 is defined by

31, X) ={(p,)) | 4@ T, X, p,y) =L,p € Qy €
I}, forall (g, 7,X) € Qx (ZU{e}) x I
Then L(M;) = Z; = {w € Z* | (qy> @, Z) >j%i(q, &9),

qeF,yel™}
Therefore, for any w € X", we have o) (@) = Py (@)

= Vi@ | e, (o @, Zo): (g, 67)) =1, g€ Q y €T} =
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Via; | e, (o, 0, Z0), (g:67)) = 1, 4p(q) = a4, ve(q) = b,
i€ Ny eI} = Vg | (qow Z)>(gey)q € F,
i€Noy el =g | we L(M),i € N} = Vienai N
1, (@) and Vo (@) = Vo (@) = NVe(@) | Vs, (G0,
W, Zo)(gey) = 0,q € Qy € I't = Al |
e, (@0 Zo)s (g:67)) = Lpup(q) = a,ve(q) = b,i €
Ny € T} = \b | (g0, 0. Z0) >4 (@:6,7),q € Fi € N,
y e} = Al | @ € Z(M),i € N = Nenybr Vv, (@)

So L(M) = [Tie, (@:1) - 1, O

Proposition 18 shows that the set of the languages rec-
ognized by all the IFPDAs is a subset of Step®(Z). In fact,

Step“(2) is also a subset of the set of the languages recognized
by all the IFPDAs. We will prove the decomposition form in
the following.

Theorem 19. Let A be an IFS over X*. Then the following
statements are equivalent:

(i) A € Step“(2);
(ii) there is an IFPDA M such that A = L (M);
(iii) there is an IFSPDA M such that A = L (M).

Proof. (i) implies (iii). Suppose A € Step®(Z). Then there is
a finite natural number n € N, recognizable context-free
languages &,,...,%, <€ 2%, and (a;,b) € (0,1] x [0,1)
with 0 < g, +b < 1fori = 1,...,nsuch that A =
(pasva) = L@@, b) - 1. Let Z; be recognized by a PDA
M = (Q; Z, T, 6,5 G Zoi Fy), and Q;NQ; = @ wheneveri # j,
i,jeN,.

Next, construct an IFSPDA # = (Q,%,T,06,4qy, Zy, F)
as follows: Q = [JL, Q; U{ge}, T = UL, T; U {Z,}, where
Qg ¢ U, Qi Zy ¢ UL T,. 8 = (usvs) is an IFS over
Q x (ZU{e}) xT x Q x I, where the mappings ys,vs :
QxEufe) xI'xQxT* — {0,1} are defined by ps5(q,,
&Zy oY) = 1and ve(gp. & Zo, pry) = 0 if (p,y) = (G
Zoi) i € Ny (@ 7.2, py) = o (9,7, Z, py) and vs(q,
T.Z,py) = v @1, Z,py)if pg € Q,Z € T,y € T,
T € 2 U {e},i € N,. Otherwise, ys(q,7,Z, p,y) = 0 and
vs(q, T, Z, p,y) = 1.

F = (pp, vp) is an IFS in Q, where

#r (o) = \/{a,- €[0,1] | go; € Fi € N, },
Ve (qo) = /\{bi €[0,1] | q; € Fi € N,},

_|a, ifqeF (23)
br () {0) if q ¢ F; U{qo}

b, ifqekF

1, ifq ¢ FU{q}.

Ve (q) = {

Therefore, for any w € 2", we have
o (@) = \p, (0w, Zo), (g:89)) A pp(q) | g €
Qyerl™},
Vo (@) = Nves (9o, @, Zo), (9,6 9)) V V() | g €
Qyerl™}
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If w = ¢ then [43(_/%)(8) = (M—}((Qo) & Zo);(Qo»& Zo)) A
#e(@0)) v (Vs (o> & Zo), (qois & Zoi)) N pe(qoi) | goi €

Qi Zy; € Tyi € N1 = pp(qo) vV (V{pe(q0) | goi € Qs Zo; €
I,i € N = \{g; € [0,1] | g € F,i € N} =

Vi@ A Hlyi(5)5 Vo (€) = (ijﬂ((%@’ Zy), (o> Zy)) V
Vp(qo)) A (/\{VF;,((‘JO»& Z0)> (40> & Zoi)) V VE(qoi) | qoi € Qi»
Zo; € Ti € Nb) = vi(qo) NAVE(qo) | 9oi € Qin Zo; € T €
N} =\ € [0,1] | gy € i € N} = NLib Vv, (o). I
w € X"\ {e}, then pgy 1) (@) = \/{M;,{((%i’ W, Zy), (4,6 7)N
up(@) | qoi € Quy €T7,q € Qi € N} = V{pp(q) | g0 € Qi
y € I1hg € Qi € Ny, ((Gop @ Zo)(q ) = 1} =
Via; | q € Fii € Ny, i ((qop @5 Zoy) (@56, 9) = Ly € I} =
Vig | w € i € N} = VL a /\‘ulyi(w), Vo) =
A, (o @, Zoi)s (g:67) V Ve(@lge € Quy € T7.q €
Qi € NJ=Avp(@ | g0 € Quy € I,q € Qi ¢
N, Mkjﬂ((%p“” Zu)(@ey) = 11 =A\b | q € F,i €
Ny s (@oi» @, Zgi) (@ 87) = Ly € T} = N | 0 €
Znie Ny =N\ a4V v, (@).

(iii) implies (ii): obviously.

(ii) implies (i): it is concluded by Proposition 18. ]

Next, we will discuss the characterization of IFPDA°.

Proposition 20. Let # = (Q,%,1,6,qy, Zy,0) bean IFPDA®.
Then there is a special IFPDA’ 4" = (Q',%,T",8',q}, X,, 0)
equivalent to M.

