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This paper is devoted to multiple solutions of generalized asymptotical linear Hamiltonian systems satisfying Bolza boundary
conditions. We classify the linear Hamiltonian systems by the index theory and obtain the existence and multiplicity of solutions
for the Hamiltonian systems, based on an application of the classical symmetric mountain pass lemma.

1. Introduction

This paper is concerned with a classical problem on the
existence of solutions for Hamiltonian systems when a more
general form of twist condition between the origin and
infinity holds for the Hamiltonian function. More precisely
consider the system

�̇� = 𝐽𝐻



(𝑡, 𝑥) ,

𝑃𝑥 (0) = 0 = 𝑃𝑥 (1) ,

(1)

where𝐻 ∈ 𝐶(R × R2𝑛,R), and 𝐻 ∈ 𝐶(R × R2𝑛,R2𝑛) and𝐻
satisfies the following:

(𝐻
1
) 𝐻(𝑡, 𝑥) = 𝐵

0
(𝑡, 𝑥)𝑥+𝑜(|𝑥|), as |𝑥| → 0 uniformly in

𝑡 ∈ [0, 1],
(𝐻
2
) 𝐻(𝑡, 𝑥) = 𝐵

∞
(𝑡, 𝑥)𝑥+ 𝑜(|𝑥|), as |𝑥| → ∞ uniformly

in 𝑡 ∈ [0, 1],

for 𝐵
0
(𝑡, 𝑥), 𝐵

∞
∈ 𝐿

∞
((0, 1) × R2𝑛;GLs(R2𝑛)). Here and

below, we use 𝐻 to denote the first derivative of 𝐻 with
respect to 𝑥 ∈ R2𝑛.

A quantitative way to measure the twisting is given by the
Maslov-type index. As in [1, 2], an index for the second-order
and first-order linear Hamiltonian systems was defined and
developed in [3] for the study of linear operator equationwith
infinite Morse index. In [4, 5], by Conley and Zehnder and

Long, an index theory for symplectic path was defined. We
refer to two excellent books [6, 7] for systematical treatment.

In [2], Dong discussed the classification of the linear
Hamiltonian systems with Bolza boundary conditions as
follows:

�̇� = 𝐽𝐵 (𝑡) 𝑥,

𝑃𝑥 (0) = 0 = 𝑃𝑥 (1) ,

(2)

where 𝐵 ∈ 𝐿

∞
((0, 1);GLs(R2𝑛)) and 𝑃𝑥 = (𝑥

1
, . . . 𝑥

𝑛
) ∈

R𝑛, for any 𝑥 = (𝑥

1
, . . . , 𝑥

2𝑛
). That is, for any 𝐵 ∈

𝐿

∞
((0, 1);GLs(R2𝑛)), he associated it with a pair of numbers

(𝑖(𝐵), ](𝐵)) ∈ 𝑍 × {0, 1, . . . , 𝑛}. This pair of integers is called
index and nullity of𝐵, respectively. And he defined the nullity
](𝐵) as the dimension of the solution space of (1). Let 𝐸[𝛼]
be the integer 𝑎 ∈ Z such that 𝑎 < 𝛼 ≤ 𝑎 + 1. So that
𝐸[𝑎] = 𝑎 − 1 for all integer 𝑎 defined as in [6]. In order to
process the definition of 𝑖(𝐵), he defined 𝑖(𝜆𝐼

2𝑛
) = 𝑛𝐸[𝜆/𝜋].

In particular, when 𝜆 ∈ (𝑘𝜋, (𝑘 + 1)𝜋), 𝑖(𝜆𝐼
2𝑛
) = 𝑛𝑘. We will

introduce the definitions and properties of 𝑖(𝐵) in detail in
Section 2. After the discussion of the index theory, we will
prove our main result in Section 3.

Throughout this paper, ‖𝑥‖
𝐶
denotes the usual norm in

𝐶[0, 1]. For any𝐴
1
,𝐴
2
∈ GLs(R2𝑛), we write𝐴

1
≤ 𝐴

2
if𝐴
2
−

𝐴

1
is positively semidefinite, andwewrite𝐴

1
< 𝐴

2
if𝐴
2
−𝐴

1

is positive definite. For any𝐴
1
,𝐴
2
∈ 𝐿

∞
((0, 1);GLs(R2𝑛)), we

write𝐴
1
≤ 𝐴

2
if𝐴
1
(𝑡) ≤ 𝐴

2
(𝑡) for a.e. 𝑡 ∈ (0, 1), and we write
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𝐴

1
< 𝐴

2
if 𝐴
1
≤ 𝐴

2
and 𝐴

1
(𝑡) < 𝐴

2
(𝑡) on a subset of (0, 1)

with a nonzero measure.

Remark 1. Let𝐶
1
,𝐶
2
∈ (𝑘𝜋, (𝑘+1)𝜋),𝐶

3
,𝐶
4
∈ ((𝑘+1)𝜋, (𝑘+

2)𝜋)with 𝐶
1
< 𝐶

2
, 𝐶
3
< 𝐶

4
. Assume that𝐴

𝑖
= 𝐶

𝑖
𝐼

2𝑛
, 𝑖 = 1, 2,

and 𝐵
𝑖
= 𝐶

𝑖
𝐼

2𝑛
, 𝑖 = 3, 4. Then, we have 𝑖(𝐴

1
) = 𝑖(𝐴

2
) = 𝑛𝑘,

𝑖(𝐵

1
) = 𝑖(𝐵

2
) = 𝑛(𝑘 + 1), and ](𝐴

𝑖
) = ](𝐵

𝑖
) = 0, for 𝑖 = 1, 2;

(1) has at least 𝑛 pairs of solutions.

We make use of the critical point theory [8, 9] to prove
Theorem 8. The novelty of our result is that it suffices to
assume that 𝐻(𝑡, 𝑥) + (1/2)𝜇|𝑥|2 is convex. The twisting
between origin and infinity is reflected in (𝐻∗

1
) and (𝐻∗

2
).

Thus, our results complement with Theorem 3.8 in [2] and
Theorem 1.1 in [10]. For other results, we refer to [11–15].

This paper is organized as follows. In Section 2, we
introduce some preliminaries including index theory, and
establish the 𝜇-index theory which is needed in the proofs.
In Section 3, we present the proofs of the results.

2. Index Theory for Linear Hamiltonian
Systems Satisfying Bolza Boundary
Value Conditions

First, we recall some definitions and propositions in [2]. We
consider the following system:

�̇� = 𝐽𝐵 (𝑡) 𝑥, (3)

𝑃𝑥 (0) = 0 = 𝑃𝑥 (1) . (4)

Let 𝐻 = {𝑥 : [0, 1] → R2𝑛|𝑥 is continuous on [0, 1], sat-
isfies (4), and �̇� ∈ 𝐿2} with the norm ‖𝑥‖

𝐻
= (∫

1

0
(|𝑥


(𝑡)|

2
+

|𝑥(𝑡)|

2
)𝑑𝑡)

1/2, (Λ
1
𝑥)(𝑡) = 𝐽𝑥


(𝑡), (𝐵𝑥)(𝑡) = 𝐵(𝑡)𝑥(𝑡), where

𝐿

2
:= 𝐿

2
((0, 1);R2𝑛), and let |𝑥| = (∑2𝑛

𝑖=1
|𝑥

𝑖
|)

1/2 for any 𝑥 =
(𝑥

1
, . . . , 𝑥

2𝑛
) ∈ R2𝑛.Then,Λ

1
and𝐵 are self-adjoint operators,

and 𝐵 is bounded.

Definition 2 (see [2, Definitions 2.1, 2.3, 2.4, and 2.7]). For any
𝐵

1
, 𝐵

2
, 𝐵 ∈ 𝐿

∞
((0, 1),GLs(R2𝑛)), one defines that

(1) ](𝐵) = dim ker (Λ
1
+ 𝐵),

(2) 𝐼(𝐵
1
, 𝐵

2
) = ∑

𝜆∈[0,1)
]((1 − 𝜆)𝐵

1
+ 𝜆𝐵

2
) for 𝐵

1
< 𝐵

2
,

(3) 𝑖(𝐵) = 𝑖(𝜆𝐼
2𝑛
) − 𝐼(𝐵, 𝜆𝐼

2𝑛
) for 𝜆 ∈ R satisfies 𝐵 < 𝜆𝐼

2𝑛
.