Proof. Given /, we construct an IFPDA" .4’ =
Q21,8 gy, X, 0) as follows:

(D) Q" = Q,x (L, \{0}) x (L, \ {1}), where Q, = QU {py},
I'=Tu {Xoh Ly = X, Ly = Y, X = Im(yg), Y =
Im(vs), and g = (P, 1,0);

(2) &' = (g, vyr) isan IFS in Q' x (XU {e}) xI' x Q' xT"*,
where the mappings gy, vy : Q' x (XU {e}) x I'xQ' x
I'"* — [0, 1] are defined by

(1) ps ((py> 1,0), € X (go» 1,0), Zy X)) = 1,

vy (P> 1,0), & X5 (go» 1, 0), Zy X,y) = 0;

(i) s (g a,b), 7, X, (q,a A a',b v b),y) = 1
and vy ((g,a,b), 1, X, (q',a Aa,bv b'),y) =
0 whenever us(q,7,X,q,y) = a > 0 and
vs(g 7, X,q,y) = b < 1,forall (g,a,b) € Q,
TeXUfe, Xel,yel™

(iii) if 0 < a + b < 1, then uy((g,a,b), & X, (¢ a4,
b),e) = aand vy ((q,a,b), &, X, (¢, a,b), &) = b.
Ifa+b > 1,then uy((q,a,b), & X, (g, a,b), €) =
0 and vy ((g,a,b), &, X, (g,a,b),¢€) = 1;

(iv) In other cases, py ((q,a,b), 7, X, (p,c,d),y) =0
and vy ((g,a,b), 7, X, (p, ¢, d),y) = 1.

Obviously, 8’ = (Us'> vsr) is a finite IFS in Q' x (Zu{e}) x
I'xQ xTI'*.
Next, we show L(M') = L(M).

Firstly let us show that, forany w = 7,---7, € £, 1; €
YU{ehiefl,...,n}q,€Q,

B, ((q(’pw, Xo) ,((gpanb,) e Xo))

|1, if(P2) is satisfied
~|o, otherwise,
(24)
!
VF:‘”, ((qO’ w, XO) > ((qn’ > bn) > & XO))

_ |0, if (P2)is satistied
" |1, otherwise,

where the condition (P2) is the following:

(P2) there exist ¢,...,9,; € Q, Zy,...,Z,; € [, y,

s Yu €T st a, = yw((qo,w,zo), Q1T Ty

Zlyl))/\.uh,{((‘h: Ty Tn,Zlyl), (q2,1-3 T, Zz)’z))/\

" A t[/l",ﬂ((qn—l’ Tn’Zn—l))n—l)’ (qn: &, 8)) > 0

and b, = v ((4p® Zp), (@72 T Zi11)) V

Vl—vﬂ((qp Ty Tn’Z1V1)> (qz, T3 Ty Zz)’z)) Vo oeee V
VD—.,,,{((qn—l’ Tn’ Zn—lYn—l)’ (qn, &, 8)) <L

In fact, if (P2) is satisfied, then let y,  ((q; Tjy - T,
Z¥)> Qiv1> Tz To Zisa Vir1)) = G Vh,{((% Tiv1 " T ZiYi)>
(Qis1> Tisa T Zis1Vie1)) = dpi = 0,1,...,n — 2, where

Yo = €. We have
., (0 1,0), @ ZgXo), (16 do)s T T
ZiyXo) =1,
v, (@ 1,0),  0,ZgXo), (@16 do)s  Tpoo Ty

ZinX,)) =0,
e, (g1 do)s Ty - T Z1 11 X)s (G569 A €5y V

di), T3 T 2o X)) = 1,
Y, (@160, do). Ty T Zi1i Xy (@06 A 12l V
di) 13 T 221, X)) = 0,

e, (@ o NG A NGy gy dgVdy VeV, ),
T> anl)}n—lxo): ((qm A, bn)’ &, XO)) =1,
Vo (G AN A NGpdogVd VeV, ),
Tp> Zn—lYn—IXO)) ((qn, a, bn)’ &, XO)) =0.

Hence - (4}, Xo), (@ anb), £.X0) 2 (@,
1,0), w,ZyXy), (91,6, dg)s T Ty Z111 X)) A [/‘rﬂ,(((‘h)
G do)s T T Z111 Xo)s ((Gas60 A cydy V dy), 730007,
ZpaXo) Ao Ay ((Gers G AN cp A s NGy, dyg V
dl \ , v dn—2)7 Tn’Zn—IYn—IXO)’ ((qn’ Ay bn)’s’XO)) =1
ijﬂ,((%"‘-’»Xo)’ ((gpanb), e X)) < vm,((qo,l,O), w,
ZoX0), (@15 > do)s T2+ Ty Z111 X)) V Ve, (4165 do)s T

T Z111X0)> (26 A ¢5dy V dy), T30 T, 21, X)) V
--'Vv,_ﬂ,(((qn_l,co NG AN NGy dgVdyV---Vd,,),
T Zn—lYn—lX())’ ((qwan’ bn)>8! XO)) =0.

Since ykjl{,((q('),w,XO), ((gpay by, & Xy) <

VF;Z,((q(’)’ w; X0)> ((qna an) bn): 5) X())) 2 0) #Ffﬂ,((q(’)) (U, XO),

1 and
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((qyp an) bn)) 8) X())) =
& X,)) = 0.
If (P2) is not satisfied, then we assume ”P,((q(’)’
M

XO)) ((qn) an) bn)) & XO)) > 0

1 and V'_j/{’ ((q(’)) w, XO)) ((qyp an, bn))

So there at least exist g;,...,9,_; € Q. Z;,...,Z,_; €T,
y,...,yn 1€ Thstop (901,00, Z Xo) ((q1> 6> do),
T Z111X0)) A U, ,(((‘h’ G do)s T Ty Z111Xo)s
((‘Zz>co ANy dgVdy), T3 Ty Zypa Xg)) Ao A t, ,(((qn B
CO/\CI/\"'Acn—2>d0\/d1V"'Vdn—z) Zy 1Yn1Xo)s
(g a,b,), € X,)) > 0.
Hence a, = p (4w Z), (@175 T Z111)) A

e, (@1 Ty T Zyy1)s (G T3 Ty Zpp2)) A Aty (G5
Zy1Vn-1)> G &€) > 0and b, = v ((gp, w, Zy), (4,57,
Zyy)) Vv Vhﬂ((ch’ T T Z1V1)s (o T3 Ty Z31)) V
' VVI— ((qn T n 1Yn- 1) (Qn’s 8)) <L
It contradlcts w1th the assumption. So e ((qo,w, Xo)
((gpa,b,),6 X,) = 0if (P2) is not sat1sﬁed In a similar
way, it is easily concluded that v.. ((qh,@, X), (g Gy
!

b,), & X,) = 1if (P2) is not satisfied.
Secondly, for any w = 1,---7, € T, 1, € T U {e},
i€ {1) s ,1’1}, [-’lg(ﬂ’)(w) = \/{Ml—:‘ﬂl ((q(’)’ w, X())a ((qn: a‘”’ bn)) &
XO)) A ."ll—ji,((qn’an’ bn)’ & XO)’((qn’ awbn)’s’e)) I (qn’ Ay

b) € QY =Viu (0 0. Z0), @17 T Ziy)) Aty (@15

Z)s @ T3 Zop2)) A o A (s Ty
Zya V)@ &) | qiseesy € Q ZysenZyy € Ty,
R VR r}= [Jg(/%)(w)-
Similarly, Vg /%,)(w) = Vy(/%)(w)'
Hence Z(M') = L(M). H

Remark 21. Proposition 20 presents an equivalence of an
IFPDA’. In particular, due to the underlying truth-valued
domain being an IFS, the proof technique used in Propo-
sition 20 is to some extent different from the technique of
extended subset construction in [33]. Moreover, Proposi-
tion 20 plays an important role in proving the fact that any
language recognized by an IFPDA” is an intuitionistic fuzzy
recognizable step function.

Proposition 22. Let / = (Q,2,T, 8, qy, Zo» 0) be an IFPDA’.
Then the language recognized by M is an intuitionistic fuzzy
recognizable step function over X*, that is, (M) € Step©(Z).

Proof. Let /L = (Q,Z,T,0, qO,ZO,(D) be an IFPDA”. Then
there is a special IFPDA’ ' = (Q', =, 1,6’ qO,XO,Q) con-
structed by Proposition 20, which is equivalent to .. For any
(a,b) € (L, \{0}) x (L, \ {1}) with0 < a+b < 1, con-
struct a classical PDA with empty stack ./#,, = (Q',Z,T",
8! dp X0, 0), where Q',%,T',q;, and X, are the same as
those in .#', and the function 6;'27 Q' xExI - 2T
defined by

(i) 8., ((Po» 1,0), 8 Xo) = {((go» 1,0), Zo X)}s
(ii) 8;'[7(((1, ¢d),7,X) = {((q',c ANe,dVvd),y | ¢ =
us(@ 7. X,qy) > 0,d, = v5(q,7,.X,q,y) < 1,4 €
Qyel™)
(iii) Oy, ((g> a. b), & Xg) = {((g, . b), &)};
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(iv) 8;',,(((1, ¢, d), 7, X) = 0 in other cases.

Then for any w € X%, we have pg ) (@) = po s (@)
- \/{Ml— ((q()’w> 0) ((qn> an) bn): &, XO)) A Ml_jll ((qn> afl’ bn)’

& X,), ((qn,a,,,b ) &8) | (4pa,b,) € QY = Va,
(@G b,) €Q,0<a, +b, <1, Mjﬁ,((%)“” X0),((g,» a,,b,),

6 X,) =1} = \/{a | (q('),w,XO) >j%ub((qn, a,,b,),€¢),q, €
Q= Vaer o1 A by, (@) and Vo g)(@) = v pm (@)
= /\{VU{' ((qo,w Xo)> ((ga,b), X)) V vklﬂ,((q, a,b), ¢

Xy, ((g:a,b), &) | (g.a,b) € QY =N\b | (g.ab) €
Q,0 < a+b < l,yF;,((qé,w,Xo), ((ga,b),6,Xy)) =

1} = A | (g X,) >j”ab((q, a,b), e, X,), (ga,b) € Q'}
= /\bGLz\{l}b v Vly(v/zab) ().
Therefore (M) € StepC(Z). L]

Theorem 23. Let A be an IFS over X*. Then the following
statements are equivalent:

(1) A € Step®(Z);
(2) A is accepted by a certain IFPDA° /.

Proof. (i) implies (ii). Suppose A ¢ StepC(Z). Then there are
a finite natural number n € N, recognizable context-free
languages #,,..., %, < X*, and (al, b) € (0,1] x [0,1)
with 0 < g, +b < lfori = 1,...,nsuch that A =
(yA,vA) ]_[l 1(al,b) 15 . Let Z; be recognized by PDA

=(Q, %, T, z’qu’ZOz’ﬂ) and Q; ﬂQ = @ whenever i # j,
i, ] € N,,.

Next, construct an IFPDA’ # = (Q,2,T,6,1, Zy,0) as
follows: Q = UL, QT = UL, I; U{Zy}, and I = (up,vy)
are an IFS over Q, defined by y;(qy) = a5 vi(q) = b,
i € N,; otherwise y;(q) = 0 and v;(q) = 1.8 = (us,vs) is
an IFS over Q X (X U {e}) x I' x Q x I'*, where the mappings
Us: Vs : Qx (ZUfe}) xI'x QxT* — {0,1} are defined by
Us(qoi» & Zo» Goi» Zoi) = 1 and vs(qo;» & Zo, Goi» Zoi) = 0,1 €
N, us(q- 7, Z, p,y) = land v5(q, 7, Z, p,y) = 0if p,q € Q,,
Z eI,y eI/,T € %,i € Nyand (p,y) € 8(¢q,7,2).
Otherwise, ys(q, 7, Z, p,y) = 0 and v5(q, 7, Z, p,y) = 1.

Then A = Z(M) = 11,(a,b,) - lg,.

(ii) implies (i). It is concluded by Proposition 22. O

One can see that IFPDAs and IFPDAs” are equivalent to
a type of intuitionistic fuzzy recognizable step functions over
a set, respectively, by Theorems 19 and 23. Therefore, IFPDAs
and IFPDAs” are equivalent in the sense that they accept or
recognize the same classes of intuitionistic fuzzy languages.
That is to say, the following statement is true.

Corollary 24. For any IFPDA M, there is an
IFPDA ' equivalent to M. For any IFPDA’JM', there
is an IFPDA M equivalent to J'.

4. Intuitionistic Fuzzy Context-Free Grammars

As a type of generator of intuitionistic fuzzy context-free
languages, the notion of intuitionistic fuzzy context-free
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grammars is introduced in the section. Then the relationship
between intuitionistic fuzzy context-free grammars, IFPDAs,
IFPDAs’, and intuitionistic fuzzy recognizable step functions
is discussed. The algebraic properties of intuitionistic fuzzy
context-free languages are investigated finally.

Definition 25. An intuitionistic fuzzy grammar is a system
G = (N, T, P,I), where

(i) N is a finite nonempty alphabet of variables;

(ii) T is a finite nonempty alphabet of terminals and T'N
N = 0;

(iii) I is an intuitionistic fuzzy set over N

(iv) P is a finite collection of productions over T' U N,
and P = {x - y | x € (NUT)"N(NUT)",
ye(NUT), Hplx = y) > 0,v,(x — y) <1}

where p = (u,,v,) is an IFS over (N U " x (NUT),
#,(x,y), and v,(x, y) mean the membership degree and
the nonmembership degree that x will be replaced by y,
respectively, denoted by 1, (x, y) = p,(x — y), v, (x,y) =
Vo(x = ).