Using spectral theory, a Morse-type index 𝑖
𝜇
(𝐵) was

established in [2]. More precisely, for any 𝐵 ∈ 𝐿

∞
((0, 1),

GLs(R2𝑛)), let 𝜇 ∈ R \ 𝜋Z with 𝐵 + 𝜇𝐼
2𝑛
≥ 𝐼

2𝑛
. Then,

](−𝜇𝐼
2𝑛
= 0), Λ𝑥 := 𝐽�̇�(𝑡) − 𝜇𝑥(𝑡) is invertible, and the

inverse Λ−1 : 𝐿2 → 𝐿

2 is self-adjoint and compact. He put a
quadratic form:

𝑞

𝜇,𝐵
(𝑢, 𝑢) =

1

2

∫

1

0

(Λ

−1
𝑢 (𝑡) , 𝑢 (𝑡)) + (𝐶

𝜇
(𝑡) 𝑢 (𝑡) , 𝑢 (𝑡)) 𝑑𝑡

∀𝑢 ∈ 𝐿

2
,

(5)

(𝐶

𝜇
(𝑡) 𝑢 (𝑡) , 𝑢 (𝑡)) := ∫

1

0

(𝐶

𝜇
(𝑡) 𝑢 (𝑡) , 𝑢 (𝑡)) ,

(6)

where𝐶
𝜇
(𝑡) := (𝜇𝐼

2𝑛
+𝐵(𝑡))

−1. Then, (𝐶
𝜇
(𝑡)𝑢(𝑡), 𝑢(𝑡)) defines

a Hilbert space structure on 𝐿2. 𝐶−1
𝜇
Λ

−1 is a self-adjoint and
compact operator under this interior product. By the spectral
theory, there is a basis 𝑒

𝑗
, 𝑗 ∈ N of 𝐿2, and a sequence 𝜆

𝑗
→ 0

in R such that

(𝐶

𝜇
(𝑡) 𝑒

𝑖
(𝑡) , 𝑒

𝑗
(𝑡)) = 𝛿

𝑖𝑗
,

(Λ

−1
𝑒

𝑗
, 𝑢) = (𝐶

𝜇
𝜆

𝑗
𝑒

𝑗
, 𝑢) ∀𝑢 ∈ 𝐿

2
.

(7)

For any 𝑢 ∈ 𝐿

2 as 𝑢 = ∑

∞

𝑗=1
𝜉

𝑗
𝑒

𝑗
, (5) can be rewritten as

follows:

𝑞

𝜇,𝐵
(𝑢, 𝑢) =

1

2

∫

1

0

(Λ

−1
𝑢, 𝑢) + (𝐶

𝜇
(𝑡) 𝑢, 𝑢) 𝑑𝑡

=

1

2

∞

∑

𝑗=1

(1 + 𝜆

𝑗
) 𝜉

2

𝑗
.

(8)

Define that

𝐸

−

𝜇
(𝐵) :=

{

{

{

∞

∑

𝑗=1

𝜉

𝑗
𝑒

𝑗
| 𝜉

𝑗
= 0 if 1 + 𝜆

𝑗
≥ 0

}

}

}

,

𝐸

0

𝜇
(𝐵) :=

{

{

{

∞

∑

𝑗=1

𝜉

𝑗
𝑒

𝑗
| 𝜉

𝑗
= 0 if 1 + 𝜆

𝑗
̸= 0

}

}

}

,

𝐸

+

𝜇
(𝐵) :=

{

{

{

∞

∑

𝑗=1

𝜉

𝑗
𝑒

𝑗
| 𝜉

𝑗
= 0 if 1 + 𝜆

𝑗
≤ 0

}

}

}

.

(9)

𝐸

−

𝜇
(𝐵), 𝐸0

𝜇
(𝐵), and 𝐸+

𝜇
(𝐵) are 𝑞

𝜇,𝐵
-orthogonal, and 𝐸−

𝜇
(𝐵) ⊕

𝐸

0

𝜇
(𝐵) ⊕ 𝐸

+

𝜇
(𝐵) = 𝐿

2. Since 𝜆
𝑗
→ 0 as 𝑗 → ∞, 𝐸−

𝜇
(𝐵) and

𝐸

0

𝜇
(𝐵) are two finite-dimensional subspaces.

Definition 3 (see [2, Definition 2.9]). For any 𝐵 ∈ 𝐿∞((0, 1),
GLs(R2𝑛)), 𝜇 ∈ R with 𝜇𝐼

2𝑛
+ 𝐵 ≥ 𝐼

2𝑛
, one defines that

]
𝜇
(𝐵) := dim 𝐸

0

𝜇
(𝐵) , 𝑖

𝜇
(𝐵) := dim 𝐸

−

𝜇
(𝐵) . (10)

One calls ]
𝜇
(𝐵) and 𝑖

𝜇
(𝐵) 𝜇-nullity and 𝜇-index of 𝐵,

respectively.
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Proposition 4 (see [2, Propositions 2.10, 2.13]). The index,
relativeMorse index, and𝜇-index have the following properties.

(1) For any 𝐵
1
, 𝐵
2
, 𝐵 ∈ 𝐿∞((0, 1), 𝐺𝐿𝑠(R2𝑛)), with 𝐵

1
<

𝐵

2
, one has

]
𝜇
(𝐵) = ] (𝐵) , 𝐼 (𝐵

1
, 𝐵

2
) = 𝑖

𝜇
(𝐵

2
) − 𝑖

𝜇
(𝐵

1
) ,

𝑖

𝜇
(𝐵

1
) − 𝑖

𝜇
(𝐵

2
) = 𝑖 (𝐵

1
) − 𝑖 (𝐵

2
) .

(11)

(2) There exists 𝜖
0
> 0, such that, for any 𝜖 ∈ (0, 𝜖

0
], one

gets

] (𝐵 + 𝜖𝐼
2𝑛
) = 0 = ] (𝐵 − 𝜖𝐼

2𝑛
) ,

𝑖 (𝐵 − 𝜖𝐼

2𝑛
) = 𝑖 (𝐵) , 𝑖 (𝐵 + 𝜖𝐼

2𝑛
) = 𝑖 (𝐵) + ] (𝐵) .

(12)

In particular, if ](𝐵) = 0, one obtains 𝑖(𝐵+𝜖𝐼
2𝑛
) = 𝑖(𝐵)

for 𝜖 ∈ (0, 𝜖
0
].

(3) 𝑖
𝜇
(𝐵) − 𝑖(𝐵) is a constant for 𝐵 satisfying 𝐵 + 𝜇𝐼

2𝑛
≥

𝐼

2𝑛
, that is, 𝑖

𝜇
(𝐵) − 𝑖(𝐵) = 𝑖

𝜇
(𝐵

1
) − 𝑖(𝐵

1
) for any other

𝐵

1
∈ 𝐿

∞
((0, 1),GLs(R2𝑛)) with 𝐵

1
+ 𝜇𝐼

2𝑛
≥ 𝐼

2𝑛
. For

any 𝜇 > 1, one has

𝑖

𝜇
(0) = 𝑛𝐸 [

𝜇

𝜋

] ,

𝑖

𝜇
(𝐵) = 𝑛𝐸 [

𝜇

𝜋

] + 𝑛 + 𝑖 (𝐵) ,

(13)

for any 𝐵 ∈ 𝐿∞((0, 1),GLs(R2𝑛)) with 𝐵 + 𝜇𝐼
2𝑛
≥ 𝐼

2𝑛
.

Remark 5. From this proposition, there is 𝜖
0
> 0, 𝜖 ∈ (0, 𝜖

0
]

such that ]
𝜇
(𝐵 + 𝜖𝐼

2𝑛
) = 0 = ]

𝜇
(𝐵 − 𝜖𝐼

2𝑛
) and 𝑖

𝜇
(𝐵 − 𝜖𝐼

2𝑛
) =

𝑖

𝜇
(𝐵), 𝑖

𝜇
(𝐵 + 𝜖𝐼

2𝑛
) = 𝑖

𝜇
(𝐵) + ]

𝜇
(𝐵).

In order to prove Theorem 8, we make use of minimax
arguments for the multiplicity of critical points in the pres-
ence of symmetry.We state two results of this type from [8, 9].

Lemma 6 (cf. Chang [9, Theorem 4.3.4]). Assume that 𝑓 ∈
𝐶

1
(𝑋,R1) satisfies the (PS) condition,𝑓(𝜃) = 0,𝑓(−𝑥) = 𝑓(𝑥),

and

(1) there are an m-dimensional subspace 𝑋
1
and a con-

stant 𝜌 > 0 such that

sup
𝑥∈𝑋
1
∩𝑆
𝜌

𝑓 (𝑥) < 0, (14)

(2) there is a j-dimensional subspace𝑋
2
such that

inf
𝑥∈𝑋
⊥

2

𝑓 (𝑥) > −∞, (15)

where𝑋⊥
2
is a subset of𝑋 such that𝑋⊥

2
⊕𝑋

2
= 𝑋.Then,

𝑓 has at least𝑚− 𝑗 pairs of critical points if𝑚− 𝑗 > 0.

Lemma 7 (see [8, Theorem 2.2.8]). Suppose that 𝑓 ∈

𝐶


(𝐻,R) satisfies (C) condition,𝑓(𝜃) ≥ 0, even, and there exist

two closed subspaces𝐻+𝐻− of𝐻, with codim𝐻− < +∞, and
two constants 𝑐

∞
> 𝑐

0
≥ 𝑓(0) such that

(a) 𝑓(𝑢) ≥ 𝑐
0
for all 𝑢 ∈ 𝑆

𝜌
∩ 𝐻

+,

(b) 𝑓(𝑢) ≤ 𝑐
∞

for all 𝑢 ∈ 𝐻−.