Fora, € (NU T)",ifx — y € P, then ayp is said to
be directly derivable from axf3, denoted by axf8 = «ayp, and
define py(axf = ayf) = p,(x — ), vy(axp = ayf) =
Vo(x = ).

If ap,...,q, are strings in (N U T)" and a; — a,

ey Q. — &, € P, then « is said to derive «,, in G, or,

equivalently, «,, is derivable from «; in G. This is expressed
bya,=¢ a,, orsimply ¢, =" «,,. The expressiona; — «, —
- — a,, is referred to as a derivation chain from «; to «,,,.

An intuitionistic fuzzy grammar G generates an intu-
itionistic fuzzy language £(G) = (ug, vg) in the following
manner. Forany 6 = w, € T*,n > 1, ys(0) = \{p(wy) A
Hp(wy = ) A+ Ay (W, = w,) | wy € N,wy,... 0, €
(NuUT)}, and vg(0) = A{vi(wy) Vv Vowy = @) VeV
V@, = w,) | @y € Ny, ..., 0, € (N uT) ).

Ugs(0) and v5(0) express the membership and nonmem-
bership degree of 0 in the language generated by grammar
G, respectively. Obviously, Z(G) = (yg, vg) is well defined.
In fact, for any 0 = w, € T*, n > 1, there is the strongest
derivation from wj to w,, thatis, vy = @} = -+ = @, | =
w,,, such that y;(0) = pr(wo) Ay (wy = a){)/\- . -/\‘up(w:l_1 =
w,). Sovs(0) < vi(w,) va(wo = w{) (VAR va(w;_1 = w,),
and pig(0) + vg(0) < pg(0) + vi(w,) Vv, (w, = wi) \VARERY,
vp(w;_1 = w,) = (Ug0) + vi(wy)) Vv (us(0) +vp(w0 = wi)) \Y;
V(UG (0) + v, () = w,)) < (uy(wp) +vi(@,)) V (4, (wy =
wi) + vp(w0 = w{)) VoV (‘up(w;_1 = w,) + vp(w:l_1 =
w,)) < 1.

For any intuitionistic fuzzy grammars G, and G,, if
Z(G,) = Z(G,) in the sense of equality of intuitionistic fuzzy
sets, then the grammars G, and G, are said to be equivalent.

For any intuitionistic fuzzy grammar G = (N, T, P, I), if
Im(I) = Im(y;) U Im(v;) = {0, 1} and supp(I) = {S}, then G
is also written as G = (N, T, P, S).

1

Proposition 26. Let A be an IFS over T™. Then the following
statements are equivalent:

(i) Aisgenerated by a certain intuitionistic fuzzy grammar
G = (N)T,P7I)).

(ii) Aisgenerated by a certain intuitionistic fuzzy grammar
G=(N,T,P.9).

Proof. (i) implies (ii). Let A be generated by an intuitionistic
fuzzy grammar G = (N,T,P,I). Then we construct an
intuitionistic fuzzy grammar G' = (N',T’, P',S) as follows:
N' =NU{SLS¢ N;T' =T,P' =PUP,, where P, = {S —
q1q €supp(I), u,(S — q) = p1(q) v, (S — q) =vi(g)}.

Next we show that Z(G) = Z(G). In fact, G =
(N',T',P',T"), where I is an IFS over N', yp(S) = 1, v (S) =
0; pp(q) =0and vp(q) = 1 wheng € N.

Forany0 = w, € T",n > 1,y () = VAur (wo)Au,y(wy =
w) A Ay, = w,) | wy € N, w,...,w,, € (N'U
Y} = V(S = @) A py(0 = @) Ao A py(w, ;=
®,) | @50, € (N'UT)'} = V{p,(S = @) Auy(g =
W) N A,y = w,) | g € Nywy,.o s, € (NU
)"} = Vi@ A p,(g = o) A Apy(w,, = w,) | q €
N,w,,...,w, ; € (NUT)*} = us(0) and vy (6) = A\{vp (wy)V
Vo(wy = W) V- Vv, (w,, = w,) | wy € N,w,...,0, €
(N'UT')"} = Afv,(S = 0) Vv (w; = @) V- Vv, (w, , =
®,) | @@, € (N'UT)} = AMv,(S = @) Vv,(g =
W)V, (@, 2 w,) [ €N, w,,...,w, ; € (NUT)"} =
ANvi@ Vv, (g = @) V- Vv(w,, = )| qc¢€N,
Wy, ..y, € (NUT)*} = v5(0).

Hence Z(G') = Z(G).

(ii) implies (i), obviously. [

Definition 27. (1) An intuitionistic fuzzy grammar G = (N,
T, P, I) is called context-free (IFCFG, for short) if it has only
productions of the form A — w € Pwith A € Nandw €
(N UT)". And the language Z(G), generated by the IFCFG
G, is said to be an intuitionistic fuzzy context-free language
(IFCFL).

(2) An IFCFG G = (N, T, P,S) is called an intuitionistic
fuzzy Chomsky normal form (IFCNF) if it has only produc-
tions of the form A — BC € PorA — a € PorS — &
where A,B,C € N,B+S,C+#Sanda € T. (3) An IFCFG
G = (N,T,P,S) is called an intuitionistic fuzzy Greibach
normal form (IFGNF) if all the productions are of the form
A — ax € PorS — & where A € Nya € T,and x €
(N\{SH*. (4) AnIFCFG G = (N, T, P,I) is called a simple-
typed intuitionistic fuzzy context-free grammar (IFSCFG) if

P={A—x|AeN,xe(NUT),pu,(A— x)=1}.
(25)
Proposition 28. Let G = (N,T,P,I) be an IFCFG and
Z(G) = (g vg) be the intuitionistic fuzzy context-free
language generated by G. Then the image set of £(G) is a finite
subset of the unit interval [0, 1].

Proof. Let G = (N, T,P,I) be an IFCFG. Then Im(yp) and
Im(v,) are finite. For any 6 = w, € T", n > 1, there exist
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natural numbers d,1 such that u5(0) = \/{p;(S) A MP(S =
w) AN pp(wy = W) A Applw,, = ) | S €N,
wWys. s, 1 € (NUT)'} = (ayg A+ Aay,_ g Aay,) V-V (agA

Nagy_1 Aag,) and vg(0) = \vi(S)Vv,(S = w)Vv,(w; =
W)V VY, (@, =>w ) | SeN, wl, ..,wn_l € (NUT)"} =
(g V-V bm Vb, “N(byV--- Vb, Vb,), where
ay € Im(ptI) U Im(;/tp), bjk € Im(v;) U Im(vp),i e {l,...,d},
jell,....,l}k€{0,1,...,n}. Let X = Im(y;) U Im(y,) and
Y = Im(v;) U Im(vp). Then X and Y are finite subsets of the
interval [0,1]. (X,), and (Y,,), are also finite by Lemma 8.
Since pg(0) € (X,), and v5(0) € (Y,), forany 0 € T7,
we have Im(yg) < (X,)y and Im(vg) < (Y,),. Hence
Im(Z(G)) = Im(us) U Im(vg) is finite. O

Proposition 29. Let G = (N,T,P,S) be an IFCFG. Then
Z(G) € Step®(T).

Proof. Let X = Im(u,) andY = Im(v,). Then X and Y have
finite elements because P is a finite collection of productions
over TUN. Suppose L, = X,and L, =Y,,. Then L, and L,
are finite by Lemma 8. For any (a,b) € (L, \ {0}) x (L, \ {1}),
0 < a+ b < 1, we construct a classical context-free grammar
Gy = (N',T, P, S') as follows:

N' = N (L, \ {0} x (L, \ {1}), §' =
consists of the form:

(M) (Aja,by)  —  Dy-- Dy whenever u,(A —
7o T) > 0and v,(A — 7,---7;) < 1, where

! !
(5,1,0) € N', P,

D, - (t, a5 b)), ?f 7, € N 26)
T ifr; eT

i

i=1....ka =a ANp,(A - 7,---7) and b, =
b Vv, (A = 1 7)s
(2) (A,a,,b;) — x whenevera < g, App(A — X) and

b2b Vv,(A — x) forallAeN,x ¢ (NuUT)*.

Then Z(G,,) = {w € T | S':gﬂbw} ={weT" |ac
HP(S = u) /\yp(ul = U,) /\---/\[ﬂ,(un,1 = w),b > vp(S =
u) Vv(uy = uy) Ve Vv (U, = w), Uy, € (NU
).

: i\lext it suffices to show that Z(G) = [[(a,b)-1 g(Gab),that
is, pg(w) = \/aeLl\{O}a A “13»(%)(“’) and vg(w) = /\bELZ\{l}b \
Vlwcab)(w)’ forallw € T™.

Suppose pg(w) = a; > 0. Then there exist u],...,u, | €
(N UT)" such that g = p,(S = up) A ‘up(ui = u)A

A ‘up(u;_l = w).Putc = vP(S = u;) va(u; = u;)v

-V vp(u:,_1 = w). Thenc < 1 and w € Z(Gy).
Therefore, pg(w) < Vaep 0@ A [ (w) and vg(w) =
Noer iyt Vv Vlwc,,,,)(w) for any w € T*. In addition,
Vaerno@ A i, @) = Via € L\ {0} | @ € Z(G)} <
VA, (S = u) Apy(uy = w) A Apy(u, = ) | w €
L(Ggp)y thyy -5 thyy € (NUT)'} < \{py (S = up)Ap,(uy =
W) A Ayt = @) [ty sth, g € (NUT)'} = pg(w),
vo(w) = /\{vp(S = u) Vv,(u = ) VeV, =
w) | up.eu, € (NUT)Y < Afb e Ly\{1} | b >
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Vo(§ = u) Vv, (uy = ) Ve Vv, (U, = @), Uy, ...ty €
(NUT)} < b € L\ {1} | b2 v,(S = u) Vv,(u, =
W)V Vv, = wha < (S = u) Apy(uy =
W) Ao Ayt = @)ty .ty € (NUT)'} = A\{b €
L2 \ {1} | w € g(Gab)} = /\bELZ\{l}b V vl?(Gab) ((L)).

It is concluded that pg(w) = V,er 0@ A [ZP. (w) and
Vo(w) = Nper b V vlmub)(w), forallw € T*. O

Proposition 29 states that any language recognized by an
IFCFG is an intuitionistic fuzzy recognizable step function,
where the proof technique is constructive. Next we will
show that the set consisting of all the intuitionistic fuzzy
recognizable step functions coincides with that of languages
recognized by IFCFGs.

Theorem 30. Let A be an IFS over T*. Then the following
statements are equivalent:

(1) A € Step®(T);
(2) There is an IFCFG G such that A = Z(G);
(3) There is an IFSCFG G such that A = Z(G).

Proof. (1) implies (3). Let A = ]_[1 1(@,b) - 1, where a;, b; €
[0,1], 4, + b < 1,i € Ni, and &4,... Ek c T" are
classical context-free languages. Suppose Z; is generated by
a context-free grammar G; = (N, T, P, Sy;) and N;N N; = 0
whenever i # j. Then we constructan IFSCFGG = (N, T, P, I)
as follows: N = UL ,P = Ul VB I = (yy,vy) is an IFS
over N, where the mappmgs upvr s N — [0,1] are defined
by u;(So;) = a5 vi(Sy;) = b pr(q) = 0and v;(q) = 1 whenever
qEN\{Sy [i=1,....K).

Next, we show A = Z(G) = I_L 1@, ) - 14 . In fact, for
any w = u, € T, pg(w) = \[{p(S) A py(S = uy) A, (uy =
W) Ao A,y = @) | S€N,uy,.. i, € (NUT)'} =
VApr(Son) | Soi=¢,w: S0 € Nyi € Nib = Vg, | w € Zy5i €
N =V an w1, (@) and v (w) = A8 Vv, (S = uy) v
V(U = uy) V- Vv o,y = @) [ S € Nyuy,ooyu,y €
(NUT)'} = /\{vI(SO,») | Soi=6,w,Soi € Nyi € Nib = /\{b; |
weZyie N = Nob Vv, (@),

Hence Z(G) = (pg, vg) = ]_L (a,b) 14 = A

(3) implies (2). It is true obviously since an IFSCFG is a
special IFCFG by Definition 27.