Then, if dim𝐻− ≥ codim𝐻+, 𝑓 possesses at least 𝑚 =

dim 𝐻

−
− codim𝐻+ distinct pairs of critical points whose

corresponding critical values belong to [𝑐
0
, 𝑐
∞
].

3. Proof of Main Results

We state the main result in this paper. We further make the
following assumptions.

(𝐻∗
1
) There exists 𝐴

1
, 𝐴
2
∈ 𝐿

∞
((0, 1);GLs(R2𝑛)) such that

𝐴

1
(𝑡) ≤ 𝐵

0
(𝑡, 𝑥) ≤ 𝐴

2
(𝑡) with 𝑖(𝐴

1
) = 𝑖(𝐴

2
), ](𝐴

2
) =

0.

(𝐻∗
2
) There exists 𝐵

1
, 𝐵
2
∈ 𝐿

∞
((0, 1);GLs(R2𝑛)) such that

𝐵

1
(𝑡) ≤ 𝐵

∞
(𝑡, 𝑥) ≤ 𝐵

2
(𝑡) with 𝑖(𝐵

1
) = 𝑖(𝐵

2
), ](𝐵
2
) =

0.

(𝐻
3
) 𝐻(𝑡, 𝜃) = 0,𝐻(𝑡, 𝑥) = 𝐻(𝑡, −𝑥).

(𝐻
4
) 𝐻(𝑡, 𝑥) + (1/2)𝜇|𝑥|2 is convex.

Our main result reads as follows.

Theorem 8. Assume that (𝐻
1
), (𝐻∗
1
), (𝐻
2
), (𝐻∗
2
), (𝐻
3
), (𝐻
4
)

are satisfied, then (1) has at least |𝑖(𝐴
1
) − 𝑖(𝐵

1
)| pairs of

solutions.

Theorem 9. If 𝑖(𝐴
1
) > 𝑖(𝐵

1
), then (1) has at least 𝑖(𝐴

1
)− 𝑖(𝐵

1
)

pairs of solutions.
If 𝑖(𝐴

1
) > 𝑖(𝐵

1
), let 𝜇 ∈ R \ 𝜋Z with 𝐴

1
+ 𝜇𝐼

2𝑛
≥ 𝐼

2𝑛
,

𝐵

1
+ 𝜇𝐼

2𝑛
≥ 𝐼

2𝑛
. Recalling that Λ𝑥 = 𝐽�̇� − 𝜇𝐼

2𝑛
, one denotes

𝐻

𝜇
(𝑡, 𝑥) = 𝐻(𝑡, 𝑥) + (1/2)𝜇|𝑥|

2. Then, one obtains

𝐻

∗

𝜇
(𝑡, 𝑥) = sup

𝑦∈R2𝑛
{(𝑥, 𝑦) − 𝐻

𝜇
(𝑡, 𝑦)} . (16)

Thus,𝐻∗
𝜇
(𝑡, −𝑥) = 𝐻

∗
(𝑡, 𝑥) and

𝑥 = 𝐻

∗

𝜇
(𝑡, 𝑥

∗
) iff𝑥∗ = 𝐻

𝜇
(𝑡, 𝑥) (17)

(by the Fenchel conjugate formula; see [6, Proposition II]).
Hence, |𝑥| → ∞ if and only if |𝑥∗| → ∞. Consider the
functional defined by

𝜓 (𝑢) = ∫

1

0

(

1

2

Λ

−1
𝑢 (𝑡) , 𝑢 (𝑡)) + 𝐻

∗

𝜇
(𝑡, 𝑢 (𝑡)) 𝑑𝑡

∀𝑢 ∈ 𝐿

2
.

(18)

In order to proveTheorem 9, we need the following lem-
mas.