(2) implies (1). It is straightforward by Propositions 26
and 29. O

Theorem 31. Let A be an IFS over X*. Then the following
statements are equivalent:

(1) A € Step®(2);

(2) there is an IFPDA M such that A = L (M);

(3) there is an IFPDA® M such that A = L(M);

(4) there is an IFCFG G such that A = ZL(G);

(5) there is an IFCNF G such that A = ZL(G);

(6) there is an IFGNF G such that A = Z(G).
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Proof. (1) implies (5). Let A € StepC(Z). Then suppose A =
]_[le(a,-,b,») -1y, where a;,b; € [0,1],a; + b; < 1,i € Ny, and
Py, Ly C 7 are classical context-free languages.

If supp(A) = {e}, then we construct an IFCNF G = (N,
3, P,S) as follows: N = {S}, P = {S — ¢ | Uy(S — ¢) =
yA(e),vp(S — &) = pyle)}. Clearly, Z(G) = A

If supp(A) \ {e} # 0, then there is a Chomsky normal form

grammar G; = (N;,X, P, S,;) such that Z(G;) = Z; \ {¢},
for any Z; with Z; \ {e} #0,i = 1,...,k. Let N;N N; = 0
whenever i # j. Then we constructan IFSCFGG = (N, X, P, I)

according to the method constructed by Theorem 30, where
N = Ule Ul L P> I = (up,vy) is an IFS over N, and
the mappings [,11, v; : N — [0, 1] are defined by y;(Sy;) = a;,

vi(Syi) = b; (@) = 0and v;(q) = 1 whenever g € N \ {S; |
i=1,...,k}. Next, we constructan IFCNFG' = (N', %, P',S)
as follows:

() N =NuU{s},S¢N;

(ii) P' = P U P", where P" has the productions in the
form of

(E1) S — &with ‘uP(S — g) = yA(s),vp(S — ) =
ps(e) whenever € € supp(A);

(E2) S — BC with Ho(S — BC) = p;(S,;) and
v,(§ — BC) = v(S;) whenever S; € supp(I)
andSy;, —» BCeP,i=1,...,k

(E3) S — awith y,(S — a) = \{u(Sy) | Sp; €
supp(I), Sp; = a € P,i=1,...,k}and v (S —
o) = N{vi(Sy;) | So; € supp(I),Sy; — « € Pi =

., k} whenever Sj; € supp(I)and Sy; — « €
Pi=1,...k

Then we have Z(G') = (4gr, vgr) = A. Infact, forany w €
2, ifw = ¢ then pg () = yP(S — &) = py(e) and v (e) =
Vo(S — &) = vu(e)s if w#e, then pg (w) = \V{u,(S=gu;) A
Uy =) Ao AUy 1 =g ) | Uy Uy, .ty € (N'u
D)t = Vipr(So) A ,(Soi=6 1) A (=g uy) A wee A
Ho(thy =6 w) | Uty € (NUZ)E € N

Vg, | w € Z(G)),i € N} = \/1 NN 1(w) and v (w)
ANy, (S=cu) V v(u=guy) V- Vv, (4, =g0) |
Uy, sty € (N'UZ)'T = A(vi(Sy) V Vv, (Soi=ct1) V
V(=G uUy) Ve Vv, (U, =g w) | Uty .ty € (NU
$)%ieNJ = Na; | w € Z(G),i € Ny} = N oy Vi, (@).

(1) implies (6), similarly. The proof is omitted.

(5) implies (4), (6) implies (4), obviously, since IFCNF
and IFGNF are special IFCFGs respectively.

(1), (2), (3), and (4) are equivalent mutually by Theorems
19, 23, and 30.

Theorem 31 states that IFCFLs, the set of intuitionistic
fuzzy languages recognized by IFPDA and the set of intu-
itionistic fuzzy recognizable step functions, coincide with
each other. Next we discuss some operations on the family
of IFCFLs.

Let A = (uy,v,) and B = (up,vy) be IFSs over X,
A,0 € [0,1],and 0 < A +6 < 1. Then the operations of union,
scalar product, reversal, concatenation and Kleene closure are
defined, respectively, by
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(i) AU B = (4aup> Vaup)> Havp(@) = pa(w) V pg(w),
Vaup(w) = v (w) A vp(w);

(ii) L 0)A = (A A pg, OV vy, AA p) (@) = A A py(w),
OVvy)(w) =0Vv,(w);

(iii) Al = (Up-1,V41), pp1(w) = ‘uA(w_l), vy (w) =
VA(w71)§

(iv) AB = (pp,Vap)> pap(w) = Vi{palw)) A pp(w,) |
w0, = wh, Vup(w) = Afva(w) Vvg(w,) | ww, = w)
(V) A" = (upe> Var)s phas (@) = \pa(w) Ao A g (wy)
k>lLo=ow w}vy(w = ANvalw) v v
valwp) + k 2 Lw = w -} for any w € X7,
where w™! represents the reversal of w, that is, if © =

w, - w,thenw™ = w - w,, forallw € *. -

Theorem 32. (1) The family Stepc(E) is closed under the
operations of union, scalar product, reversal, concatenation,
and Kleene closure. That is, A U B, (A,0)A, A}, AB, A* ¢
Step©(2), for any A, B € Step“(2), 1,0 € [0,1,0 < A+ < 1.

(2)Let h : 2] — 325 be a homomorphism. If A €
Step©(Z,), then "' (A) = Ao h € Step®(Z,). (3) Leth: 2} —
X5 be a homomorphism. If h satisfies, for T € Z, h(1) #¢,
and g = (ugv,) € Step©(2,), then h(g) = (Un(g)> Viig) €
Step©(Z,), where p)(w) = \{py(@) | h(a) = w,a € 37},
V(g (@) = /\{vg(oc) | h(a) = w,« € 27} forany w € X5