Lemma 10. 𝜓 satisfies the (PS) condition.
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Proof. Assume that {𝑢
𝑗
} is a sequence in 𝐿2 such that 𝜓(𝑢

𝑗
) is

bounded and 𝜓(𝑢
𝑗
) → 0 in 𝐿2. It suffices to prove that {𝑢

𝑗
}

has convergent sequence. By (18), we have

(𝜓



(𝑢) , V) = ∫
1

0

(Λ

−1
𝑢 (𝑡) , V (𝑡)) + (𝐻

∗

𝜇
(𝑡, 𝑢 (𝑡)) , V (𝑡)) 𝑑𝑡,

(19)

for all V ∈ 𝐿2. Hence, we get

𝜓


(𝑢

𝑗
) = Λ

−1
𝑢

𝑗
+ 𝐻

∗

𝜇
(𝑡, 𝑢

𝑗
(𝑡)) → 𝜃, in 𝐿2. (20)

Let 𝑥
𝑗
= Λ

−1
𝑢

𝑗
, 𝑦
𝑗
= 𝑢

𝑗
/‖𝑥

𝑗
‖

𝐶
, and 𝑧

𝑗
= 𝜓


(𝑢

𝑗
) − Λ

−1
(𝑢

𝑗
). If

‖𝑥

𝑗
‖

𝐶
→ ∞, then ‖𝑥

𝑗
‖

𝐿
2 → ∞. Joining (𝐻

2
) with (17) and

(20), we have

𝑢

𝑗
(𝑡) = 𝐻



𝜇
(𝑡, 𝑧

𝑗
(𝑡))

= (𝐵

∞
(𝑡, 𝑧

𝑗
(𝑡)) + 𝜇𝐼

2𝑛
) 𝑧

𝑗
(𝑡)

+ 𝑜 (











𝑧

𝑗
(𝑡)











)

= − (𝐵

∞
(𝑡, 𝑧

𝑗
(𝑡)) + 𝜇𝐼

2𝑛
)Λ

−1
𝑢

𝑗

+ (𝐵

∞
(𝑡, 𝑧

𝑗
(𝑡)) + 𝜇𝐼

2𝑛
) 𝜓


(𝑢

𝑗
)

+ 𝑜 (











𝑧

𝑗
(𝑡)











) .

(21)

Using the preceding notations, we have

𝑦

𝑗
(𝑡) = − (𝐵

∞
(𝑡, 𝑧

𝑗
(𝑡)) + 𝜇𝐼

2𝑛
)Λ

−1
𝑦

𝑗

+ (𝐵

∞
(𝑡, 𝑧

𝑗
(𝑡)) + 𝜇𝐼

2𝑛
) 𝜓


(𝑢

𝑗
)











𝑥

𝑗











−1

𝐶

+ 𝑜 (











𝑧

𝑗
(𝑡)











)











𝑥

𝑗











−1

𝐶
.

(22)

So 𝑦
𝑗
(𝑡) is bounded in 𝐿2. We assume that 𝑦

𝑗
⇀ 𝑦 in 𝐿2,

and hence Λ−1𝑦
𝑗
→ Λ

−1
𝑦. From (22), there exists 𝐵 ∈

𝐿

∞
((0, 1);GLs(R2𝑛)), such that

𝐵

∞
(𝑡, 𝑧

𝑗
(𝑡)) V (𝑡) ⇀ 𝐵 (𝑡) V (𝑡) for any V ∈ 𝐿

2
. (23)

Andwehave𝐵
1
(𝑡) ≤ 𝐵(𝑡) ≤ 𝐵

2
(𝑡). Taking the limit as 𝑗 → ∞

in (22), we obtain 𝑦(𝑡) = −(𝐵(𝑡) + 𝜇𝐼
2𝑛
)Λ

−1
𝑦. Let 𝑥 = Λ−1𝑦.

We get

𝐽𝑥 + 𝐵 (𝑡) 𝑥 = 0, 𝑃𝑥 (0) = 0 = 𝑃𝑥 (1) . (24)

By assumption (𝐻∗
2
), we have 𝑖(𝐵) = 0 and 𝑥 = 0, which

is impossible. Since ‖𝑥‖
𝐶
= 1, ‖Λ−1𝑢

𝑗
‖

𝐶
is bounded. From

(17) and (20), ‖𝑢
𝑗
‖

𝐿
2 is bounded. Assume that 𝑢

𝑗
⇀ 𝑢

0
in

𝐿

2; then Λ−1𝑢
𝑗
→ Λ

−1
𝑢

0
. Let 𝜉

𝑗
:= Λ

−1
𝑢

𝑗
+ 𝐻

∗

𝜇
(𝑡, 𝑢

𝑗
);

then𝐻∗
𝜇
(𝑡, 𝑢

𝑗
) = 𝜉

𝑗
− Λ

−1
𝑢

𝑗
→ −Λ

−1
𝑢

0
. Fenchel conjugate

formula gives 𝑢
𝑗
= 𝐻

∗

𝜇
(𝑡, 𝜉

𝑗
− Λ

−1
𝑢

𝑗
) → 𝐻

∗

𝜇
(𝑡, −Λ

−1
𝑢

0
) in

𝐿

2 (by [6, Preposition II, Theorem 4]).