Proof. (1) Let A,B € StepC(E). By Definition 17, we can
assume A = (up,va) = [15,(ab) - 15, B = (up,vp) =
]_I;.':l(cj,d j) -1 ap where all &; and ./% are classical context-
free languages, 0 < a; + b, < 1,0 < ¢; + d; <1la;, b,,cj,d €
[0,1],i € Ny, and j € N,. With respect to the union, we
have A U B € Step®(Z). That is, A U B = (iuup Vaus) =
(Ha V V4 A Vp), paup(@) = pa(@) V pg(@) = (Vi A
pr, @)V (Va6 A iy, (@) Vaps(@) = va(@) A va(w) =
(/\l bV, (w))/\(/\J 1 JVvlﬁj(w)),forall we X",
With respect to the scalar product, for each (A,0) €
[0,1]%[0,1],0 < A+6 < 1, we have (A, 9)A (ANpy, 0Vvy),
AN p)w) = AN pylw) = /\/\(\/ 1% Ay, ( ) =
vk (A Aa) A , (), OV vy)(w) =0V vA(w) =0V
(/\l b Vv, (w) = /\le(e Vb)) Vv, (w)foral w € .
By Definition 17, (1,0)A € Step“(). For the reversal
operation, 3;1 —{wles |we &}, and 3;1 is a con-
text-free language because &, is a context-free language,
i € Ni.Foranyw € X%,y (w) = ‘uA(wfl) \/f G A
o, @) = Vi A @vae (@ = va(@™) = AL v
(afl) = /\1 b AT (w), that is A”! € Step®(2). For the

operation of concatenatlon since p p(w) = \/fc 1\/;’ a; A
¢j) A ylyi“ﬂj(w),vAB(a)) = /\l 1/\] (b vd) Vv (a)) for
all w € ¥, where the elements of the family set {3 /% |ie
Ny, j € N, } are also context-free languages since & and M

are context-free languages. Hence AB € Step®(Z).
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For the Kleene closure, A* = (u,:,Vv,-) is defined by
par () = V{pa(@) A Apyloy) - k> Lo = w - w)
V(@) = Nva(@) Ve vva(wy) k= 1,0 = w, -} for
any w € X*. Since A € StepC(Z), we assume that the IFSPDA
M= (Q,2,T,8,qy Zy, F) accepts A by Theorem 19. Let R =
{(up(@),ve(@) | g € QP\{(0, D)} = {(a;,b) | i € Ni}. Then
A= ]_[le(ai, b) - 1o, where & is accepted by a PDA .#; =
(Q2,T,8, gy, Zy, F.), the mapping 8’ : Q x (U {e}) xT —
291 s defined by 8'(¢, 7. X) = {(p.}) | (@ 7. X, poy) =
LpeQyeTI*foral(gr,X) € Qx (ZEU{e}) xT,and
F,={q € Q| up(q) = a;,ve(q) = b}, for alli € N;,.

For any nonempty subset J of the set {1,2,...,k}, we can
assume that J = {i},...,i}. Letr; = a; A---Aa,t; =
bil ViV bis’ and g(]) = UPl'"Ps 321 g;zg;’lg; (gpl U
L) Ly (L U VLY )L (Ly U UL,
where p; - - - p, is a permutation of {i;,...,i}, and Z(J) takes
unions under all permutations of {i;,...,i,}. Hence Z(J)
is a context-free language. It is easily verified that A* =

(HﬂstIQNk(rJ’ t1) 1)) U((a(€), vo(€))-1(). Therefore, A™ €
StepC(Z).

(2)If A € Step®(Z,), then A = ]_[le(ai, b) -1y, where a;,
b€ [0,1],a,+b < 1,i € N,and &,..., % C Z] are
classical context-free languages. Since h : ] — Xj isa
homomorphism, g1 4)(w) = pa.(w) = pa(h(w)) = \/leai/\
, (h(w)) = Vf:lai A ylh_l(yi)(w), and vy, 4y (@) = v (w) =
valh(w)) = N b v i, (h(@)) = A, Vi, 1y, (@), where
w € Z’f,hil(gi) = {w; € 2] | h(w;) € &;},i € N, and the
elements of the set {h_l(.,?i) | i € N} are classical context-
free languages. Hence h™'(A) = Ao h = ]_[le(a,-, b) - Ly
And so h™}(A) € Stepc(Zl). (3)If h(t) #¢, forall T € X, and
g = (ptg,vg) € StepC(Zl), then yg(w) = \/f;lal- A ylzi(w),
vg(w) = /\lebi Vi, (w), for any w € %, where a;, b, € [0,1],
a;+b <1,i € N, Zy,..., L) C 2] are classical context-free
languages. Since h : £] — % is a homomorphism, h(Z;) =
{h(w) € Z | w € &£} is also a classical context-free language,
i € Ni. Forany x € ZJ, Hn(g)(x) = \/{yg(oc) | h(a) = x}=
v{\/:‘;lai/\["lji (@) [ h(a) = x} = \/f:lai/\[hhwi)(x))Vh(g)(x) =
Nvg() | hla) = x} = MAE b v v, (@) | h(a) = x}=
/\leb,- Vv vlh(yi>(x). Hence h(g) (yh(g),vh(g)) €
Step©(2,). O

5. Pumping Lemma for IFCFLs

In this section, we mainly discuss the pumping lemma for
IFCFLs, which will become a powerful tool for proving a
certain intuitionistic fuzzy language noncontext-free.

Theorem 33. Let A = (py,v,) be an IFCEL over . Then
there exists a finite natural number n such that for any z € *
with n < |z|, there have u,v,w,x, y,u, v, w;, x;, ¥, € X7
such that z = wvwxy = wvwxy, lvwx| < n

Journal of Applied Mathematics

lv,wy x| < n, lox| = 1, luyx;| = 1, and yA(uviwxiy) >
pauowxy), v, (u vjw, x y,) < v(uv,w x, ), forall i > 0.

Proof. Let A = (uy,v,) be an IFCFL over 2. Then there
is an IFCNF G = (N, T, P,S) who accepts A. According to
Proposition 29, Z(G) = [[(a,b) - ly,)> Where (a,b) €
XA\ {0 x (Y, \ {1}), X = Im(,), Y = Im(v,),0<a+b< 1
and the classical context-free grammar G, = (N', T, P,,,S")
is shown in the proof process of of Proposition 29. Let G have
m variables. That means, |[N| = m. Choose n = 2™. Next,
suppose |z| > n, ps(z) = a;, > 0 and v5(z) = by < 1. Then
there exist b, € Y, \ {1} and g, € X, \ {0} with0 < a, + b, < 1
and 0 < a; + by < lsuchthatz € Z(G,;) N L(Gyp )
By pumping lemma for context-free languages, there are
u,v,w,x,y € X satisfying z = wvwxy, lvwx| < n and
|lvx| > 1 such that uviwxiy € L(G,,; ), foralli > 0. Then
s (uv'wx'y) > p,(uvwxy) foranyi > 0since p, (uv'wx' y) =
Vaex 0@ N Lo, Wv'wx'y) > a,.

Similarly, there are u;,v,,w;, x,, y; € X satisfying z =
wvw X, ¥y, [vw x| < noand |vpx;| = 1 such that
wviw Ky, € Z(G,p,), foralli > 0. Then v viw X yy) <

agby

v v,wx, y,) for any i > 0 since v, (uv\w,x}y,)
Noev bV Lo, it wix) 1) < by O

Next, let us look at an example to negate an intuitionistic
fuzzy language to be an IFCFL.