Lemma 11. The assumption (1) of Lemma 6 is valid, where 𝑓
is defined as in (18).

Proof. From (𝐻
1
) and (𝐻∗

1
), we have that, for any 𝜖 > 0, there

exists 𝛿 > 0 such that

((𝐴

1
(𝑡) − 𝜖) 𝑥, 𝑥) ≤ (𝐻



(𝑡, 𝑥) , 𝑥) ≤ ((𝐴

2
(𝑡) + 𝜖) 𝑥, 𝑥) ,

for any |𝑥| ≤ 𝛿.
(25)

Thus,

𝐻

𝜇
(𝑡, 𝑦) = (∫

1

0

𝐻



𝜇
(𝑡, 𝜃𝑦) 𝑑𝜃, 𝑦)

≥

1

2

(((𝐴

1
(𝑡) − 𝜖𝐼

2𝑛
) + 𝜇𝐼

2𝑛
) 𝑦, 𝑦) ,

for any 


𝑦









≤ 𝛿.

(26)

Let 𝑔(𝑦) = (𝑥, 𝑦) − 𝐻
𝜇
(𝑡, 𝑦). By (16) and (𝐻

4
), 𝑔(𝑦) is

strictly concave. Then, |𝑦| → ∞ as 𝑔(𝑦) → −∞. So, 𝑔
achieves its maximum at a unique point. Because of 𝑔(𝑦) =
𝑥 − 𝐻



𝜇
(𝑡, 𝑦), we get that

𝑥 = 𝐻



𝜇
(𝑡, 𝑦) has a unique solution. (27)

And we can easily get 0 = 𝐻
𝜇
(𝑡, 0). Hence, we have |𝑦| →

0 when |𝑥| → 0. Otherwise, there exists 𝜖
0
> 0, 𝑥

𝑛
, 𝑦
𝑛
∈ R2𝑛,

𝑡

𝑛
∈ [0, 1] s.t. |𝑥

𝑛
| → 0. But |𝑦

𝑛
| ≥ 𝜖

0
,𝑥
𝑛
= 𝐻



𝜇
(𝑡

𝑛
, 𝑦

𝑛
). Hence,

|𝑦

𝑛
| is bounded, and there exists 𝑦

0
, 𝑡
0
such that 𝑦

𝑛
⇀ 𝑦

0
,

𝑡

𝑛
→ 𝑡

0
, 𝑥
𝑛
→ 0. Thus, 0 = 𝐻

𝜇
(𝑡

0
, 𝑦

0
). This contradicts the

uniqueness, which yields there exists 𝜌(𝜌 < 𝛿) such that, for
any |𝑥| ≤ 𝜌, we have |𝑦| ≤ 𝛿. So, for any |𝑥| ≤ 𝜌, we have

𝐻

∗

𝜇
(𝑡, 𝑥) = sup

𝑦∈R2𝑛
{(𝑥, 𝑦) − 𝐻

𝜇
(𝑡, 𝑦)}

= sup
|
𝑦
|
≤𝛿

{(𝑥, 𝑦) − 𝐻

𝜇
(𝑡, 𝑦)}

≤ sup
|
𝑦
|
≤𝛿

{(𝑥, 𝑦) −

1

2

(((𝐴

1
(𝑡) − 𝜖𝐼

2𝑛
) + 𝜇𝐼

2𝑛
) 𝑦, 𝑦)}

=

1

2

(((𝐴

1
(𝑡) − 𝜖𝐼

2𝑛
) + 𝜇𝐼

2𝑛
)

−1

𝑥, 𝑥) .

(28)

By (18),

𝜓 (𝑢) ≤ ∫

1

0

(

1

2

Λ

−1
𝑢 (𝑡) , 𝑢 (𝑡))

+

1

2

(((𝐴

1
(𝑡) − 𝜖𝐼

2𝑛
) + 𝜇𝐼

2𝑛
)

−1

𝑢 (𝑡) , 𝑢 (𝑡)) 𝑑𝑡

for any |𝑢| ≤ 𝜌,
(29)

that is,

𝜓 (𝑢) ≤ 𝑞

𝜇,(𝐴
1
−𝜖)
(𝑢, 𝑢) for any |𝑢| ≤ 𝜌. (30)

Let𝑋
1
= 𝐸

−

𝜇
(𝐴

1
− 𝜖). Then, dim𝑋

1
= 𝑖

𝜇
(𝐴

1
− 𝜖). For any

𝑢 ∈ 𝑋

1
∩ 𝑆

𝜌
, we have sup𝜓(𝑢) < 0. By Proposition 4, for 𝜖

being small enough, 𝑖
𝜇
(𝐴

1
− 𝜖) = 𝑖

𝜇
(𝐴

1
).
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Lemma 12. The assumption (2) of Lemma 6 is also satisfied.