Example 34. Let A = (uy,v,) be an IFS over T*. The
mappings gy, vy : T* — [0, 1] are defined by

05 ifz=ab/cF (i<j<k),
Ha(2) = {0, otherwise,
. (27)
03, ifz=abc" (i<j<k),
va(2) = . ( J )
1, otherwise,

where i, j, and k are natural numbers.

Suppose A is an IFCFL. Then there exists a certain IFCNF
G such that Z(G) = A. For constant n, put z = a"b™' "2
Hence, py(2) = pgc)(2) = 0.5 and v4(2) = vy (z) = 0.3.
Let z = uvwxy, where [vwx| < n and |vx| > 1. If vwx
does not have ¢’s, then uv*wx’y has at least n + 2a’s or bs;
if vwx has at least a c, then it has not an a since |[vwx| < n.
And so uwy has na's, but no more than 25 + 2b’s and ¢’s in
total, that is, [uwy| < n + 2n + 2. Therefore, it is impossible
that uwy has more b’s than a’s and also has more ¢’s than b’s.
By calculation, we have u,(uwy) = 0 and v, (uwy) = 1. No
matter how z is broken into uvwxy, we have a contradiction
with Theorem 33. Therefore, A is not an IFCFL.

The following example will show that intuitionistic fuzzy
pushdown automata have more power than fuzzy pushdown
automata when comparing two distinct strings although the
degrees of membership of these strings recognized by the
underlying fuzzy pushdown automata are equal.
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Example 35. Let = = {0,1}. Then L = {wlw ' |w € 2*} ¢ 2*
is clearly a context-free language but not a regular language by
classical automata theory, where w ™' represents the reversal of
the string w. Given an IFPDA ./ = (Q,%,1,6,1,Z,, F) and
a fuzzy pushdown automaton /" = (Q, %, T, 1, 0, Z,, 0,). Put

Q=19091>90:} T =12y, 0,1}, an IFS § = (s, vs) inQ x (XU
{e}) x T x Q x T* is defined by

#5(90,0, Z9>q0,0Z) = 0.7, vs(qy, 0, Zy, 49, 0Z) =
0.2,

#s(qo> 1, Zo> G5 12,)
0.3,

45(q050,0, g4, 00) = 0.3, v5(go, 0,0, gy, 00) = 0.6,
45(q050,1,4,,01) = 0.3, vs5(q0,0, 1, gy, 01) = 0.5,
45(q0> 1,0, 44, 10) = 0.5, vs(go> 1,0, gy, 10) = 0.4,
Us(q1,0,0,4;,¢) = 0.6,v5(q;,0,0,9,,¢) = 0.3,
Us(q1,1,1,4;,€) = 0.5,v5(q;, 1, 1,9, €) = 0.35,
ts(do> 1, Zo> 41> Zo) = 1, v5(q0, 1, Zo» 1> Zo) = 0,
#5(q0>1,0,91,0) = 1, v5(q0, 1, 0,4, 0) = 0,
ts(qo> 1, 1,9, 1) = 1,v5(q0, 1, 1,9;, 1) = 0,
Us(q1-& Zo, G2> Zo) = 1, v5(qy, & Zo, G2, Zg) = 0.

0.6, vs5(q0, 1, Zo, 90> 1Z,) =

Otherwise ys(q, 7, Z, p,y) = 0 and v5(q, 7, Z, p,y) = 1
for (g, 7, Z,p,y) € Qx (ZU{e}) x T x QxT™".

The IFSs I = (y;,v;) and F = (yp, vp) in Q are defined
by p1(go) = 1, vi(qo) = 0, p(q)) = p(qy) = 0, vi(q)) =
ur(qy) = 1, pp(qy) = 1, ve(qy) = 0, pp(qo) = pe(qy) = 0 and
Ve(go) = pp(q)) = 1.

And sety = ps, 0y = yp, and 0] = pp.

By computing with the strings, 010, 111, 01110, 10101,
0011100, and 1011101€ ¥, we have

Uy (01110) = £,(01110) = 0.5, vy 4(01110) =

0.4,
Hor(a)(10101) = f,(10101) = 0.3, Vg 4)(10101) =
0.5,

U (0011100) = £,(0011100) = 0.3,
Ve (0011100) = 0.6,

Uop(1011101) = £,(1011101) = 0.3,

Ve (1011101) = 0.5.

This implies that 111 is better than 01110 because the
degree of nonmembership of vy ,)(111) is smaller than the
Vouy(01110)’s although the degrees of membership of the
fuzzy context-free languages f,(01110) and f,(111) are
equal. Comparing the above five strings, 010 is the best and
0011100 is the worst.

6. Conclusions

Taking intuitionistic fuzzy sets as the structures of truth
values, we have investigated intuitionistic fuzzy context-free
languages and established pumping lemma for the underlying
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languages. Firstly, the notions of intuitionistic fuzzy push-
down automata (IFPDAs) and their recognizable languages
are introduced and discussed in detail. Using the generalized
subset construction method, we show that IFPDAs are equiv-
alent to IFSPDAs and then prove that intuitionistic fuzzy
step functions are the same as those accepted by IFPDAs.
Furthermore, we have presented algebraic characterization of
intuitionistic fuzzy recognizable languages including decom-
position form and representation theorem. It follows that
the languages accepted by IFPDAs are equivalent to those
accepted by IFPDAs” by classical automata theory. Secondly,
we have introduced the notions of IFCFGs, IFCNFs, and
IFGNFs. It is shown that they are equivalent in the sense
that they generate the same classes of intuitionistic fuzzy
context-free languages (IFCFLs). In particular, IFCFGs are
proven to be an equivalence of IFPDAs as well. Then some
operations on the family of IFCFLs are discussed. Finally
pumping lemma for IFCFLs has been established. Thus,
together with [38-40], we have more systematically estab-
lished intuitionistic fuzzy automata theory as a generalization
of fuzzy automata theory.

As mentioned in Section 1, IFS and fuzzy automata theory
have supported a wealth of important applications in many
fields. The next step is to consider the potential application
of IFPDAs and IFCFLs such as in model checking and
clinical monitoring. Additionally, many related researches in
theories, such as IFPDAs based on the composition of t-norm
and t-conorm and the minimal algorithm of IFPDAs, will be
studied in the future.
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