Proof. From (𝐻
2
), let ℎ

2
(𝑡, 𝑥) = 𝐻


(𝑡, 𝑥) − 𝐵

∞
(𝑡, 𝑥)𝑥. Then,

for any 𝜖 > 0, there exists a constant𝑀
1
such that









ℎ

2
(𝑡, 𝑥)









≤ 𝜖 |𝑥| + 𝑀

1
, ∀ (𝑡, 𝑥) ∈ [0, 1] × R2𝑛. (31)

Combining (𝐻
2
) and (31), there exists a constant𝑀

2
such that

𝐻

𝜇
(𝑡, 𝑥) ≤

1

2

((𝐵

2
(𝑡) + 4𝜖𝐼

2𝑛
+ 𝜇𝐼

2𝑛
) 𝑥, 𝑥) + 𝑀

2
, (32)

for all (𝑡, 𝑥) ∈ [0, 1] × R2𝑛. By the definition of 𝐻∗
𝜇
(𝑡, 𝑥), we

have
𝐻

∗

𝜇
(𝑡, 𝑥)

≥ sup
𝑦∈R2𝑛

{(𝑥, 𝑦) −

1

2

((𝐵

2
(𝑡) + 4𝜖𝐼

2𝑛
+ 𝜇𝐼

2𝑛
) 𝑦, 𝑦)} −𝑀

2

=

1

2

(((𝐵

2
(𝑡) + 4𝜖𝐼

2𝑛
) + 𝜇𝐼

2𝑛
)

−1

𝑥, 𝑥) −𝑀

2
.

(33)

Thus,

𝜓 (𝑢) ≥ ∫

1

0

(

1

2

Λ

−1
𝑢 (𝑡) , 𝑢 (𝑡))

+

1

2

((𝐵

2
(𝑡) + 4𝜖𝐼

2𝑛
) + 𝜇𝐼

2𝑛
)

−1

(𝑢 (𝑡) , 𝑢 (𝑡)) 𝑑𝑡

− 𝑀

2
.

(34)

So, we infer
𝜓 (𝑢) ≥ 𝑞

𝜇,(𝐵
2
+4𝜖)

(𝑢, 𝑢) − 𝑀

2
. (35)

Let 𝑋
2
= 𝐸

−

𝜇
(𝐵

2
+ 4𝜖). We have dim𝑋

2
= 𝑖

𝜇
(𝐵

2
+ 4𝜖) and

𝑋

⊥

2
= 𝐸

0

𝜇
(𝐵

2
(𝑡) + 4𝜖) ⊕ 𝐸

+

𝜇
(𝐵

2
(𝑡) + 4𝜖). So, we have

inf
𝑋
⊥

2

𝜓 (𝑢) ≥ −𝑀

2
. (36)

By Proposition 4, we have 𝑖
𝜇
(𝐴

1
) − 𝑖

𝜇
(𝐵

2
) = 𝑖(𝐴

1
) − 𝑖(𝐵

2
),

and we can also let 𝜖 be small enough such that 𝑖
𝜇
(𝐵

2
+ 4𝜖) =

𝑖

𝜇
(𝐵

2
). This completes the proof.

Theorem 13. If 𝑖(𝐴
1
) < 𝑖(𝐵

1
), then (2) has at least 𝑖(𝐵

1
) −

𝑖(𝐴

1
) pairs of solutions.

The argument in Theorem 8 can also be used here by
using Lemma 7. More precisely, if 𝐻+ = 𝐸+

𝜇
(𝐴

2
+ 𝜖), then

codim𝐻+ = 𝑖(𝐴

1
) and 𝜓(𝑢) > 𝑐

0
> 0 on 𝐻+ ∩ 𝑆

𝜌
. If

𝐻

−
= 𝐸

−

𝜇
(𝐵

1
− 4𝜖), then dim𝐻− = 𝑖(𝐵

1
) and 𝜓(𝑢) ≤ 𝑐

∞

on𝐻−.
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